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a b s t r a c t

The influence of particle geometry on the macroscopic frictional response of granular interfaces is
investigated via computational contact homogenization. The particle shape is parametrized by convex
superellipse geometries that require iterative closest-point projection schemes for modeling the
persistent rolling contact of the particle between a rigid smooth surface and a rubber-like material.
Normal and tangential forces acting on the particle are computed by the discrete element method. The
non-Amontons and non-Coulomb type macroscopic frictional response of the three-body system is
linked to microscopic dissipative mechanisms. Numerical investigations demonstrate rolling resistance
and additionally suggest that the macroscopic friction from a complex interface particle geometry may
be bound by computations that are based on simplified shapes which geometrically bound the original
one.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The microscopic origins of what is measured as friction on the
macroscopic scale is largely system dependent. The system might be
atomic, molecular or continuum level and a thorough understanding
of friction at each level requires addressing experimental, theoretical
and computational aspects — see [1] and references therein for
recent overviews. The present study lies at the continuum scale
where much work has been done within the broader context of
tribology [2], constituting a rich basis for modeling and computation.

1.1. Scope of study

Consider a macroscopic structure that is made up of rubber in
frictional interaction with a smooth surface. It is assumed that the
contact interaction is governed locally by an Amontons-Coulomb
type friction: the friction coefficient is independent of the contact
pressure and slip velocity. It is of interest to determine the effect of
introducing particles into the contact interface on the overall
interaction of the rubber and the surface. The deformability of
both the surface and that of the particles is neglected. For
sufficiently small particle sizes, one can imagine that a classical
separation of length scales assumption would hold such that the
contact interaction is not influenced by the geometrical para-
meters of the macroscopic structure but rather only by the
material properties and the contact variables associated with an
infinitesimally thin boundary layer of the rubber in the vicinity of

the contact interface. Consequently, it is sufficient to model the
microscopic contact interactions only and meld them into a
macroscopic friction coefficient k towards a macroscale homoge-
nized interface which has no particles. A computational contact
homogenization framework for this purpose has been developed
in [3,4]. A major observation is that for elastic boundary layers k is
explicitly dependent on the macroscopic pressure p (non-
Amontons). If the boundary layer is additionally viscous then k

also depends on the macroscopic frictional slip velocity vF (non-
Coulomb). In all cases, the macroscopic friction coefficient is a
reflection of the microscopic dissipation mechanisms, both at the
contact interfaces and within the boundary layer.

Real particles rarely display the idealized circular geometry
that has been assumed in the two studies summarized above. The
major goal in this contribution is to study the effect of the particle
geometry on the macroscopic frictional response of the three-body
contact problem described.

1.2. Flexible particle geometry

A qualitatively accurate geometrical description of the particle
shape remains a challenge in the context of finite element method
(FEM) based particulate composite and discrete element method
(DEM) based granular material simulations, mainly due to the
difficulty in detecting contact among non-spherical geometries.
Contact governs the response of granular materials [5] and its
detection is intrinsic to the packing of the particles in a simulation
domain even if the particles do not physically come into contact
but rather constitute a phase in a composite [6]. For composite
materials, the underlying FEM discretization allows, in principle,
the adoption of arbitrarily complex particle geometries, for instance
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based on spline constructions [7]. When discretization ideas are
similarly adopted in DEM [8], contact detection among individual
particles with complex shapes benefits from well-known search
algorithms in computational contact mechanics [9,10]. Alternative
geometries can also be constructed based on approximations, for
instance that of an irregular shape by aggregates of spheres or by a
polygonal description with flat facets, in effect taking advantage of
simple contact detection schemes — see [11,12] for early and more
recent overviews as well as for improvements. While further
generalizations are possible, e.g. based on computer-aided design
tools [13], superellipsoids appear to constitute a reasonable first
step in parametrizing non-spherical particles [14,15] and will be
adopted here as well.

1.3. Granular interfaces

The geometry of the particle determines the contact detection
algorithm, not only among the particles but also between a
particle and a deformable body. This latter DEM–FEM coupling
poses challenges that are case and scale dependent [16]. Presently,
the emphasis is on granular interfaces [17–19]. Typically, such
interfaces naturally occur with a large number of particles such
that the macroscopic response is of the lubrication type [20,21].
See [22] for a recent comprehensive review of interfaces with third
bodies.

One distinguishing feature of the present contribution is that it
concentrates on the (i) persistent and (ii) large sliding contact of a
non-circular particle with (iii) an elastomeric material that
deforms significantly. Consequently, the FEM elements do not
simply constitute obstacles with which the DEM particles come
into contact and exchange momentum — cf. [23,24]. The mesh and
the time discretization should be fine enough to capture the
microscale interactions. Roughly, this translates into the require-
ments that (i) the mesh is able to deform around and encapsulate
the particle at the contact interface, and also that (ii) the FEM
system is solved at each DEM time step. These are factors that
together contribute to a high computational cost.

1.4. Limitations

There are two major shortcomings with the present frame-
work. First, within the two-dimensional setting of the present
study the rubber–particle interactions are too stiff in the sense
that, for a given fraction of surface coverage by the particles,
the rubber cannot as easily encapsulate the particle as in the
three-dimensional setting. Consequently, for a realistic choice
of material parameters for the rubber, the magnitude of the
macroscopic contact pressure needed to initiate rubber–surface
contact beyond rubber–particle contact will be unrealistically
high. Moreover, the possibly complex dynamics of a three-
dimensional non-spherical particle at the interface cannot be
captured. However, considering that the simulation time for a
single run in a parametrical study easily exceeds an hour on a
standard workstation, the dimensional simplification is greatly
facilitating. Second, even without the presence of the particles at
the contact interface, rubber friction is known to be already of a
non-Amontons and non-Coulomb type behavior [25]. The com-
plex tribological behavior of rubber has long been a subject of
experimental interest [26,27] and it was recognized early that
this behavior is governed by the interaction of rubber with
micro-rough surfaces through viscoelastic and adhesive mechan-
isms [28] — see [29] for a more recent study. Recent theoretical
and computational studies have greatly added to the under-
standing of rubber friction [30–35]. Hence, even a qualitative
comparison with experimental results would require enhancing
the framework with rubber–surface contact models that are

more realistic than the constant friction coefficient assumption
employed presently.

Nevertheless, the developed framework is still capable of
making qualitative predictions regarding the effect of the particle
presence at the contact interface, in particular with respect to the
particle shape. Recent experimental studies on the types of
granular interfaces considered demonstrated that the presence
of the particles leads to a reduction in the macroscopic friction
coefficient in comparison with the raw interface [36] and that a
strong pressure dependence is observed [37]. While a direct
comparison with experimental results is outside the scope of the
present study, it is noted that these observations are encouraging
since they are qualitatively in line with the numerical predictions.
A three-dimensional framework with enhanced friction models as
well as an experimental programme is currently under investigation.

1.5. Outline

The remainder of this work is organized as follows. In Section 2,
the problem setting is summarized and the major simulation
parameters are introduced. Aspects of dealing with non-circular
particles, in particular contact detection and force computation
schemes, are discussed in Section 3. The finite nonlinear viscoe-
lasticity model employed in earlier studies is briefly outlined in
Section 4 in order to introduce the extension for including the
Payne effect as an important filled rubber behavior. Representative
numerical examples and parametric studies are provided in
Section 5.

A self-contained presentation is pursued only to the extent that
is relevant to the novel aspects introduced. Various technical
details on material modeling, DEM aspects for the particles, FEM
aspects for contact mechanics, DEM–FEM coupling and other
computational issues regarding contact homogenization which
have previously been addressed in [3,4] are omitted for brevity.

2. Micromechanical test

The micromechanical test setup depicted in Fig. 1 will be
employed in order to extract the macroscopic frictional response
of the granular interface. Major simulation parameters are sum-
marized in Table 1. Unless stated otherwise, these values will be
employed in all numerical examples.

2.1. Test setup

Within the two-phase micromechanical test, a rubber block Co
with dimensions Ho � Lo is first pressed against the granular
surface by enforcing the macroscopic pressure p (compression
phase) and subsequently dragged at the macroscopic slip velocity
vF while maintaining the applied macroscopic pressure (dragging
phase). The raw friction coefficient for the rubber–surface interface
is denoted by ko while those at the particle–surface and the
particle–rubber interfaces are denoted by kPS and kPB respectively.
All friction coefficients are assumed to be independent of the local
contact pressure and slip velocity.

Fig. 1. The mesoscopic test setup geometry with a non-circular particle.
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In order to handle particles leaving the contact zone during the
dragging phase, periodicity conditions are assumed, complemen-
ted by periodic boundary conditions on ∂Cpo≔∂C�o [ ∂Cþ

o :

uþ ¼ u� and tþ ¼�t� on ∂Cpo: ð1Þ
Here, u is the displacement vector and t is the Cauchy traction.
Consequently, there are image cells on both sides of the central
cell although the computation is carried out explicitly within the
central cell only. Only a single particle is assumed to be present
due to the assumption of a periodic particle distribution. The
surface coverage of the particles is controlled by the length of the
sample and also by the size of a particle for a fixed length.
Presently, the geometry of the sample will be fixed and only the
particle shape will be varied.

2.2. Simulation parameters

The rubber block is discretized with NX � NY elements. In order
to enforce incompressibility, the material model for the rubber is
embedded within a Q1P0 formulation. The elastic response of
rubber can be accurately described through an Ogden-type con-
stitutive formulation [38] with an elastic shear modulus μe and
Ogden material parameters used1 in [4]. The elastic bulk modulus
is chosen to be κe ¼ 103μe such that the material is nearly
incompressible. The inertia of the rubber is neglected. However,
it is numerically advantageous to benefit from the regularizing
effects of dynamics, in particular with respect to accelerating the
convergence of the contact active set. For this purpose, the density
of the rubber block is assigned a small value ρB ¼ 10�3ρP where ρP
is the density of a particle. The inertia of the particle, on the other
hand, is important from a DEM perspective. When the particle
shape is varied, the mass and the moment of inertia will change.
The aim of the present work is to isolate the effect of the particle
shape on the macroscopic frictional response. Consequently, the
particles will always be assigned the mass and the moment of
inertia of a reference circular particle with a fixed radius ro.

2.3. Microscopic and macroscopic contact interactions

At the particle–rubber and rubber–surface interfaces, the
classical penalty regularization is employed to enforce the contact
constraints using normal (ϵN) and tangential (ϵT ) penalty para-
meters. The constraints are enforced at the two integration points

of each linear contact element. This formulation does not deliver
optimal local contact interactions (cf. mortar-based approaches
[39–42]) although the macroscopic normal (FN) and tangential (FT)
forces applied to the sample, measured at the observable test
surface ∂Ceo (Fig. 1), are predicted to good accuracy provided the
penalty parameters are chosen judiciously. The macroscopic fric-
tion coefficient during sliding is then instantaneously measured by

kI ¼
FT
FN

����
����: ð2Þ

Due to dynamic effects such as the particle–rubber interaction, kI

is highly oscillatory in time, in particular during the transition
from compression (0otoTo) to dragging (t4To). For this reason,
the moving time average k▾I of k I is monitored for convergence
after the transition region (Tooto2To), the total duration of
which is Tavg seconds. The value at convergence is designated as
the macroscopic friction coefficient k of the setup. This is the value
which will be reported throughout the investigations.

3. Non-circular particles

3.1. Superellipse geometry

Following earlier approaches for particulate composite model-
ing and DEM, deviations from an idealized circular shape can be
parametrized by a superellipse

∑
i

jdi � ðx�cÞj
ri

� �pi
�1¼ 0 ð3Þ

where c is the center of the particle, di are principal axis
orientations, ri are principal radii and pi control the particle shape.
In particular, piZ2 ensures the convexity of the particle surface,
which is a necessary ingredient in the Newton–Raphson method
to be employed in detecting particle–surface and particle–rubber
contact. For contact detection, it is advantageous to employ a local
coordinate system defined by a convected basis fd1;d2g such that,
using x�c¼ y¼ yidi, at a given time a point P on the particle
surface satisfies (see Fig. 2)

f yð Þ ¼∑
i

jyij
ri

� �pi
�1¼ 0: ð4Þ

In all subsequent discussions, the vector components are algor-
ithmically evaluated with respect to the d�basis, using the particle
center as the origin for position vectors. Mapping between the
global e�basis and the local d�basis is accomplished through
standard rotation and translation operations associated with the
particle motion.

3.2. Particle–rubber contact

Particle–rubber contact detection is based on the classical
closest-point projection algorithm. The outward unit normal n to
the particle surface is obtained by n¼∇f =J∇f J which defines the
tangent vector aT ¼ e3 � n. The closest-point projection yp of a
contact element integration point m is defined by the requirement

aT � ðm�ypÞ ¼ 0; ð5Þ

subject to the constraint

f ðypÞ ¼ 0: ð6Þ

In order to solve for yp, all calculations are performed in the first
quadrant of the particle. Within the Newton–Raphson method for
determining yp, it is advantageous to iterate in a specific vector
component to avoid potential ill-conditioning. The component is
chosen depending on the position of the projected point with

Table 1
Default simulation parameters. Only the changes to these default choices will be
explicitly noted.

Test sample length (mm) Lo 10
Test sample height (mm) Ho 7.5
Reference radius (mm) ro 0.5
Macroscopic contact pressure (bar) p (Varied)
Macroscopic slip velocity (m/s) vF 2.5
Elastic shear modulus (MPa) μe 1
Particle density (g/cm3) ρP 3
Nominal dragging time To Lo=vF

Total averaging time Tavg 2 To
Nominal time step size Δt 10�4To

Friction coefficient ko 0.5
kPB 0.5
kPS 1.5

Mesh resolution NX 40
NY 15

Penalty parameter ϵN 106μe
ϵT 104μe

1 There is a typo in Table 1 of this reference: γ2 should be �0.231.
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respect to a point Po on the particle (Fig. 2) with the property
y1 ¼ ary2 where

ar ¼
r1
r2

ð7Þ

is the aspect ratio. The point Po is fixed for given fri; pig and is
determined in a pre-processing step. The algorithm for determin-
ing yp requires straightforward calculations and is summarized in
Table 2. After its determination, it is mapped to the physical
position xp which is then passed back to the contact element for
penalization. Fig. 2 displays an example deformed mesh on an
elliptical particle.

3.3. Particle–surface contact

The particle–surface contact algorithm has two ingredients:
(i) determination of the point of potential contact yc between the
particle and the surface and (ii) evaluation of the normal and
tangential contact forces ff N ; f T g acting on the particle. Although
an analytical solution was previously employed for the latter
purpose with circular particles, the non-circular particle shape
requires a more general contact model.

3.3.1. Determination of the contact point
The point of potential contact yc corresponds to the closest-

point projection of the particle to the surface if there is no contact
and to the maximum penetration point otherwise. The slope
s¼ dyc2=dyc1 at this point is zero. Therefore, its computation is
easily carried out by first determining the actual quadrant of the
contact point and then the slope s′¼ dy0c2=dy

0
c1 at the image y0c

of this point with respect to the d�basis in the first quadrant
where calculations are carried out. Based on the clockwise angle of

particle rotation θ (Fig. 2), these are

Quadrant :

I if cos θo0; sin θZ0-s′¼� tan ð1801�θÞ
II if cos θo0; sin θo0-s′¼� tan ðθ�1801Þ
III if cos θZ0; sin θo0-s′¼� tan ð3601�θÞ
IV if cos θZ0; sin θZ0-s′¼� tan ðθÞ

8>>>><
>>>>:

ð8Þ

Within the Newton–Raphson method for determining the image
point y0c on the particle where the slope is s′, it is advantageous to
iterate in y0c1 if js′jo jsoj and in y0c2 otherwise, where so is the
reference value at Po (Fig. 2). Once the components y0ci are
determined, they are first mapped back to yic ¼ qi y

0
ci, e.g.

q1 ¼�1 and q2 ¼ 1 in quadrant II, and subsequently to the physical
position xc of the contact point. Simulation instances displaying
the point of potential contact are shown in Fig. 3 for particles with
different shapes.

3.3.2. Determination of the contact forces
The contact force acting on a particle is f ¼ f Te1þ f Ne2. If Δxc is

the relative change in the position of the material point associated
with xc through a time step Δt, assuming that the contact surface
is at x2 ¼ 0, normal and tangential kinematic contact variables are

Fig. 2. The superellipse shape for the closest point projection of a contact element integration point is summarized together with an example deformed mesh on an elliptical
particle. Here, ar¼1.25 and p1 ¼ p2 ¼ 2. The normal to the plane is given by e3 ¼ e1 � e2.

Table 2
Algorithm for the closest point projection of a mesh point m onto a superellipse.

1. Contact check. Proceed with projection if f ðmÞo0.
2. Quadrant check. Record the quadrant of projection:

qi ¼ jmij=mi

3. Constraint elimination. Map m to its first quadrant image m0 ¼ jmj and
eliminate the constraint on the image y0pi ¼ jypij of the projection point via

y0p1 ¼ r1½1�ðy0p2=r2Þp2 �1=p1 if
m0

1

m0
2
4ar

y0p2 ¼ r2½1�ðy0p1=r1Þp1 �1=p2 otherwise

8><
>:

4. Projection. Determine aT ðy0pÞ ? nðy0pÞJ∇f jy0p and solve for y0p1 or y0p2 from the

nonlinear orthogonality relation of closest point projection:
aT � ðm0�y0pÞ ¼ 0

5. Quadrant map. Map to the quadrant of physical contact:
ypi ¼ qi y

0
pi

ar = 1, p1 = p2 = 2 (CIRCULAR)

ar = 1, p1 = p2 = 4 (SQUARE)

ar = 1.5, p1 = p2 = 2 (ELLIPTICAL)

ar = 1.25, p1 = p2 = 3 (RECTANGULAR)

Fig. 3. The potential contact point ( ) between the particle and the surface is
shown for various instances. In all simulations, the particle is initially assigned a
horizontal velocity. The circular particle first slides and subsequently makes a
transition to rolling without slipping. A non-circular particle (r2 ¼ ro) impacts the
surface and bounces off during rolling due to its irregular shape. The geometries
displayed above will be employed in all upcoming numerical investigations as well.
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defined by

dN ¼�xc2; dtrialT ¼ doldT þΔxc1 ð9Þ

such that dN40 indicates contact and dT
old plays the role of a

history variable.
In DEM, the normal force is typically determined based on

viscoelastic Hertzian contact under the constraint that the inter-
face cannot support tension [5]

f N ¼maxð0; kN
ffiffiffiffiffiffi
dN

p
½dNþcN _dN�Þ: ð10Þ

The viscous contribution is responsible for the energy loss during
impact and as such can be related to the coefficient of restitution [43].
Although it is not essential to the purposes of the present study,
the viscous contribution was observed to help damp out oscilla-
tions in the instantaneous macroscopic friction coefficient kI that
appear in its absence during the persistent rolling contact of the
particle between the rubber and the surface. However, although
damping during compression ( _dNZ0) is favorable as such, it was
also observed that the classical formulation above can lead to a
premature loss of contact between the particle and the surface
during decompression ( _dNo0) due to the negative viscous con-
tribution to the normal force. A premature loss of contact leads to
an unrealistic slip detection and, hence, to an incorrect macro-
scopic friction coefficient prediction. Therefore, the formulation
above is employed by deactivating damping during decompres-
sion. In all simulations, gravity is additionally included.

The tangential force is modeled via a penalty regularization
together with an Amontons-Coulomb friction based on the stick

prediction

f trialT ¼�kTd
trial
T ð11Þ

that is corrected if slip is detected:

f T ¼
f trialT and dT ¼ dtrialT if jf trialT j�kPSf Nr0 ðStickÞ

kPSf N
f trialT

jf trialT j
and dT ¼�f T

kT
otherwise ðSlipÞ

8>><
>>:

ð12Þ

The variable dT is reset to zero whenever there is contact loss.
The constants appearing in the normal and tangential contact

models can be obtained from the material properties of the
particle [5]. Presently, the viscous constant is chosen so as to
obtain sufficient damping. The elastic constants, on the other
hand, are chosen to satisfy the conflicting requirements of
(i) minimal penetration and (ii) maximal time step size. The latter
is particularly important since a linear system of equations
emanating from the FEM model for rubber must be solved at each
time step. Default choices employed are summarized in Table 3.
Fig. 3 simulation instances were based on this set of parameters.
These choices lead to reasonable simulation times (Δt ¼ 10�4To —

see Table 1) and also deliver satisfactorily small penetrations
under the significantly (compared to Fig. 3) large forces applied
during persistent rolling contact with the rubber. Coupled FEM–

DEM simulation instances from the dragging phase with various
particle shapes are provided in Fig. 4.

4. Viscoelastic boundary layers

4.1. Dissipation mechanisms

Viscoelastic boundary layers continuously dissipate energy due
to the cyclic loading of the rubber by the particle during dragging.
This dissipation augments the macroscopic friction coefficient,
which is essentially a parameter that reflects the lumped effect
of all microscopic dissipation mechanisms. Other inelastic

Table 3
Numerical values of the default DEM parameters.

Normal stiffness kN 105μe
Tangential stiffness kT 103μe
Normal viscosity cN 3� 10�5

Fig. 4. Simulation instances from the dragging phase with the particle geometries in Fig. 3, displaying the distribution of the second eigenvalue τ2 of the Cauchy stress r.
During compression τ2 ��p (¼�2 MPa) on ∂Ceo (see Fig. 1), making it a convenient quantity for monitoring. (a) Circular, (b) square, (c) elliptical, and (d) rectangular.
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mechanisms, such as damage reflecting the Mullins effect at large
deformations, also lead to dissipation during the initial phase of
dragging. However, rate-independent mechanisms significantly
saturate after a few cycles of loading. Consequently, at steady state,
their effect can be reflected by a composite boundary layer with
modified elastic properties in the immediate vicinity of the surface.
Even then, viscoelastic effects are significantly more dominant [4].
For this reason, damage mechanisms will be omitted in the present
study. Hence, recalling that adhesive effects are also neglected, the
macroscopic friction coefficient may be additively decomposed into
frictional (kF ) and viscous (kV ) contributions from microscopic
dissipation mechanisms:

k ¼ kFþkV : ð13Þ
In the absence of viscous dissipation, kF still differs significantly
from the raw friction coefficient ko. In particular, it varies with the
macroscopic pressure but not with the macroscopic slip velocity.
The viscous contribution additionally renders the macroscopic
response dependent on the macroscopic slip velocity.

4.2. Viscoelasticity model

In order to incorporate viscous effects, the standard (non)linear
solid model is employed where a hyperelastic branch is in parallel
with a viscous Maxwell branch. Here, the constitutive model for
the Maxwell branch is constructed based on the multiplicative
decomposition of the deformation gradient to elastic and viscous
parts. The evolution of the viscous part is constructed to obtain
positive dissipation for thermodynamic consistency — see [44] for
details. Such consistency is crucial to ensure that the viscous
contribution kV is non-negative. This model inherits the classical
linear viscoelasticity parameters. Consequently, the three core
variables are the shear moduli of the elastic (μe) and viscous (μv)
branches as well as the shear relaxation time τo ¼ ηo=μv of the
viscous branch with ηo as the viscosity. The model only affects the
deviatoric stress. There are no bulk contributions from the viscous
branch.

For a fixed loading frequency in the kinematically linear
regime, a single fμv; τog combination can reflect the effect of all
viscous mechanisms since the storage and loss moduli at a fixed
frequency are functions of these two variables only. However,
for the loading scenarios of the present study where the slip
velocity varies, nonlinear deformations are sustained and the
rubber experiences relaxation periods in between particle excita-
tions, ideally multiple Maxwell branches are required to accurately
reflect the dependence on the macroscopic slip velocity. Never-
theless, a single Maxwell branch is employed to capture the
qualitative effect of viscoelasticity. The default relaxation time is
chosen according to the representative time scale associated with
the loading of the sample by the particle as it rolls across the cell
boundaries, which is roughly of order Lo=vF .

4.3. Payne effect

For the standard Maxwell element, the storage and loss moduli at
a fixed frequency do not depend on the amplitude of loading. This is
a satisfactory approach for the modeling of unfilled rubber. For filled
rubber that is often used in tires, however, this contradicts with the
Payne effect where the storage modulus rapidly decreases while the
loss modulus first increases and then decreases for increasing
deformations about an equilibrium state [45]. An example calculation
displaying its influence is shown in Fig. 5. The Payne effect occurs
predominantly at small deformations, it is rate-dependent, it affects
the viscous mechanisms and is reversible. This should be compared
with the Mullins effect mentioned in Section 4.1: it occurs at large
deformations, it is often modeled as rate-independent, it

predominantly affects the elastic mechanisms and is not reversible.
The Payne effect appears not to have been considered in multiscale
rubber friction models earlier. Considering its direct influence on the
viscosity and its reversibility, it is expected to have a significant
influence on the macroscopic frictional response.

In order to capture the Payne effect in the finite deformation
regime, the model proposed recently in [45] is employed. At a
fixed frequency of loading, this model satisfactorily captures the
storage and loss moduli evolution with the loading amplitude,
even with a single Maxwell branch. For this purpose, the actual
viscosity η¼ τμv of the Maxwell branch is proposed in the form:

η¼ ηo
H

⟵ H tð Þ ¼ 1þd q tð Þ ð14Þ

where the evolution law for q(t) is

_q ¼ 1
λ

JDJ�qð Þ ð15Þ

with D as the symmetric part of the velocity gradient. If d¼0 then
there is no Payne effect. Otherwise, at a fixed amplitude of a
constant frequency loading, q (initially zero) evolves towards an
equilibrium value at a rate that is controlled by the relaxation
parameter λ. Default values of the viscoelasticity parameters are
summarized in Table 4.

5. Numerical investigations

In this section, the effect of the particle geometry on the
macroscopic frictional response and how this effect interacts with
the material behavior will be demonstrated. Different geometries
are used to highlight a series of observations, always in compar-
ison with the response based on a circular particle. In reference to
[3], it is noted that all simulations will be carried out using an
explicit DEM–FEM coupling strategy. In order to update the
particle position from time tn to tnþ1, an implicit approach
attempts to make use of the force and the moment acting on the
particle at tnþ1, hence requiring iterations within a time step,
while an explicit approach makes use of the force and the moment
from tn. An implicit approach was found favorable with circular
particles in order to enable the use of larger time steps. However,
the time step size required for non-circular particles is already
sufficiently small for a satisfactory use of the explicit scheme.

5.1. Elastic and viscous effects

As for a circular particle, non-circular particles lead to a macro-
scopic friction coefficient k that strongly depends on the macro-
scopic contact pressure p. Fig. 6(a) displays both this dependence as
well as the significant effect of the particle geometry for a purely
elastic material response within the boundary layer. When a
viscoelastic response is employed, two competing effects come into
play: (i) the stiffness of the material increases so that the rubber
cannot as easily encapsulate the particle, which contributes to a
decreasing kF , while (ii) the viscous dissipation contributes to the
macroscopic friction through kV . With the default simulation
parameters, the viscous contribution dominates such that k is
higher than the one for a purely elastic response. This is demon-
strated in Fig. 6(b) for an elliptical particle. The Payne effect spans
the range between the elastic and viscoelastic responses with a
varying magnitude of the parameter d in (14) which controls the
degree of reduction in the viscosity η. If d is too small, the response
is closer to the viscoelastic response without the Payne effect
whereas if it is relatively large then the reduction in η is sufficiently
high so as to entirely deactivate the contribution from the Maxwell
branch.
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Despite the significantly non-circular geometry, the variation of
the frictional (kF ) and viscous (kV ) contributions to k with p is
qualitatively identical to a circular one, as summarized in Fig. 7 for
the rectangular particle. Other particle geometries induce a similar
behavior. It is also observed that kF approximately retains its value
from the purely elastic response so that the overall change in k is
due to the additional contribution kV . It is noted that, in the given
range of simulation parameters, the particles always displayed a
rolling motion at the particle–surface interface. Consequently, the
macroscopic friction coefficient did not exceed the raw value ko in
any of the test cases even for the non-circular particles.

The instantaneous macroscopic frictional response also strongly
depends on the particle geometry, as demonstrated in Fig. 8. The
smooth rolling motion of a circular particle causes relatively minor
oscillations. Non-circular particles tend to rest on the longer or flat
side with no slip so that tangential force starts to build on the
particle. It then, relatively rapidly, rolls over the sharp edge until
rolling stops once again. These sudden transitions between two rest
states cause stronger oscillations in the instantaneous macroscopic
friction and essentially imply a rolling resistance. It is remarked that
the time step size is crucial to properly resolving the interface
dynamics. If not properly chosen, the rolling motion of the particle

may be completely or partially arrested. Under a viscoelastic material
response, the oscillations can significantly increase, although the
transitions are somewhat smoothened. In order to ensure a con-
vergent time-averaged macroscopic response k▾I in the presence of
such oscillations, the averaging time Tavg was chosen to be twice as
high as the original choice 2To — see Section 2.3.

5.2. Frequencies of excitation

As the macroscopic slip velocity vF is varied, the frequency of
excitation of the viscoelastic boundary layer by the particle changes.
For sufficiently low slip velocities the material is always in a relaxed
state while for high slip velocities the material does not relax at all.
Consequently, intermediate slip velocities deliver a macroscopic
frictional response that converges to these two extremes. Rather
than varying the slip velocity directly, one can also scale the
relaxation time since the equivalent relaxation time τo � vF is
expected to control the macroscopic response [4,35]. This is carried
out in Fig. 9 by omitting the Payne effect. For a circular particle, a
response that is typical of rubber friction is observed where the
transition from the full- to the zero-relaxation limit is smooth. For
this example, a stationary particle would move through the unit-
cell at a period Lo=vF ¼ 4� 10�3 which is close to where the viscous
dissipation, and hence the viscous contribution kV to k, peaks. For a
square particle, it is observed that the viscous contribution makes
not one but rather two peaks. The lower period, or the higher
frequency, associated with the first peak is due to the rapid rolling
of the non-circular particle over its edges. The angular velocity of a
particle is of order ω� vF=2ro so that the period of this motion is of
order π=2ωo10�3, which is in the vicinity of the observed peak.
The additional dissipation due to this high frequency excitation

Table 4
Default viscoelasticity parameters that supplement Table 1.

Shear modulus μv 5 μe
Relaxation time (s) τo 10�4

Payne effect (s) d (Varied)
λ 0:1 τo

Fig. 5. The Payne effect is summarized based on the nonlinear viscoelasticity model employed with d¼ 10�2. H denotes the displacement gradient and r is the Cauchy stress.
The modulus history (represented by the ratio s11=H11) is monitored as a function of the strain amplitude (2H11) by increasing H11 to 70.1 in 100 steps, with five cycles per
step. The stress is recorded with five steps and a single cycle per step. A single cycle lasts 5τo . (a) modulus with the Payne effect, (b) modulus without the Payne effect,
(c) stress history with the Payne effect, and (d) stress history without the Payne effect.
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causes the convergence to the full-relaxation limit to be delayed as
the slip velocity is reduced. Since the aspect ratio is higher for the
elliptical and rectangular particles, the frequency associated with

the particle rolling is lower. Consequently, the two peaks of the
viscous contribution approach and merge. The degree of merging is
higher for a higher aspect ratio, in this case for the elliptical

Fig. 7. For the circular and rectangular geometries of Fig. 3, the frictional (kF ) and viscous (kV ) contributions to k are monitored with varying p . (a) Circular and
(b) rectangular.

Fig. 8. Example evolutions of the instantaneous macroscopic friction coefficient and its moving time average. p ¼ 10 bars is employed with the elastic material response. For
the viscoelastic response, p ¼ 20 bars and τo ¼ 2� 10�3 (d¼0). (a) Elastic – circular, (b) elastic – square, (c) elastic – elliptical, (d) elastic – rectangular, (e) viscoelastic –

circular, (f) viscoelastic – square, (g) viscoelastic – elliptical, and (h) viscoelastic – rectangular.

Fig. 6. The effects of (a) the particle shape and (b) viscoelasticity with the Payne effect are demonstrated. See Fig. 3 for the particle geometry parameters. (a) Elastic response
and (b) viscoelastic response – elliptical.
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geometry, so that a very smooth viscous contribution is observed.
However, the delay in approaching the full-relaxation limit is
persistent for all non-circular particles. Finally, it is remarked that
the curves for the square particle can be significantly smoothened if
the geometry edges are smoothened, for instance by choosing
p1 ¼ p2 ¼ 3 instead of 4. The responses obtained with such a
square-like geometry are shown on the background of Fig. 9
(b) with a gray line and are observed to be significantly different
from the case with sharper edges. It is remarked that due to the
relatively sharp edges of the square particle a much finer mesh
resolution is needed in order to accurately capture the macroscopic
frictional response, in particular at intermediate relaxation times.
Presently, NX¼80 and NY¼25 were employed — cf. Table 1.

While the equivalent relaxation time idea works well for
circular particles, the additional excitation mechanism due to the
rolling of non-circular particles may cause a deviation from this
idealized behavior. Moreover, the Payne effect has a time scale
associated with the reduction of the viscosity so that assessing its
affect requires a direct control of the macroscopic slip velocity. For
this purpose, the macroscopic slip velocity is varied with respect
to its default value by one order of magnitude with and without
the Payne effect and the results are compared with the corre-
sponding ones from Fig. 9 in Table 5. The simulation time step size
is varied, inversely proportional to the change in the slip velocity,
for an accurate DEM–FEM interaction. Without the Payne effect,
the circular particle displays the expected behavior. For non-
circular particles, there is a satisfactory equivalence for low slip
velocities although the degree of mismatch tends to increase with
higher velocities. It is additionally observed that the presence of
the Payne effect alters the frictional response drastically, as
observed earlier in Fig. 6(b). In all cases, the Payne effect leads to
a reduction of the relaxation time τ with respect to its default

value τo. The degree of reduction increases with the slip velocity
directly through the velocity gradient magnitude through (15).
The higher reduction at higher slip velocities delays the conver-
gence to the zero-relaxation limit although little change is
observed at low slip velocities. Consequently, the Payne effect is
expected to not simply shift the k curves in Fig. 9 to the right but
rather distort them.

5.3. Geometric bounds

Consider a homogeneous elastic medium within which particles
of irregular shape are dispersed. A well-known result from micro-
mechanics states that the macroscopic stiffness associated with this
heterogeneous material may be bounded by a fictitious construc-
tion wherein particles that geometrically bound the original ones
are dispersed throughout the medium [46]. Motivated by this result,
it is of interest to determine whether one may numerically bound
the macroscopic frictional response from a complex interface
particle geometry by computations that are based on simplified
shapes which geometrically bound the original one. Among the
examined particle geometries in earlier numerical examples, the
circular one provides a geometric lower bound by construction.
A geometric upper bound for the elliptical particle is a circle that
has a radius equal to 1:5ro. For the square particle, the bounding
radius is approximately

ffiffiffi
2

p
ro � 1:4ro and for the rectangular one it

is approximately 1:6ro. Since the one for the elliptical particle is
close to these latter two cases, it is chosen to represent a geometric
upper bound to all three particle geometries.

The response from an elastic boundary layer verifies that the
responses from the two circular particles that geometrically bound
the non-circular shapes deliver upper and lower bounds on the
macroscopic frictional response— see Fig. 6(a). This is a significantly

Fig. 9. For the particle geometries of Fig. 3, the relaxation time dependence of k is summarized without the Payne effect. The gray lines in (b) indicate the results for a
smoothened square with p1 ¼ p2 ¼ 3 instead of 4. (a) Circular, (b) square, (c) elliptical, and (d) rectangular.

İ. Temizer / Tribology International 67 (2013) 229–239 237



facilitating result since real particle geometries are difficult to
represent. It appears, on the other hand, that this observation is
limited to an elastic material response as in the original micro-
mechanics result. Fig. 10 merges the frictional responses with a
viscoelastic boundary layer from different particle geometries and
additionally considers the response with the larger circular particle.
While the frictional contributions are relatively well-bounded, the
geometric bounds do not deliver bounds on the viscous contribu-
tions. In particular, they cannot capture the delay in the conver-
gence to the full-relaxation limit since a circular particle displays
not two but only a single frequency of excitation that is associated
with its movement through the interface. Overall, however, the
dominating contribution to the macroscopic response is frictional at
low slip velocities and relaxation times so that the overall response
is again relatively well-bounded. One can therefore conclude that
bounding complex particle shapes by geometries that are easier to
represent is an acceptable first step towards the characterization of
the macroscopic frictional response.

6. Conclusion

In this work, the macroscopic frictional response of granular
interfaces with non-circular particles was investigated. The
microscopic system under consideration was modeled as a
three-body contact problem wherein a rubber block is in contact
with a surface that is partially covered by particles. The material
model for rubber was based on a nonlinear viscoelasticity model
that is enhanced with an amplitude-dependent relaxation beha-
vior. The particle geometry was parametrized by convex super-
ellipse shapes that require iterative contact detection algorithms
as well as contact force computation schemes that are based on

the discrete element method. Numerical investigations concen-
trated on isolating the effect of the particle geometry on the
macroscopic frictional response, in particular with respect to the
modification of the macroscopic non-Amontons and non-
Coulomb type frictional behavior. In general, non-circular parti-
cles delivered a macroscopic response that is qualitatively similar
to the response with a circular particle. This observation is
primarily due to the fact that the particle displayed a rolling
motion for all the test scenarios. However, a non-circular particle
has a rolling resistance associated with it that causes sharp
oscillations in the instantaneous macroscopic frictional response.
The non-circular geometry also introduces an additional fre-
quency of excitation so that the viscous contribution to the
macroscopic frictional response is more spread across the relaxa-
tion spectrum of the viscoelastic material. Additionally, the
results suggest that it may be possible to bound the macroscopic
frictional response from a complex interface particle geometry
by computations that are based on simplified shapes which
geometrically bound the original one. While this observation
offers a significant computational and experimental convenience
towards replicating the granular media for the frictional char-
acterization of the interface, the possibly significant effect of the
underlying assumptions of (i) convex particle geometry, (ii)
periodic particle distribution and (iii) a single particle layer must
be assessed. It may readily be anticipated that multiple non-
convex particles coming into contact may strongly interlock,
leading to a macroscopic response that cannot be bound by
convex shapes even if there is a single layer. n addition, general-
izations towards a three-dimensional setting with improved
rubber friction models are needed for qualitative and quantita-
tive comparisons with experiments. Such investigations are
currently being pursued.

Fig. 10. The individual responses from different particle geometries are merged and an additional response from a circular particle that is larger than the default size
is considered. (a) Frictional contribution, (b) viscous contribution, and (c) total friction.

Table 5
The equivalent relaxation time is varied under τo- or vF -control, the latter with and without the Payne effect, and the measured k is tabulated.

Particle type τo � vF

ð10�4 sÞ � ð2:5 m=sÞ
τo is varied (d¼0) vF is varied (d¼0) vF is varied (d¼ 10�5) vF is varied (d¼ 10�6)

1 (circular) 0.1 0.359 0.359 0.346 0.351
1 1 0.401 0.401 0.352 0.381
1 10 0.312 0.312 0.388 0.383
2 (square) 0.1 0.382 0.390 0.371 0.396
2 1 0.409 0.409 0.381 0.392
2 10 0.418 0.374 0.382 0.412
3 (elliptical) 0.1 0.337 0.338 0.315 0.325
3 1 0.385 0.385 0.329 0.364
3 10 0.296 0.325 0.390 0.401
4 (rectangular) 0.1 0.348 0.350 0.327 0.338
4 1 0.390 0.390 0.343 0.374
4 10 0.330 0.327 0.386 0.405
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