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Stratonovich-to-Itô transition in noisy systems
with multiplicative feedback
Giuseppe Pesce1, Austin McDaniel2, Scott Hottovy2, Jan Wehr2 & Giovanni Volpe3

Intrinsically noisy mechanisms drive most physical, biological and economic phenomena.

Frequently, the system’s state influences the driving noise intensity (multiplicative feedback).

These phenomena are often modelled using stochastic differential equations, which can be

interpreted according to various conventions (for example, Itô calculus and Stratonovich

calculus), leading to qualitatively different solutions. Thus, a stochastic differential equation–

convention pair must be determined from the available experimental data before being able

to predict the system’s behaviour under new conditions. Here we experimentally demonstrate

that the convention for a given system may vary with the operational conditions: we show

that a noisy electric circuit shifts from obeying Stratonovich calculus to obeying Itô calculus.

We track such a transition to the underlying dynamics of the system and, in particular, to the

ratio between the driving noise correlation time and the feedback delay time. We discuss

possible implications of our conclusions, supported by numerics, for biology and economics.
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M
athematical models are often employed to predict the
behaviour and evolution of complex physical, chemical,
biological and economic phenomena. Often, more

realistic mathematical models can be obtained by allowing for
some randomness. In a dynamical system, for example, this
randomness can be introduced by adding a noisy driving term,
where a noise xt drives the evolution of the state yt of the
dynamical system (Fig. 1a). Similar models have been employed
to describe a wide range of phenomena, from thermal fluctuations
of microscopic objects1 and the evolution of stock prices2 to the
heterogeneous response of biological systems to stimuli3 and
stochasticity in gene expression4.

Intrinsically noisy phenomena are often modelled by stochastic
processes, in particular, solutions of stochastic differential
equations (SDEs) (see reference texts for a readable application-
oriented introduction5 and for a thorough mathematical
treatment6,7). An SDE is obtained by adding some randomness
to a deterministic dynamical system described by an ordinary
differential equation (ODE)8. The simplest form of an SDE is:

dyt ¼ GðytÞdtþ sdWt ; ð1Þ

where G(y) is a function representing the deterministic response
of the system, Wt is a Wiener process representing the stochastic
driving and s is a scaling constant representing the intensity of
the noise. The term sdWt is thus a mathematical model of the
physical noise. In particular, any real process always has a
correlation time t40, while dWt is strictly uncorrelated, that is
t¼ 0; therefore, the smaller the t of a real process, the better it is
approximated by dWt (ref. 9). We remark that, under fairly
general assumptions, Equation 1 with a given initial condition y0

has a unique solution; this solution satisfies the integral equation
yt¼ y0þ

R
0
tG(ys)dsþsWt (ref. 5).

In many real phenomena, the system’s state further influences
the driving noise intensity (Fig. 1b); for example, the volatility of a
stock price may be altered by its actual value10 or the expression
of a gene may be regulated by the concentration of its products4.
This multiplicative feedback F(y) leads us to consider an SDE

with multiplicative noise:

dyt ¼ GðytÞdtþsFðytÞdWt: ð2Þ
Unlike Equation 1, the integration of Equation 2

presents some difficulties because Wt is a function of
unbounded variation5. The stochastic integral

R T

0
FðytÞ �a dWt

� limN!1
PN � 1

n¼0 FðytnÞDWtn , where tn ¼ nþ a
N T and aA(0,1),

may lead to different values for different choices of a (refs 6,11).
Common choices are: the Itô integral with a¼ 0 (ref. 12); the
Stratonovich integral with a¼ 0.5 (ref. 13), and the anti-Itô or
isothermal integral with a¼ 1 (ref. 14). Alternative values of a
may entail dramatic consequences (Supplementary Note 1): for
example, a Malthusian population growth model with a noisy
growth rate can lead either to exponential growth (a¼ 0.5) or to
extinction (a¼ 0) (Supplementary Fig. S1); a logistic population
growth model predicts very different long-term population size
depending on a (Supplementary Fig. S2); the expected return on a
risky investment can be either larger (a¼ 0.5) or smaller (a¼ 0)
than the one on a safe investment (Supplementary Fig. S3); and a
metastable physical system (a¼ 0.5) can turn into a bistable
system (a¼ 0) (Supplementary Fig. S4). Therefore, a complete
model is defined by an SDE and the relative convention, which
must be determined on the basis of the available experimental
data15. If desired, one can change the convention, but only by
adding an appropriate drift term at the same time. We emphasize
that in the present article the coefficients of the equation do not
change; it would also be possible to keep the Itô convention
throughout and change the drift term accordingly as a varies16.
Various preferences regarding the appropriate choice of a have
emerged in various fields in which SDEs have been fruitfully
applied. For example, a¼ 0 models are typically employed in
economics5 and biology17, because of their property of ‘not
looking into the future’, referring to the fact that, when the
integral is approximated by a sum, the first point of each interval
is used. a¼ 0.5 naturally emerges in real systems with non-white
noise, that is t40, for example, the SDEs describing electrical
circuits driven by a multiplicative noise18, as explained
mathematically by the Wong–Zakai theorem, which states that,
if in Equation 2 the Wiener process is replaced by a sequence of
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Figure 1 | Stochastic dynamical system without and with feedback. (a) Schematic representation of a stochastic dynamical system: the system’s status y(t)

evolves as the system is driven by a noisy input x(t). (b) Same system with feedback F(y(t)): x(t) is now modulated by F(y(t)) and y(t) is clearly affected.
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smooth processes with t-0, the resulting limiting SDE obeys
the Stratonovich calculus19. Finally, a¼ 1 naturally emerges in
physical systems in equilibrium with a heat bath20,21,22.
Other values of a have also been theoretically proposed16,23,24.
From the modelling perspective the choice of the appropriate
SDE-convention pair is of critical importance, especially when the
model is subsequently employed to predict the system’s behaviour
under new conditions.

In this article, we experimentally demonstrate that the
convention for a given physical system can actually vary under
changing operational conditions. We show that the equation
describing the behaviour of an electric circuit with multiplicative
noise, which usually obeys the Stratonovich convention
(a¼ 0.5)18, crosses over to obey the Itô convention (a¼ 0), as
certain parameters of the dynamical systems are changed. This
transition is continuous, going through all intermediate values of
a. We relate this transition by an explicit formula to the ratio
between t and the feedback delay time d, which are both non-zero
in any real system. We mathematically demonstrate that this
transition occurs for all delayed SDEs with multiplicative noise.
Such transitions have the potential of dramatically altering a

system’s long-term behaviour and, therefore, we argue their
possibility should be taken into account in the modelling of
systems with SDEs.

Results
System without feedback. As a paradigmatic experimental rea-
lization of a noisy system, we consider an RC-electric circuit with
resistance R¼ 1 kO and capacitance C¼ 100 nF; xt is the driving
voltage (applied on the series RC) and yt the output voltage
(measured on C) (Fig. 2a). In order to approximate a Wiener
process, we will always use a driving noise with a correlation time
much shorter than the typical relaxation time of the circuit, that
is, t�RC ¼ 100 ms. A detailed description of the circuit is given
in the Methods. The output voltage y experiences an elastic
restoring force with elastic constant k¼ 1/RC towards the y¼ 0
equilibrium state, that is, the system behaves as a harmonic
oscillator.

In order to understand qualitatively the behaviour of our
system, in Fig. 2b we consider the evolution of yt for a given initial
condition y0 and t¼ 1.1 ms. The dashed line illustrates a sample
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Figure 2 | Stochastic dynamical system without feedback. (a) In our experiments, we employ an RC electric circuit driven by a noise xt; the system’s

state yt effectively experiences a harmonic restoring force G(y)¼ � ky with k¼ 1/RC. (b) Sample trajectory of yt (t¼ 1.1ms) with initial condition

y0¼ � 250 mV (dashed line) and average of 1,000 trajectories for various initial conditions (solid lines). (c) Diffusion S(y) and (d) drift D(y) of the

system’s state for various intensities and correlation times (t) of the input noise. S(y) is proportional to the variance of the system state change

(inset in (c)) and D(y) to its average (inset in (d)). The solid line in (d) represents the harmonic restoring force G(y).
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trajectory for y0¼ � 250 mV: at the beginning yt decays towards
the equilibrium y¼ 0 mV and, afterwards, oscillates around the
equilibrium, clearly demonstrating its stochastic nature. Aver-
aging several such trajectories, we obtain solid lines correspond-
ing to different y0, which clearly shows that the average trajectory
moves towards the equilibrium regardless of y0.

The relevant SDE is Equation 1 with G(y)¼ � ky and s is the
intensity of the noise, that is:

dyt ¼ � kytdtþsdWt; ð3Þ

where k40. This equation has an explicit solution (the Ornstein–
Uhlenbeck process) that, as in all cases with a constant s (ref. 6),
is independent of the choice of a and, therefore, the convention
can be left undetermined.

We determined the stochastic diffusion S(y) and the drift D(y)
of this system as described in the Methods. The symbols in Fig. 2c
represent the experimental values of S(y) for various s and t;
they clearly show that, for the system described by Equation 3,
S(y) is a constant that depends only on the intensity of the input
noise s, that is, SðyÞ ¼ 1

2 s
2 and not on t. Figure 2d shows the

deterministic response G(y) (solid line) and the experimental
values of D(y) (symbols); the values of D(y) lay on the graph of
G(y) independently of s and t. We note that the absence of
dependence on t for both S(y) and D(y) demonstrates that a white

noise is a good model for the coloured driving noise used in our
experiments, that is, with tr1.1 ms.

System with feedback. Now we introduce a multiplicative feed-
back in the circuit as shown in Fig. 3a. This is achieved by
multiplying the input noise by F(y). As shown in Fig. 3b, F(y)
increases linearly between � 80 mV and 160 mV and saturates to
0.2 V (1 V) for yo� 80 mV (y4160 mV). The details of the
circuit with multiplicative feedback are given in the Methods.
The relevant SDE is:

dyt ¼ � kytdtþ sFðytÞdWt ; ð4Þ

whose properties cannot be inferred without additional assump-
tions, that is, an explicit specification of a is required in order for
this SDE to be well-defined. For the case of an electric circuit
driven by a coloured noise, that is, a stochastic process with a
characteristic correlation time t40, the Stratonovich convention
holds, as is expected theoretically from the Wong–Zakai theo-
rem19 and has been shown experimentally18. In fact, we see that
the Stratonovich integral also describes the system in our case.
When t¼ 1.1 ms, differently from the case without feedback
(Fig. 2b), the average trajectories in Fig. 3c do not converge to
y¼ 0, but to y¼ 50 mV. This shift of the equilibrium is a
consequence of the non-uniformity of S(y) (Fig. 3d) due to the
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Figure 3 | Stochastic dynamical system with feedback. (a) Schematic representation of a stochastic dynamical system with multiplicative feedback F(y):

the driving noise xt (t¼ 1.1ms) is multiplied by a function of the system’s state yt. (b) Nominal (dashed line) and experimentally measured (dots) feedback

function used in our experiments. (c) Average of 1,000 trajectories for various initial conditions; there is a clear shift of the equilibrium in comparison with

the case without feedback (Fig. 2d). (d) Diffusion S(y) (dots) and (e) drift D(y) (dots) of the system status. In (e), the solid line represents the harmonic

restoring force G(y) and the dashed line G(y)þ0.5S0(y). (f) Agreement between the noise-induced extra-drift DD(y) and 0.5S0(y).
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presence of a multiplicative feedback. We remark that S(y) is
independent from the interpretation of the underlying SDE25.

D(y) (symbols in Fig. 3e) is also altered as a consequence of the
multiplicative noise. In particular, D(y) is now different from G(y)
(solid line in Fig. 3e). The difference between the two is a noise-
induced additional drift

DDðyÞ ¼ DðyÞ�GðyÞ; ð5Þ
which is represented by the symbols in Fig. 3f.

The relation between DD(y) and the variation of S(y), that is,
S0ðyÞ ¼ @SðyÞ

@y , becomes evident considering the good agreement
between DD(y) and 0.5S0(y) (dashed line in Fig. 3f). The prefactor
0.5 corresponds to the a of the Stratonovich interpretation of the
SDE (4), which permits us to make sense of the experimentally
observed data.

We can therefore define

aðyÞ ¼ DDðyÞ
S0ðyÞ ; ð6Þ

which in general may depend on the system under study15,26. The
change of a can have dramatic consequences for the long-term
behaviour of systems (Supplementary Figs S1–S4 and
Supplementary Note 1).

Dependence of a on d/s. We now proceed to decrease t. Some
samples of xt are shown in Fig. 4a–c: the oscillations become
faster and wider as t decreases (t¼ 0.6, 0.2 and 0.1 ms for Fig. 4a–
c, respectively). We remark that the shorter the t, the more

closely the conditions for the applicability of the Wong–Zakai
theorem19 are met. One might expect that the circuit equation
will follow the Stratonovich equation even more closely and thus,
we shall expect no change with respect to the situation illustrated
in Fig. 3. However, as we can see in Fig. 4d–f, as t decreases, the
equilibrium position of the system moves back towards y¼ 0.

Clearly, this behaviour is not the result of a varying feedback; in
fact, F(y) is the same in all the cases, as evidenced by the fact that
the experimental values of S(y) do not vary significantly (symbols
in Fig. 4g). Instead, it comes from the fact that, as t decreases, D(y)
(symbols in Fig. 4h) tends to G(y) or, equivalently, DD(y) (symbols
in Fig. 4i) tends to 0. Using Equation 6 and S0(y) (dashed line in
Fig. 4i), it is possible to calculate a, which goes from 0.5 to 0 as t
decreases. Thus, the SDE (4) shifts from obeying the Stratonovich
calculus (a¼ 0.5 for t¼ 1.1ms) to obeying the Itô calculus (a¼ 0
for t¼ 0.1ms). As we have remarked in the Introduction, such a
Stratonovich-to-Itô transition can have a dramatic effect on the
long time dynamics of the system, for example, altering the
system’s equilibria as shown in Fig. 4d–f.

In fact, this transition occurs because of the delay in the
feedback. We measured the feedback delay in the circuit for the
data shown in Fig. 2 and Fig. 3 to be d¼ 0.4 ms (Methods). The
dots in Fig. 5 represent a as a function of d/t. The transition
occurs as t becomes similar to d, that is, d/tE1. In order to verify
the dependence of a on the ratio d/t, we performed additional
experiments keeping t¼ 0.4 ms fixed and varying d. For this
purpose, we added a delay line in the feedback branch of the
circuit so that we could adjust d¼ 0.9–5.4 ms (Methods). The
resulting values of a are plotted in Fig. 5 as squares and are in
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good agreement with the theoretical prediction given by
Equation 8. We further verify the validity of Equation 8 with
numerical simulations of various systems (Supplementary Figs
S1–S4 and Supplementary Note 1).

Mathematical analysis. In order to gain a more precise mathe-
matical understanding of this Stratonovich-to-Itô transition, we
consider the following family of delayed SDEs

dyt ¼ GðytÞdtþsFðyt� dÞxtt dt; ð7Þ

where xtt is a sufficiently regular noise with correlation time t and
the feedback is delayed by d. Studying the limits where d,t-0
under the condition d/t�constant, we recover the SDE (2) with

a
d
t

� �
¼ 0:5

1þ d
t

: ð8Þ

This result holds for all SDEs with delayed feedback; the details
of the proof are given in the Methods and in the Supplementary
Note 2. Figure 5 shows the agreement between Equation 8 (grey
line) and the experimental data as a function of d/t (symbols).

Discussion
The reason for the Stratonovich-to-Itô transition captured in
Equation 8 lies in the underlying dynamics of the system
modelled by the SDE (4). For most real physical, chemical,
biological and economic phenomena such microscopic dynamics
are either too complex to be modelled or simply experimentally
inaccessible. This justifies the need to resort to effective
models, for example, SDEs (see Supplementary Figs S1–S4 and
Supplementary Note 1 for some potential examples from biology,
economics and physics). For this work we have chosen a model
system, that is, an electric circuit, that gives us complete access to
the underlying dynamics. We are therefore able to track down the
observed Stratonovich-to-Itô transition to the fact that the
feedback is not instantaneous but involves a delay. The fact that
this transition occurs as t becomes similar to d, that is, d/tE1
(Fig. 5) can be qualitatively explained considering that, if d¼ 0,
there is a correlation between the sign of x and the time-derivative
of F(y), which is the underlying reason why the process converges

to the Stratonovich solution19; however, if d�t, this correlation
disappears, effectively randomizing the time-derivative of F(y)
with respect to the sign of x and leading to a situation where the
system loses its memory.

The result in Equation 8 can be generalized to systems with
many state variables, even when the delay and the correlation
time for each state variable of the system are not the same
(Supplementary Note 3). In general, within a given system there
can be different values of a, and therefore different corresponding
stochastic integral conventions. As in Equation 8, each value of a
depends on the ratio between a feedback delay time and a noise
correlation time.

Our results show that the intrinsic ambiguity in the models of
physical, biological and economic phenomena using SDEs with
multiplicative noise can have concrete consequences. In particular,
the stochastic integration convention needed to interpret an SDE
correctly may vary with the parameters of the system. Notably, our
result that a Stratonovich-to-Itô transition occurs if the delay in
the feedback (d) is longer than the correlation time of the noise (t)
has general applicability because instantaneous feedback and white
noise are only mathematical approximations. The possibility
of such a shift and of its consequences is worth exploring in
the numerous cases where SDEs with multiplicative noise are
routinely employed to predict the behaviour and evolution of
complex physical, chemical, biological and economic phenomena.

Methods
RC circuit. The dynamical system employed in our experiments is an RC electric
circuit. A noisy signal xt, which is generated by a function wave generator (Agilent
33250A) and pre-filtered by a low-pass filter to set the desired t, drives the RC
series. The system’s state yt is measured on the capacitor using a digital oscilloscope
(Tektronix 5034B, 350 MHz bandwidth) at 106 samples per second, which are then
subsampled before analysis. For the circuit with feedback, a high-speed low-noise
analogue multiplier (AD835) is employed to multiply xt by the feedback signal
(generated by amplifying yt and adding an offset) before applying it to the RC
series. We measured the intrinsic delay of the circuit feedback branch (due to its
finite bandwidth) applying a periodic deterministic signal and measuring the delay
of the response. The additional delay line was realized by employing an analogue
variable delay amplifier (Ortec 427A).

Estimation of S(y) and D(y). In order to estimate diffusion S(y) and drift D(y)
from an experimentally acquired time series, we use their definition15 following a
standard approach (see, for example, refs 27,28), which has also been applied to the
stochastic analysis of electric circuits29. Letting the system evolve from an initial
state y for an infinitesimal time-step, S(y) is proportional to the variance of the
system’s state change (inset in Fig. 2c) and D(y) to its average (inset in Fig. 2d). S(y)
and D(y) can be obtained from an experimental discrete time-series (y0,...,yN� 1)
sampling the output signal at intervals Dt as

SðyÞ ¼ 1
2Dt

ðynþ 1 � ynÞ2 j yn ffi y
� �

ð9Þ

and

DðyÞ ¼ 1
Dt

ynþ 1 � yn j yn ffi yh i: ð10Þ

In Equations 9 and 10 Dt should be chosen very carefully when fitting data from
a process with several time scales to a homogenized low-dimensional model, as we
do in this article30. In our case, Dt should meet the condition Dt�t; d, which
warrants that the data are subsampled with respect to the fast time scales of the
process we consider and therefore the estimation of the drift and diffusion of
the homogenized low-dimensional model is correct30. Furthermore, Dt should
also be much smaller than the relaxation time of the system25. Both conditions are
verified in the experiments presented in this article by subsampling the
experimental data at Dt¼ 10 ms.

Derivation of Equation 8. We study the solution of Equation 7, taking the limit in
which d,t-0 at the same rate so that d/t stays constant. In order to deal with a
sufficiently regular process, we take xtt as a harmonic process31, letting xtt ¼

~xttffiffi
t
p ,

where ~xtt is the stationary solution of the SDE

d~xt
t ¼ G

O2
1
t ztdt

dzt ¼ � G2

O2
1
t ztdt� G

t ~xt
t dtþ Gffiffi

t
p dWt

(
ð11Þ

where G and O are constants, Wt is a Wiener process and t is the correlation time
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Figure 5 | Dependence of a on d/s. a varies from 0.5 (Stratonovich

integral) to 0 (Itô integral) as d/t increases. The solid line represents the

results of the theory (Equation 8); the dots represent the values of a for

fixed d¼0.4ms and varying t (Fig, 4) and the squares for fixed t¼0.4ms

and varying d. The error bars represent one standard deviation obtained by

repeating the experimental determination of the ratio d/t 10 times.
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for the Ornstein–Uhlenbeck process obtained by taking the limit G, O2-N while
keeping G

O2 constant. As t-0, the rescaled solution of Equation 11, ~xttffiffi
t
p , converges to

a white noise.
We define the process ~yt by ~yt ¼ yt� d , and we write Equation 7 in terms of

d~ytþ d . Next, we expand about t to first order in d and rewrite the resulting
equation as a first-order system in ~y, v, ~x and z, where v ¼

ffiffiffi
d
p

d~y
dt . We then consider

the backward Kolmogorov equation associated with the resulting SDE, which gives
the equation for the transition density rðt;~y; v; ~x; z;~y0; v0; ~x0; z0; t0Þ. We can expand
r in powers of the parameter

ffiffiffi
t
p

, that is, r ¼ r0 þ
ffiffiffi
t
p

r1 þ tr2 þ ����� . We use the
standard homogenization method32 to derive the backward Kolmogorov equation
for r0

33, that is, the equation for the limiting transition density r0 as t,d-0
with d/t�constant. Finally, we take the limit G,O2-N while keeping the ratio G

O2

constant. The resulting backward Kolmogorov equation is

@r0

@t
¼ GðyÞþ 0:5

1þ d
t

s2FðyÞ dFðyÞ
dy

� �
@r0

@y
þ 1

2
s2F2ðyÞ @

2r0

@y2
ð12Þ

and the associated (Itô) SDE is

dyt ¼ GðytÞdtþ 0:5
1þ d

t

s2FðytÞ
dFðytÞ

dy
dtþsFðytÞdWt : ð13Þ

Mathematically, convergence of the Kolmogorov equations means convergence
of infinitesimal operators (generators) of the diffusion processes defined by solving
the associated SDE’s. It follows that the solutions converge in distribution to
the solution of the limiting equation. The equation for a (Equation 8) follows
straightforwardly by comparison of Equations 2 and 13. A more detailed derivation
is provided in Supplementary Note 2.
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