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ABSTRACT: An amyloid-like peptide molecule self-assem-
bling into one-dimensional nanofiber structure in ethanol was
designed and synthesized with functional groups that can bind
to gold ions. The peptide nanofibers were used as templates
for nucleation and growth of one-dimensional gold nanostruc-
tures in the presence of ascorbic acid as reducing agent. We
performed multistep seed-mediated synthesis of gold nano-
particles by changing peptide/gold precursor and peptide/
reducing agent ratios. Gold nanostructures with a wide range of morphologies such as smooth nanowires, noodle-like one-
dimensional nanostructures, and uniform aggregates of spherical nanoparticles were synthesized by use of an environmentally
friendly synthesis method. Nanoscale electrical properties of gold-peptide nanofibers were investigated using atomic force
microscopy. Bias dependent current (IV) measurements on thin films of gold-peptide nanofiber hybrid revealed tunneling
dominated transport and resistive switching. Gold-peptide nanofiber composite nanostructures can provide insight into electrical
conduction in biomolecular/inorganic composites, highlighting their potential applications in electronics and optics.

■ INTRODUCTION

Recent developments in controlled assembly of inorganic
nanoparticles into functional macrostructures with tunable
properties have provided promising results in diverse
applications.1 One of the most favorable simple and cost-
effective methods for shape- and size-controlled assembly of
nanoparticles is template-directed synthesis.2 In this approach,
deposition of the inorganic material on the template can be
obtained either by molecular cross-linking or by use of
complementary interactions, such as electrostatic interactions,
as well as layer by layer self-assembly of target ions with the
help of materials acting as molecular glues (e.g., polyelec-
trolytes).3 Hence, control over the shape and the size of the
resulting nanostructures can be achieved by geometry and
surface properties of the template material.4,5 Patterns can be
made up of wide variety of materials including solid inorganic
materials (e.g., gold and silver) or biological materials (e.g.,
DNA, viruses, and polymers).6 Therefore, organization of the
resulting nanoparticles and their properties achieved via
template-directed synthesis are versatile. Recently, there have
been increased numbers of reports on incisively designed
template materials using biomimetic approaches. Tube-shaped
tobacco mosaic viruses (TMV) have been studied extensively
for nanoparticle synthesis due to their external surface being
rich in charged amino acid residues leading binding sides.7 In
another study, bacteria cellulose fibers were used for one-step
preparation of gold-bacteria cellulose nanocomposites where
gold was reduced and linked using poly(ethyleneimine).8

Amyloid-like peptide (ALP) nanostructures also provide quite
versatile opportunities for controlled aggregation of metal

nanoparticles into one-dimensional nanostructures which are of
interest due to their exciting physical, mechanical, and chemical
properties.2,9 ALP nanostructures can be specifically designed
to have chemically active groups offering metal binding sides on
their external surface. Besides, their self-assembly into one-
dimensional nanostructures can occur in quite mild and diverse
conditions for biomineralization. Previously, Schebeil et al.
studied layer by layer electrodeposition of gold and silver on
ALP nanofibers. They obtained conductive properties by
peptide-nanoparticle hybrids comparable to that of solid
metal wire.10 Reches et al. developed a method where assembly
of silver ions into silver nanowires was driven by citrate.11 Lu et
al. reported nanotubes of Aβ (16−22), an amyloid peptide, also
acting in Alzheimer disease, for gold and palladium assembly
using positive charges on the nanotube surface to nucleate
particle accumulation.12

Previously, we designed a self-assembling peptide, Ac-
KFFAAK-Am, and used it for one-dimensional titania and
silica nanostructure formation.13 The designed peptide
molecule (Scheme 1) has amine groups acting as a hard base
in the medium with affinity for hard acidic ions according to
Pearson’s hard soft acid base theory.14 The anionic gold
complex affinity on free amine groups is a well-known
strategy.15

In this work, nanofibers formed by amyloid-like peptides
(ALP) were used as a template material for gold nanoparticle
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deposition exploiting the amine groups for seeding gold ions in
order to drive further aurophilic interaction leading to compact
nanoscale one-dimensional gold aggregates. A multistep
seeding mediated growth method was adapted to template
directed nanostructure synthesis where the nanocomposites can
have potential use in electronic device development seeking
conductive materials beyond their possible catalytic activity.16

Several parameters including time of preseeding, nanoparticle
formation after addition of reducing agent, and effect of peptide
concentration were studied in terms of their effect on the
structural characteristics of one-dimensional gold nanostruc-
tures and template role of the peptide nanofibers. Particle
assembly on the ALP nanofibers was obtained by reduction of
ionic gold by ascorbic acid. Structural properties of the peptide
nanofibers and assembled one-dimensional gold nanoparticles
were characterized. In addition, conductivity of gold-peptide
nanofiber hybrid was investigated for potential electronic
applications.

■ EXPERIMENTAL SECTION
Peptide Synthesis. Fmoc and Boc protected amino acids, MBHA

Rink Amide resin, and HBTU were purchased from NovaBiochem and
ABCR. The other chemicals were purchased from Fisher, Merck, Alfa
Aesar, or Aldrich and used as received. Peptide was synthesized on
MBHA Rink Amide resin. Amino acid coupling reactions were
performed with 2 equiv of Fmoc protected amino acid, 1.95 equiv of
HBTU, and 3 equiv of DIEA for 2 h. The Fmoc protecting group
removal was performed with 20% piperidine/DMF solution for 20
min. Cleavage of the peptides from the resin was carried out with a
mixture of TFA/TIS/H2O in the ratio of 95:2.5:2.5 for 3 h. Excess
TFA was removed by rotary evaporation. The remaining peptide was
triturated with ice-cold diethyl ether and the resulting white precipitate
was freeze−dried. The peptide was characterized by a quadruple-time-
of-flight mass spectrometry (Q-TOF MS) (SI Figure S6). The mass
spectrum shows the corresponding mass of the peptide; the purity of
the peptide was assessed by RP-HPLC.
Preparation of Gold Nanocomposites in Ethanol. 6.65 × 10−6

mol peptide is mixed in 500 μL of ethanol and sonicated for 5 min at
35 °C for formation of clear self-supporting gel composed of peptide
nanofibers. Gold was added immediately after gel preparation; 6.65 ×
10−6 mol KAuCl4 (Alfa Aesar) was dissolved in 50 μL of ethanol and
mixed gently with a pipet tip. Samples were left on the bench at room
temperature. Then, 6.65 × 10−6 mol L-(+)-ascorbic acid (Alfa Aesar)
was dissolved in 10 μL of water. The resulting pH of the solution was
2 and the solution was added directly into the gold-seeded gel.
Preparation of One-Dimensional Gold Nanocomposites via

a Multistep Seed Mediated Growth Method. The multistep seed
mediated growth method17 was adapted for formation of gold
nanoparticles and amyloid-like peptide (ALP) nanofibers were used
as template. First, 6.65 × 10−6 mol peptide was dissolved in 500 μL
ethanol (13.3 mM) and sonicated for 5 min at 35 °C for formation of

self-supporting gel composed of peptide nanofibers. Nuclei formation
was carried out by adding 1.33 × 10−6 mol KAuCl4 (Alfa Aesar)
dissolved in 10 μL of ethanol (one-fifth of the total amount of gold)
into the gel immediately after preparation and mixed gently with a
pipet tip. The pH of the ascorbic acid solution was adjusted with 1 M
NaOH solution. Ten microliters of the ascorbic acid solution in water
was added into 1 mL of preseeded gels. Solutions were aged at room
temperature and samples were diluted to targeted peptide concen-
tration by using 1.33 × 10−6 mol KAuCl4. Later, 10 μL of ascorbic acid
solution was added into the sample following a gentle mix with pipet
tip. The solution was incubated for 30 min. The seeding and reducing
cycles were repeated until the desired peptide concentration was
reached. The dilution factor was kept at 10% until the peptide
concentration of 8.86 mM was reached. Lower peptide concentrations
were obtained with sequential dilutions of preseeded peptide gel by
50% with fresh solutions of KAuCl4 until the peptide concentration of
0.4 mM was reached. Samples after each cycle was aged overnight and
used for further characterizations.

UV−vis Absorbance. UV−vis absorbance measurements were
performed on a Varian Cary 5000 UV−vis-NIR spectrophotometer.
One millimeter quartz cuvettes were used for spectrophotometric
analysis. Spectrophotometric analysis of gold nanoparticle formation
on the preseeded peptide nanofibers with gold precursor (KAuCl4,
13.3 M) reduced by changing the amount of ascorbic acid and
incubation time is shown in Figure 2.

Scanning Electron Microscopy (E-SEM). SEM experiments were
performed with FEI Quanta 200 FEG. A 10 μL sample was dropped
onto clean silicon wafer. No further coating was performed.

Transmission Electron Microscopy and Scanning Trans-
mission Electron Microscopy. FEI Tecnai G2 F30 instrument was
used for TEM analysis. Diluted samples were placed on a Lacey mesh
ultrathin carbon coated copper grid. A 2% (w/v) uranyl acetate
solution was used for staining bare peptide nanofibers. Ten microliters
of diluted sample solution was dropped on a grid for 1 min. Excess was
removed by pipetting. Then, 2 wt % uranyl acetate solution was placed
on a parafilm sheet. The grid was put on the drop upside down for 5
min. After staining, the grids were dried in the fume hood at room
temperature overnight. No staining was performed for gold nano-
particle coated peptides. Gold nanoparticles formed on the surface of
peptide nanofibers prepared with 13.3 mM peptide and an equivalent
amount of KAuCl4 in ethanol, which was imaged after 1 week of
incubation at room temperature (Figure 1).

Atomic Force Microscopy (AFM). Atomic force microscopy
experiments were carried out using a commercial system; Asylum
Molecular Force Probe 3D (MFP3D). Multifrequency Kelvin Probe
Force Microscopy is used to measure the surface potential and
capacitance. A low frequency (fe = 27.5 kHz) sinusoidal bias is applied
to the tip during tapping mode imaging, and both harmonics (at fe
corresponding to surface potential and 2fe corresponding to tip−
sample capacitance) are recorded. Topography was also recorded
simultaneously. A DC bias was also applied to the tip superimposed
with the sinusoidal bias. Standford Research Systems SR830 and
SR844 lock-in amplifiers were used to measure the time harmonics of

Scheme 1. Schematic Presentation of Gold Nanostructure Formation Using Peptide Nanofibers As Template
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the electrostatic force. The samples were scanned at a rate between
0.15 and 0.5 Hz. Commercial Cr/Pt coated cantilevers were used, with
resonance frequencies about 70 kHz and spring constants of 2−4 N/
m. Tapping drive frequencies were selected to favor repulsive mode
imaging. Biases to the contacts on the surface were applied by using
Keithley 2400.
Preparation of Contacts for AFM and Probe Station

Electrical Measurements. A p-Si ⟨100⟩ 4 in. wafer was coated
with 1-μm-thick SiNx as an isolation dielectric layer. Contacts with
different gap lengths between 2 and 50 μm were formed by
photolithography and subsequent metallization (sputtering of 35 nm
of Au/Pd). The peptide and gold nanocomposites were drop-cast onto
the substrates after possible dilution.

■ RESULTS AND DISCUSSION
Affinity of the gold to form complex with free amine groups is a
well-known strategy.15 Herein, an amyloid-like peptide (ALP)
was designed to form nanofibers of micrometers in length with
amine groups on their exterior surface (Scheme 1). The amine
groups located on the periphery of the peptide nanofibers can
bind to AuCl4

−/AuCl2
− ions by electrostatic interactions.18,19

Electrostatic interactions between AuCl4
−/AuCl2

− ions and
protonated amine groups cause gold adsorption on the outer
surface of the peptide nanofibers.20 Moreover, the ALP
nanofibers form self-supporting gels in ethanol (Figure 1a).21,22

The structural properties and corresponding surface plasmon
resonance (SPR) characteristics of the nanostructures were
examined by TEM imaging and UV spectrophotometer to
study the appropriate ratio of the peptide and KAuCl4. After
one week of incubation at room temperature, particle formation
around the peptide nanofibers was observed. However, using
higher molar ratios of KAuCl4 and peptide (2 and 3 molar
ratios) leads to a dramatic increase in the number of free
randomly distributed gold nanoparticles (SI Figure S1 and
Figure 1b). Nanoparticles formed at the surface of the peptide
nanofibers did not show a characteristic plasmon peak at 550
nm (SI Figure S2); however, a strong peak at 320 nm was
observed due to ionic AuCl4

− in solution.23 The absence of a
size-dependent localized plasmon resonance effect might be
because of the small particle size below the critical value or
hindrance of SPR feature as a result of the closer gap between
the particles located through the peptide nanofibers.24

Although nanoparticle alignment around the peptide nano-
fibers was observed with ethanol, the reduction capacity of
ethanol was not sufficient to obtain full arrangement of

nanoparticles in one dimension. Ascorbic acid was used as a
reducing agent in preparation of one-dimensional gold
nanostructures by facilitating the coordination of metal
precursor at postseeding stages.25−27 Ascorbic acid was added
directly in gold precursor solution or added in a peptide
nanofiber system, which was preseeded overnight with gold salt.
In the first approach, neither a color change nor nanoparticle
formation was observed, whereas micrometer-sized randomly
distributed aggregates were found in the SEM images (SI
Figure S3). On the other hand, a change in a couple of minutes
from yellowish to transparent and later to dark brown was
observed when ascorbic acid was added to preseeded peptide
nanofiber solution. UV−vis absorbance spectrophotometer
measurements and electron microscopy techniques were used
to analyze reaction kinetics of ascorbic acid as a reducing agent.
Consumption of gold ions can be tracked by change in
characteristic peak at 320 nm, and it was monitored by
changing ascorbic acid concentration over time. At increased
ascorbic acid concentrations and constant KAuCl4 concen-
tration, the peak at 320 nm showed fast decrease until 1:1
molar ratio of ascorbic acid to gold (Figure 2a). The same
samples were analyzed by SEM and we observed that the
number of free particles was increased with increasing amount
of ascorbic acid. The UV−vis spectrum of the same sample
showed a broad peak with a maximum around 550 nm (Figure
2a). As shown in the inset of Figure 2a, peak maxima at 320 and
550 nm have inverse relationship. To obtain maximum
conversion of Au3+ to Au0 and minimize the formation of
free nanoparticles, ascorbic acid concentration was determined
by the data point where two lines intercepts revealing 1:1 molar
ratio of ascorbic acid to gold. This ratio was taken as the
optimum ratio for this study.
After determining optimum ascorbic acid concentration, time

dependence of the particle assembly on peptide fibers was
analyzed by adding ascorbic acid solution (13.3 mM) into
preseeded peptide nanofibers with KAuCl4 (13.3 mM), and the
sample was monitored for over a week. Thirty minute after
ascorbic acid addition, the peak at 320 nm decreased to about
its one-fifth, and no further change was observed (Figure 2b).
On the other hand, the peak at 550 nm started to dominate
after 30 min displaying an increased amount of gold
nanoparticles (Figure 2b, inset) in the surrounding medium,
which was also observed in SEM imaging (SI Figure S3). To

Figure 1. Representative TEM images of (a) peptide nanofibers stained with uranyl acetate and (b) gold nanoparticles formed on the surface of
peptide nanofibers.
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figure out optimum incubation time, the lowest value possible
for both peaks at 320 and 550 nm was taken. High-aspect-ratio
gold nanostructures (Figure 2c) were obtained at this lowest
point with fewer unbound nanoparticles compared to the ones

synthesized by incubating longer (SI Figure S3). Therefore, we
conclude that the optimum time for ascorbic acid to reduce the
gold residues on the template surface with the formation of
fewer free nanoparticles is 30 min.
After optimization of the initial conditions, a multistep seed-

mediated growth method inspired from Jana et al.28 was
modified in order to obtain nanowires with higher organization
by tuning concentration of peptide solutions and gel density,
which is related to the peptide concentration.29 Mass transfer of
the reactants is affected by the density of the peptide nanofiber
gel. At higher peptide concentrations, there are more peptide
nanofibers in the medium, and a dense network of peptide
nanofibers results in less porous system. Therefore, slower
diffusion of reagents is expected in the denser network
preventing uniform distribution of the reagents (SI Scheme
S1).30,31 Decreasing peptide concentration will lead to decrease
in the amount of peptide nanofibers in the medium. Therefore,
increased porosity eventually facilitates molecular mobility
resulting in a more uniform distribution of reaction species in
the medium and minimizes random gold reduction. In order to
study the effect of peptide concentration on the final
nanostructure, gold nanowires were formed at peptide
concentrations from 11.9 to 0.4 mM and were monitored by
transmission electron microscopy (SI Figure S4 and S5). After
addition of the first gold precursor, the AuCl4

−/AuCl2
− ions

started to bind on the protonated amine groups, and with the
help of the first ascorbic acid addition, gold seeds (about 1−2
nm diameter of nanoparticles) were observed (SI Figure S4).
Decreasing peptide concentration from 11.9 to 8.9 mM (SI
Figure S5) revealed a transition from nodule-like nanowires to
nanowires of compact arrangement of nanoparticles due to
particle merging on the seeds formed in the previous stage. In
Figure 3a, gold nanowires were clearly observed in samples
prepared by 6.6 mM peptide concentration where packing of
nanoparticles in diameter of 3.50 ± 0.71 nm is prominent. The
XRD pattern of these nanowires revealed a strong signal at 38°,
which corresponds to (111) plane of Au crystal (Figure 3b) and
indicates that the (111) plane is dominant and is parallel to the
support surface.32 This result is consistent with STEM images
(Figure 3a and SI Figure S5). The calculated intensity of
(200)/(111) of 0.165 was lower than that of the characteristic
value of nanowires (0.249), which was defined in the standard
file JCPDS.32 No surface plasmon peak was observed. However,
a broad UV−vis absorbance peak (Figure 3c) was observed
between 500 and 700 nm. A similarly broad signal for
nanowires composed of nanoparticles arranged on a template
was reported previously.8 The nanofibers are coated with small-
diameter gold nanoparticles, and the electromagnetic properties
of such closely separated nanoparticle arrays significantly differ
from those of monolithic gold nanorods due to the presence of
gaps between the nanoparticles. The Au nanoparticles were
observed to have diameters below 15 nm, and it is well-
established both theoretically and experimentally that Au
nanoparticles and rods begin to exhibit SPR peaks when the
characteristic size exceeds ca. 30 nm. Therefore, it is reasonable
not to expect transverse resonances due to few nanometers of
Au nanoparticles configured around a typical fiber diameter of
less than 10 nm. The longitudinal resonances are also absent
due to the lack of a continuous gold layer as well as infinite
nanofiber length, which would be necessary to observe well-
defined resonances even in the presence of a continuous gold
film.33,34 The results are consistent with the TEM images
showing densely packed gold nanoparticle alignment on the

Figure 2. (a) Spectrophotometric analysis of gold nanoparticle
formation on the peptide nanofibers at changing concentration of
ascorbic acid at 60 min of incubation (Inset shows change in
absorbance at 320 and 550 nm depending on the ascorbic acid
concentration). (b) As time passes the absorption at 320 nm decreases
while 550 nm increases at 13.3 mM ascorbic acid concentration (Inset
shows relationship between peak maxima at 320 and 550 nm). (c)
SEM image of gold nanoparticles formed on the peptide nanofiber
template at optimized incubation time and reducing agent
concentration.
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ALP nanofiber surface. On the other hand, at peptide
concentration below 6.6 mM, the template effect was disturbed
and nanoparticle agglomeration was observed (SI Figure S5).
XRD patterns are weak to calculate in this sample. As predicted,
multistep seed-mediated methodology favored controlled
formation of high-aspect-ratio gold nanostructures composed
of smaller gold nanoparticles with higher degree of packing
(Figure 3a) compared to the bulk methodology where ascorbic
acid was added directly to the peptide gel (Figure 2c).
The reduction capacity of ascorbic acid is dependent on the

pH of the ascorbic acid solution.35−37 At alkaline pH, ascorbate
is a stronger reducing agent than its acid form.38,39 Increased
NaOH amount in the ascorbic acid solution led to formation of
uniform nanoparticles with diameter of about 20 nm. However,
they were mostly located randomly on the clusters of peptide
nanofibers with no template effect. Instant color change from
pale yellow to blackish purple is also an indication of the
aggregate formation. Fast reduction due to increased ascorbate
concentration resulted in uncontrolled growth over the
template (SI Figure S5). Required time for ascorbic acid to
reduce the ionic gold to form one-dimensional nanocomposites

in the presence of peptide nanofibers was 30 min. However,
longer time for reduction between dilutions can initiate
formation of highly crystalline one-dimensional structures
formed by gold nanoparticles. As shown in Figure 4a, peptide
concentration of 6.6 mM revealed nanowires of fully merged
gold nanoparticles with a fairly narrow and dominant (2Θ) at
38° corresponding to (111) crystal plane.

However, when peptide concentration was increased to 11
mM, we observed ∼5 nm gold nanoparticles covered by a thick
peptide layer (Figure 4b). As illustrated in SI Scheme S2, the
formation of the string bag-like appearance was due to high
peptide concentration. Incubating longer did not initiate higher
packing at this concentration, but it promoted binding of free
peptide molecules to gold nanoparticles similar to a capping
agent and resulted in a new layer for the nuclei formation at the
following seeding steps. This stepwise accumulation was
completed with the formation of cable-like packaging of the
final structure with the peptide layer. These results demon-
strated that, by simply aging the samples for longer times
between the dilutions, structural properties of one-dimensional

Figure 3. (a) STEM image of gold nanowires synthesized using
multistep seed-directed methodology, (b) XRD pattern, and (c)
absorbance spectrum of the nanostructures.

Figure 4. TEM images of gold nanostructures formed after 1 day of
aging. (a) Gold nanowires obtained in the presence of 6.6 mM peptide
and (b) peptide surrounded nanowires assembled in the presence of
1.19 × 10−2 M peptide.
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gold nanocomposites can easily be tailored depending on the
application.
The presence of closely packed gold nanoparticles on the

peptide nanofibers, separated by peptides or thin vacuum gaps,
suggests that conductivity through dry film networks of such
nanofibers can be considered essentially to be through electron
tunneling in a series of molecular-break-junctions.40 Con-
ductance through random nanowire networks has attracted
significant attention due to potential applications as semi-
transparent contacts or flexible/stretchable conductors and has
been studied both theoretically and experimentally.41−44

Considering their structural similarity, the conductivity
mechanisms of gold-decorated peptide nanofiber networks are
expected to be similar to those of nanowire networks if the gold
encapsulation can be considered a continuous coating. If the
gold nanoparticle coating is discontinuous (gold nanoparticles
are separated by peptides or vacuum), tunneling is expected to
dominate the conduction through individual nanofibers, and
overall conductivity of the network is expected to be described
by a more complex model involving tunneling dominated
transport within and between nanofibers. Nanoscale electrical
properties of individual fibers were investigated using atomic
force microscopy. Gold-peptide nanofiber composite was drop-
cast onto insulating substrates with AuPd contacts separated by
a distance of 10 μm. No tunneling current could be observed
between the nanofibers and contacts using moderate bias

voltages below 5 V; current levels were below the 10 pA rms
noise level of the measurement system. Although the DC
current can be low, quasi-static charging can allow induction of
significant changes in the surface potentials of nanostructures.
In order to observe changes in the surface potentials of
individual fibers under bias, multifrequency Kelvin probe
microscopy was used to simultaneously measure topography
and surface potential, as shown in Figure 5.45 Bias is applied
between the contacts (contacts A and B in Figure 5a), and a
secondary bias is applied to the cantilever (contact C in Figure
5a). We observed that locations with different potentials exist
along a nanofiber or nanofibers that are in contact with each
other (Figure 5b,c). This suggests that gold nanoparticle
decorated peptide nanofibers are individually near the
percolation threshold, with occasional gaps between gold
nanoparticles.
Current−voltage (I−V) characteristics of dilute gels of gold

decorated peptide networks were measured through contacts A
and B in Figure 5a. Typically, samples revealed high resistance,
as would be expected from the low conductivity of individual
nanofibers observed by AFM study. Occasionally, a high
conductivity path emerges after which resistive switching
behavior is observed to be repeatable (Figure 6a). Transition
voltage spectroscopy (TVS) has been used to study
conductance properties of molecular-break junctions.46,47 In
TVS, the Fowler−Nordheim presentation of the I−V data is

Figure 5. (a) Dilute gold-peptide nanofiber network is drop-cast on a silicon wafer with a 1-μm-thick oxide barrier. A voltage can be applied to the
cantilever (denoted by C) or to any of the AuPd contacts (denoted by A and B). (b) Simultaneous measurement of topography and (c) surface
potential show the low and nonuniform conductivity of the nanofibers. Several arrows are used to denote changes in surface potential along
individual nanofibers or nanofibers in contact, when a bias of VAB = 0.5 V is applied. In contrast, AuPd contacts show uniform surface potential
distribution.

Figure 6. (a) Cyclic current versus bias measurements reveal asymmetry in the conductance as well as hysteresis. Initially, the samples have typically
high-resistance, and switching to a high-conductivity state occurs around 4.5 V bias (see inset). Several cycles are superimposed to show the extent of
the repeatability of the measurements. (b) The current is attributed primarily to tunneling as seen in the Fowler−Nordheim presentation, when ln(I/
V2) is plotted against 1/V for increasing (red) and decreasing (blue) bias sweeps. Solid lines are guides for the eye. The transition voltage from direct
to Fowler−Nordheim tunneling is a function of tunneling gap and effective tunnel barrier height, and is seen to be modulated during cyclic voltage
sweeps.
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used by plotting ln(I/V2) against 1/V. In such a plot, typically
an asymmetric dip is observed for a tunnel junction, which is
confirmed to be the case for the Au-decorated nanofiber
samples (Figure 6b). The transition voltage from direct to
Fowler−Nordheim tunneling, Vm ≈ (2ℏ/em1/2)((2φ)1/2/d), is
a function of tunneling gap d and effective tunnel barrier height
φ, where e and m are the electronic charge and mass. VT was
observed to be modulated during cyclic voltage sweeps, which
may indicate a change in the tunnel gap d or a modulation of
the barrier height φ. Although it is difficult to determine the
dominant mechanism leading to resistive switching without
ambiguity, we speculate that electrochemical changes could be
important. Due to applied bias, ions in the residual water may
intercalate within the peptide nanofibers, causing swelling and
contraction. Small changes in the fiber structure may modulate
the effective tunnel gap and result in the observed hysteresis of
the I−V curve.
Measurements performed on thin films of Au-decorated and

bare peptide nanofibers revealed a pronounced difference in the
overall conductivity of the nanofiber network. Thicker films (as
revealed by atomic force microscopy) of bare nanofibers exhibit
current levels at picoampere level, while Au-nanoparticle-
decorated nanofibers exhibit current levels at microampere level
at similar biases. These observations suggest that the Au-
decorated nanofiber network possesses a much higher
conductivity compared to bare nanofiber networks. Atomic
force microscopy based current measurements on even smaller
numbers of bare nanofibers showed no detectable conductivity
(with current levels below 1 pA for −10 to 10 V bias range;
data not shown) on bundles of few nanofibers. In addition, an
increase in ambient humidity was observed to increase the
current levels in both bare and Au-decorated nanofiber
networks (data not shown). These observations suggest that
the measured conductivity (with current levels of up to 100
pA) in thin film networks of bare nanofibers may be solely due
to the small ionic conductivity arising from the presence of
residual ions and condensed water on the films. Further
elucidation of the role of ionic conductivity requires a detailed
study of the effect of humidity on conductivity of films and is
left beyond the scope of this study. However, more than 1000-
fold increase in the conductivity of Au-decorated nanofibers
along with reasonable agreement of the current−voltage
dependence on the theoretical predictions point to a
conduction mechanism dominated by tunneling between the
Au nanoparticles on the nanofibers (SI Figure S9).

■ CONCLUSIONS
In conclusion, self-assembled amyloid-like peptide nanofibers
were used as template material for one-dimensional growth of
gold nanowires. Functional groups on the peptide nanofiber
surface acting as binding moieties were used to initiate the
seed-mediated growth of gold nanoparticles. The effect of
peptide, gold precursor and ascorbic acid concentrations on
morphology of the final nanostructures were studied. A
multistep seeding mediated growth methodology for tem-
plate-directed synthesis of one-dimensional gold nanostructure
was achieved. Nanowires, noodle-like one-dimensional gold
nanostructures, and homogeneous spherical gold nanoparticles
were obtained in a controlled manner with the help of peptide
nanofibers. The nanowires are highly conductive due to
presence of a large number of gaps between gold domains,
and dry films of peptide nanofibers showed tunneling-
dominated conductance as well as resistive switching.

Transition voltage exhibited hysteresis, which is due to the
presence of electrochemical effects and related modulation of
the effective tunneling gap and barrier height. This strategy can
be extended to synthesis of a wide range of metal and metal
oxide nanoparticles depending on the application. For example,
ultrathin and long metal-decorated nanofibers can, in principle,
find use in applications where an optically transparent, low
hazing, and conductive coating is needed, such as in flexible
displays, touch-interface devices, and solar cells. The
production strategy offers multiple parameters which would
allow tuning of optical and electrical properties.
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