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A signal transduction score flow algorithm for cyclic cellular pathway

analysis, which combines transcriptome and ChIP-seq dataw
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Determination of cell signalling behaviour is crucial for understanding the physiological response to a

specific stimulus or drug treatment. Current approaches for large-scale data analysis do not effectively

incorporate critical topological information provided by the signalling network. We herein describe a

novel model- and data-driven hybrid approach, or signal transduction score flow algorithm, which allows

quantitative visualization of cyclic cell signalling pathways that lead to ultimate cell responses such as

survival, migration or death. This score flow algorithm translates signalling pathways as a directed graph

and maps experimental data, including negative and positive feedbacks, onto gene nodes as scores, which

then computationally traverse the signalling pathway until a pre-defined biological target response is

attained. Initially, experimental data-driven enrichment scores of the genes were computed in a pathway,

then a heuristic approach was applied using the gene score partition as a solution for protein node

stoichiometry during dynamic scoring of the pathway of interest. Incorporation of a score partition during

the signal flow and cyclic feedback loops in the signalling pathway significantly improves the usefulness of

this model, as compared to other approaches. Evaluation of the score flow algorithm using both

transcriptome and ChIP-seq data-generated signalling pathways showed good correlation with expected

cellular behaviour on both KEGG and manually generated pathways. Implementation of the algorithm

as a Cytoscape plug-in allows interactive visualization and analysis of KEGG pathways as well as

user-generated and curated Cytoscape pathways. Moreover, the algorithm accurately predicts

gene-level and global impacts of single or multiple in silico gene knockouts.

Introduction

Recent genomic data collections have become publicly avail-

able for whole genomes of several species during the last

decade. In parallel, omics-wide experimental technologies

have been developed. Combined with the advent of supporting

bioinformatics tools, the high-throughput technology has been

commonly exploited in a range of disease conditions such as

cancer and neurodegenerative pathologies.1 These large-scale

biological datasets are often integrated and represented in

various forms of cell signalling networks, which are composed

of a group of biomolecules working together to control cellular

behaviour in response to a signal. It is widely recognized that

a coordinated response of a combination of genes is respon-

sible for most cellular behaviour and related phenotypes.2–4

Hence, studying the complex architecture of signalling networks

with novel algorithmic approaches with the experimental data

can demonstrate how complex biological traits arise and

propagate.

Traditional transcriptomics data-analysis methods identify

a list of significant genes that are expected to be related to a

particular cellular phenotype. However, analysis of the large-

scale experimental data based only on a list of significant genes

falls short of revealing the molecular basis of cellular events.

Therefore, specific methodologies to manipulate and analyse

these data collections still remain to be developed.

Cell signalling networks are often represented in the form of

node-edge structured graphs. The nodes (vertices) and edges of

these graphs represent biomolecules (proteins or small molecules)

and physical interactions between them, respectively. KEGG,5

BioGRID6 and Reactome7 are some of the data sources often

used for integration of omics data into cell signalling networks.

Several bioinformatics tools have been developed to associate

large-scale data, especially microarray gene expression, with

pathway graphs.8–15 These tools aim to interpret the expression
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profiles by identifying experimental condition related genes or

pathways based on traditional statistical tests. Hence they

generate gene co-expression networks of only the selected pool

of genes. Most of the methods perform pathway analysis based on

either significant gene sets or gene functional class identifications.

Although some tools provide quantitative enrichment scores for

the genes or gene-groups, they do not use the topological structure

of the pathway or the biological activity of a specific sub-cellular

process responsible for the observed phenotype. Therefore, this

study aims to design and implement a signal transduction score

flow algorithm to quantitatively assess biological activities of

cellular processes and to identify significant sub-paths (down-

stream process) within that pathway using not only a selected

subset of genes but for all the gene nodes in a given pathway.

We previously described a feed-forward score flow algorithm

for large-scale data annotation and its relation to cellular

networks.16 Our current study focuses on the design and

implementation of a signal transduction score flow algorithm

that quantitatively assesses biological activities of a cyclic

cellular network and identifies significant sub-paths and target

cellular processes in a given pathway. The cyclic network

algorithm was also implemented as a Cytoscape plug-in, then

applied on 30 different KEGG pathways by using two different

data sets. Significance analysis of final activity scores of target

processes was performed. In silico knock-out studies were

analysed on a curated pathway. Our approach fuses and

exploits both data and model, effectively benefiting from topo-

logical information brought in by cell signalling pathways.

A pathway was converted into a graph and the individual gene

scores were mapped onto the nodes of the graph. Gene scores

were transferred en route to the biological pathway to form a

final activity score, describing the behaviour of a specific

process in the pathway while enriching the gene node scores.

Methods

Pathway node score calculation

Based on the omics data, an initial score was assigned to each

protein node of a given pathway. The protein node scores were

obtained by taking products of the rank scores extracted from

experimental data (explained in Raw Data Preparation

Documentation, ESIw). Initial raw data analysis for micro-

array and ChIP-seq was done by R and CisGenome frame-

works respectively.17 Then score computation on the pathway

with the partitioned score transfer procedure was initiated.

Usually, cell signaling flows from cell membrane towards the

nucleus in order to activate certain cellular activities upon a

signal from receptors. Therefore our algorithm simulates this

signal flow after the initial score assignment. First the nodes

(proteins), which are close to the membrane transmit their scores

to their immediate edges, then to nodes in their immediate

neighborhood. If a protein has two or more interacting

partners in the immediate neighborhood, the initial score of

the protein is partitioned to the interacting edges based on the

weights of the interacting neighborhood nodes’ raw data score

(Fig. 1). Then the new edge score and the interacting node

score are added up in order to calculate the output of the next

step in the signaling path. The partitioning idea of this

approach is based on the stoichiometric concentrations of

protein–protein interactions. The number of interactions/

reactions in a cellular system is based on the substance

concentration; therefore we adopted raw data scores as the

stoichiometric concentrations of the node and partitioned raw

data scores, based on their interacting partners’ stoichiometric

concentrations. A fraction of the raw data score is transferred

to one neighbour based on its raw score while the rest of the

raw data score is transferred to the other interacting partner.

During the transfer if the edge is of inhibitory type, then the

edge has a negative value on the interacting partner (Fig. 1).

However when there is negative or positive feedback, score

calculation cannot be solved with the above-explained pro-

cedure. Therefore, we applied a modified breadth-first search

(BFS) algorithm to overcome this problem (see Algorithm 1).

The algorithm had to iterate 10–15 times over the entire cyclic

graph until the convergence of gene node scores was attained.

Fig. 2 illustrates the general process diagram of our pathway

node score flow algorithm.

The score flow calculation algorithm was implemented as a

Cytoscape plug-in (ESIw) and it is publicly available. This

plug-in can be used by following the directions given in the

ESI.w Score calculation can be performed on custom (manually)

generated pathways as well as KEGG pathways.

In addition, in order to evaluate the significance of scores

obtained with the algorithm, we randomized input data several

times and reran the algorithm to calculate new activity scores.

Then p-values of pathway enrichment scores were calculated

so that the consistencies of the final activity scores could be

assessed and demonstrated.

Datasets

We applied the score flow algorithm to two datasets: ChIP-seq

and expression array data sets from Estradiol-treated MCF7

breast cancer cells (GSE11352 and GSE19013) obtained

simultaneously,18,19 and the gene expression profile of the

Colo741 cell line transfected by KRas-G12D or KRas-G12V

mutant proteins (GSE12398).20 The datasets were pre-processed

as explained in Raw Data Preparation Documentation (ESIw).
Analysis of Estradiol-treated MCF7 ChIP-seq was performed

Fig. 1 Demonstration of the score flow operation on a three step

hypothetical pathway with final cellular activity processes (apoptosis,

cell cycle etc.). Raw data scores are shown in protein nodes in squares.

Protein A is the initiator protein, which transforms the 8/10 fraction

(10 is the sum of the scores of B and C) of its score to protein B and the

2/10 fraction to protein C. Then protein B gives out the sum of its raw

score plus the incoming score from A (+16 + 8 = 24) to proteins D

and E. Interaction with protein D is of inhibitory type, therefore protein

D’s incoming edge gets a negative value of �8. Hence, its target final

cellular process is inactive with a negative score (�8 + 2 = �6). Other

target processes are active according to the accumulated scores.
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to determine the regulation role of the estrogen receptor

transcription factor in the MCF7 breast cancer cell line.

We performed a row-wise normalization on raw array data.

The gene expression experiments were provided as individual

rank I(x) scores for each node in the pathway.

The raw self-scores of nodes in the pathway were calculated

by the product of individual gene scores extracted from ChIP-

seq and expression array data by using the rank product

technique.21 The rank product method combines individual

ranks of different biological measurements.

SðxÞ ¼
YN
s¼1

IsðxÞ; ð1Þ

where Is(x) is the individual rank value of gene x coming from

the data source s, and N is the total number of heterogeneous

data sources. In order to integrate rank scores of genes

extracted from individual gene expression and the ChIP-seq

dataset, we applied eqn (1) and obtained the product of

individual ranks, where I1(x) and I2(x) represent the individual

ranking values of the microarray and ChIP-seq experiments

for the gene x, respectively. S(x) defines the raw self-score of

gene x. If both of the ranks of x were missing, S(x) value was set

to 0. If gene x in a pathway has several Entrez gene identifiers,

the mean of self-scores of these identifiers was calculated and

the mean value was assigned as the self-score of x.

Pathway scoring algorithm

A pathway is converted into a directed graph G = (V, E).

A node in the graph represents a gene product or a target

process linking the current signal to a final cellular activity.

The edges represent the relations (i.e., activation, inhibition)

between the nodes. In G, let outAdj(x) denote the out-

adjacency list of node x, that is, outAdj(x) = {y: (x,y) e E}

and let inAdj(x) denote the in-adjacency list of node x, that is,

inAdj(x) = {y: (y,x) e E}.
If an edge (x,y) from node x to y is labelled activation, the

total score of node x is then directly transferred. If edge (x,y) is

inhibition, the total score of node x is transferred with a

negative value as the score of node y. In order to consider

the processing order of the genes in the actual pathway map,

we performed score computations following the pathway

nodes. For this purpose, the directed graph is converted into

a cascade form by applying the multiple source breadth-first

search (BFS) algorithm, which effectively propagates BFS

levels starting from nodes of zero in-degree. Algorithm 1

displays the BFS-based algorithm used for this conversion.

This cascade form enables us to solve the score convergence

problems of some cyclic pathways.

Let V0,V1,V2,. . .,VL�1 denote the levels of this cascade form

of G, where V0 denotes the set of nodes with zero in-degree.

Note that Vl contains the nodes whose shortest path distance

to the nodes in V0 is equal to l, for l = 1, 2,. . ., L � 1. The

proposed approach adopts an iterative process that updates

the score of the nodes in a level-wise fashion. At each iteration

of the algorithm, the nodes of the graph are processed in level

order, i.e., the nodes in level l are processed before the nodes in

level l + 1. The processing of a node refers to transferring its

score to the nodes in its out-adjacency list. At iteration k, a

node x transfers its Sk
out to each node y in its out-adjacency list

according to the following equation:

f kðx; yÞ ¼ signðx; yÞ � Sk
outðxÞ �

SðyÞP
z2outAdjðxÞ

SðzÞ ð2Þ

the out-score of node x is divided among the nodes in

outAdj(x) according to the raw self-scores of these nodes.

That is, nodes with small raw self-scores will get a small share

of Sk
out(x), compared to nodes having large self-scores. Note

that the type of the edge from x to y is defined by sign(x,y),

where sign(x,y) = 1 denotes activation and �1 denotes

inhibition. Hence, the out-score of a node x is updated at

each iteration k by summing up the out-score transfers from

the nodes in its in-adjacency list as:

Sk
outðxÞ ¼ SðxÞ þ

X
z2inAdjðxÞ

f kðz; xÞ:

Algorithm 2 describes the general steps of pathway scoring.

In Algorithm 2, the for-loop inside the initialization for-loop

computes the sum of the raw self-scores of the nodes in the

out-adjacency of each node, which is equal to the denominator

term of eqn (2). The scheme adopted in the while-loop of the

score computation phase enables in-place accumulation of the

Fig. 2 Process diagram of the signal transduction score flow

algorithm.
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contributions of the out-score of a given vertex x to the out-

scores of the nodes in its adjacency list. Thus, the scheme

avoids the need for maintaining a flow value (see eqn (2)) for

each edge of graph G. The reason for the iterative approach is

the cyclic signalling pathways; the out-scores of the nodes in a

cycle need to be computed many times for the convergence of

node scores in the cycle. For this purpose, we execute the

while-loop until obtaining converged out-scores for all nodes

in the graph. The convergence on the out-score of a node x is

defined as:

Sk
outðxÞ � Sk�1

out ðxÞ � e

where e is the error threshold for the convergence criteria and

is set to 10�6. Note that the proposed algorithm does not

necessitate the expensive cycle-finding process in graph G.

Instead, we performed passes over the entire graph level by

level (as indicated in pseudo code) to compute the converged

out-scores for all the nodes.

The graph G represents an overall pathway containing one

or more final biological processes. In G, different biological

processes are represented by a different subset of target nodes,

where the distinguishing property of a target node is having

zero out-degree. Let P denote the set of biological processes in

a pathway represented by G and let T(p) denote the subset of

target nodes representing biological processes p e P. The final
activity score for a biological process p is computed by taking

the sum of all possible biological processes leading to p in

pathway G:

StotðpÞ ¼
X
t2TðpÞ

SoutðtÞ

The BFS-based levelization/cascading algorithm runs in

linear time in the size of the pathway graph G. That is, it is

an O(V + E)-time algorithm. The while-loop of Algorithm 2

processes each vertex once, thus processing each edge only

once. The initialization for-loop of Algorithm 2 also makes a

single scan over all vertices and edges of G. So, Algorithm 2

can be considered as a linear-time algorithm if a constant

number of iterations suffice for convergence.

Significance analysis of activity scores

In order to determine significance of final activity scores, we

calculated the p-value of each activity score by applying input

data randomization. For this purpose, the score ratio of a

biological process z was defined as

SRðzÞ ¼ StotðzÞcontrol
StotðzÞexp

;

where Stot(z)control and Stot(z)exp are final activity scores of the

process z obtained with original control and experiment data,

respectively. The SR(z) value is crucial to identify which

experimental condition has more effect on the activity of a

specific process.

Randomization of the input data was performed as follows:

1. For each node j in a pathway, randomly select a gene

identifier k from the entire chip, then assign control and

experiment self-scores of gene k to node j.

2. Run the score flow algorithm with these random data.

3. Compute the new ratio score of each process obtained

with random data.

4. Repeat steps 1, 2 and 3 for M times.

The p-value P(z) of process z was calculated by taking

proportion of new ratio scores obtained with random data

that yield bigger or smaller scores than original SR(z)

PðzÞ ¼ 1

M

XM
n¼1

CðNRðzÞn; SRðzÞÞ;

where NR(z)n represents the new ratio score obtained with

randomized data at iteration n, and M is the total number of

iterations performed for the randomization procedure and

set to 10 000. The function C compares the values of SR(z)

and NR(z)n based on the magnitude of SR(z) and returns

either 0 or 1.

CðNRn; SRÞ ¼
1; if SRo 1 andNRn � SR
1; if SR4 1 andNRn � SR
0; otherwise

:

8<
:

We set significance threshold of P(z) to 0.1, hence the

activity score of the process is assumed to be significant for

an experiment if its p-value is less than this threshold.

Cytoscape plug-in

The score flow algorithm was implemented as Cytoscape

plug-in to make the algorithm publicly available for molecular

biologists. Cytoscape enables to visualize and to compute

activity score of each target process.13 In this environment,

the user can load manually curated and custom generated

pathways or upload KEGG pathways online. Each node in the

graph should contain a unique ID (assigned by Cytoscape),

NAME (process or gene name), ENTREZ ID (Entrez

gene Id), NODE TYPE (defined by the use i.e. ‘‘gene’’ or

‘‘activity process’’), TARGET PROCESS flag (for gene set to

‘‘no’’, for process ‘‘yes’’) and SCORE (initially set to zero,

then calculated by the Score Flow algorithm). Circle and

rectangle shapes represent the genes and target processes,

respectively.

The plugin requires two input files, first the above-mentioned

Cytoscape pathway file and the raw gene score file as tab

delimited text file. Each line of the score file contains three

attributes: Entrez id of gene, name and raw self-score. Upon

uploading both files, the signal transduction score flow algorithm

can be run over the pathway using Cytoscape plug-in’s menu

(Fig. 3). The calculated activity scores of genes and processes

can be exported in a tab delimited text file. The installation

and the step-by-step usage of the Cytoscape plug-in are given

as ESI.w

Results

Application of the score flow algorithm to paired transcriptome

and ChIP-seq data

Estrogen receptor (ER) is a hormonal transcription factor that

plays important roles in breast cancer development. Upon

binding to its ligand estrodiol, ER functions primarily through

binding to the transcription regulatory regions of target genes

containing the estrogen response element (ERE) consensus motifs.
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The set of experimental data that we analysed (from the

NCBI-GEO database; see Materials) was paired Estradiol

E2-treated MCF7 breast adenocarcinoma cells for ChIP-seq

and expression array data. After initial data integration and

the rank analysis of the raw ChIP-seq data, 1900 putative peak

regions neighbouring 485 genes from the array data were

identified. The raw gene scores were applied on KEGG path-

ways by using Cytoscape plug-in. The algorithm had to

run 10–15 times over the entire cyclic graph until it verified

the convergence threshold. The activity scores of significant

signalling pathways in MCF7 cells treated with Estradiol are

presented in Table 1. ER receptor activation in the estrogen-

receptor positive breast cancer cell line MCF7 was shown to be

clearly differentially activating the cellular processes involved

in Apoptosis in many cellular pathways. We also observed an

increased activity in Proliferation, Survival and Cell cycle end-

cellular processes (Table 1). This is in correlation with the

proliferative effect of E2 on MCF7 cells as also demonstrated

by previous studies.22–24 E2 carcinogenesis involves two

distinct pathways: oxidative metabolism of estrogen through

the Catechol Pathway and small GDP binding proteins with

MAPK pathway activation.25 Catechol Pathway leads to

apoptosis and MAPK signalling leads to survival and cell

proliferation. Our data analysis clearly demonstrates the

action of these two mechanisms in E2 treated MCF7 cells

when compared to untreated control cells.

In silico gene knockout operation on the PI3K/AKT pathway

Proteins residing in central positions in the network topology

and having many interactions with other proteins can be

considered hub-proteins. There are some proteins which act

as hubs, collecting high scores in our method as well. The

scores of target processes in a signalling cascade would be

affected by the deletion of such hub-nodes. With the aim of

determining the weights of such hub-nodes, we simply deleted

the hub-gene node and the in- and out-edges of that node from

the pathway and ran the algorithm again. The scored pathway

as a result of this gene knock-out operation was compared to

the original pathway’s scores. The significance of the final

activity scores was evaluated by randomization of input data.

After randomization, the p-value of the final activity scores in

knockout pathways was still consistent. Therefore, we were

able to assess the critical role of hub-proteins in high score

collecting nodes in a pathway leading to a cellular end process.

The in silico gene knock-out was applied on a PI3K/AKT

pathway, which was manually constructed using literature

information with Cytoscape (ESIw .cys file). The pathway

contains 83 genes, six target process nodes (DNA repair,

Translation,Migration, Angiogenesis, Apoptosis, andCell Cycle),

and 160 edges (105 activation and 55 inhibition) (ESIw, Fig. S1
and Cytoscape Files).

In the PI3K/AKT pathway, there are two significant hub

nodes: serine/threonine kinase Akt and tumour suppressor

gene p53. Akt promotes cell survival and had been shown to

be constitutively expressed in a variety of human tumours.26–28

p53 is an important hub-protein in cell signalling such as

apoptosis, cell cycle and DNA repair. Therefore, we decided

to knock out the p53 protein node from the native pathway.

After the in silico p53 knockout operation, the new pathway

was used during the score computation. The wild-type and in

silico p53-knocked out PI3K/Akt pathways were analysed

with an expression array dataset from adenocarcinoma

cell line Colo741 carrying oncogenic mutant form of KRas

(G12D) and the wild-type experiment control.20,29 Our score

flow algorithm provided comparative activity scores of original

and knockout pathways (Fig. 4).

As expected, the final activity score of the Apoptosis process

was significantly reduced in the p53 knockout pathway (Fig. 4C,

second row), confirming p53 as the key regulator of the

Apoptosis process (Fig. 4). In parallel the Cell Cycle process

was scored with increased activity. With the microarray data we

used, in which Ras mutations were studied in a BRAF mutated

context, the G12D mutation was also shown to be associated

with processes like cell cycle and apoptosis.26 In addition, no

change is observed in theDNA repair process because these cells

were not challenged to induce their DNA repair mechanism.

Discussion

The present study describes the novel signal transduction score

flow algorithm that not only computes the experimental data-

driven enrichment of the gene nodes and connecting edges of a

given cellular pathway but also provides the activity scores for

all target biological processes.

Due to the detailed node level biochemical data availability,

metabolic pathways were often dynamically modelled with

ordinary differential equations.30 Additionally flux balance

analysis using boolean expressions incorporated with ordinary

differential equations was used to simulate metabolic regulatory

pathways in an iterative approach similar to our algorithm.31

However lack of protein node stoichiometry knowledge in

cell signalling pathways is a major drawback in dynamic

modelling of the cell signalling networks using large scale

omics data.

Fig. 3 Cytoscape representation of the Jak-STAT pathway scored

with Estradiol-treated MCF7 cells data. The circles and rectangles

represent the genes and processes, respectively. The color intensity of

nodes from green to red represents the final gene enrichment or

process activity scores after the score flow algorithm is applied.
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In general, there are two approaches used to interpret the

large-scale experimental data after pre-processing. Usually the

scored or ranked gene categories based on the experimental

input are mapped on static cellular signalling pathways.

According to the pathway topology, the experiment-related

genes or gene sets are selected as differentially expressed genes

correlated with the observed phenotype.32 There are also studies

that use the pre-processed or raw high-throughput data to infer

molecular pathways related to the experiment. Therefore the

novel score flow algorithm presents a heuristic approach that

uses the gene score partition as a solution for protein node

stoichiometry during dynamic scoring of the pathway of interest.

Compared to other tools, our algorithm performs a simulation

of cell signalling flow on the cyclic pathway topology rather than

assigning static gene scores to pathway nodes.

The data driven enrichment of pathway nodes and edges

can be computed on network topology using differentially

expressed gene data by various tools. In general, these tools

calculate a single pathway impact score or a list of enriched

genes from that pathway. SPIA and GSEA tools are the most

similar publicly available tools comparable to our algorithm.

Signalling Pathway Impact Analysis (SPIA) tool estimates the

impact of experimental perturbations on pathways and it

is implemented in R.33 SPIA aims to identify the enriched

pathways using differentially expressed genes and pathway

topological information. When compared to our method,

SPIA provides only a general behaviour of the pathway i.e.,

activation or inhibition without activity scores for pathway

nodes, edges and activity processes (ESIw, Table S1). Besides,
SPIA does not provide a visual graph representation of the

pathways whereas our algorithm can be applied on any hand-

curated pathway with its Cytoscape plug-in.

Gene Set Enrichment Analysis (GSEA) was also compared

with our algorithm on the Colo741-KRas dataset. Based on

the GSEA results, only Reactome Apoptosis gene set was

significantly enriched (ESIw, Tables S2 and S3).

There are also recent studies, which exploit high-throughput

data considering the flow of the cell signalling within a path-

way. In one of these studies, a signalling network is repre-

sented by an electrical circuit, where interactions are resistors,

proteins are interconnecting junctions and the information flow

analysis identifies hub-proteins in the interactome networks.34

Although the information score flow approach seems to be

similar to our signal transduction flow algorithm, we model

gene signals as the integrated scores and score flow is trans-

ferred into child nodes based on their edge types and self-score

states. Cyclic feedback loops are also not considered in pre-

vious studies.32,34 When the score flow algorithm is compared

to similar tools, the most significant difference is the stoichio-

metric concentration based score partition during the flow of

the signal and the implementation of the cyclic feedback loops

in the pathways.

Table 1 Significant activity scores of signaling pathways for control and estradiol (E2)-treated samples of MCF7 cells

Activity score of process

p-ValueKEGG pathway Final process Control ER

Acute myeloid leukaemia (hsa05221) Proliferation 49 929 0.034
Alzheimer’s disease (hsa05010) Apoptosis 54 552 0.037
Apoptosis (hsa04210) Apoptosis 168 1354 0.050

Degradation 56 653 0.023
Chronic myeloid leukaemia (hsa05220) Proliferation 137 68 0.004
Endometrial cancer (hsa05213) Cell growth 131 63 0.006

Proliferation 163 94 0.004
ErbB signalling (hsa04012) Degradation 6 5 0.022
Focal adhesion (hsa04510) Apoptosis 37 161 0.053

Cell motility/FA formation 38 172 0.052
FA-turnover 27 708 0.016
Proliferation 66 257 0.045
Survival 23 165 0.025

Glioma (hsa05214) Cell growth 118 276 0.035
Jak-Stat signalling (hsa04630) Anti-apoptosis 41 118 0.048

Cell cycle 23 66 0.048
MAPK 24 86 0.029
Ubiquitin mediated proteolysis 6 12 0.033

MAPK signalling (hsa04010) Apoptosis 37 95 0.051
Cell cycle 62 1122 0.022
P53 signalling 22 46 0.062
Proliferation 156 1766 0.033
Wnt signaling 13 7 0.006

Melanoma (hsa05218) Survival 31 131 0.034
Neurotropic signalling (hsa04722) Plasticity 23 358 0.018

Regulation of actin cytoskeleton 25 359 0.037
Non-small cell lung cancer (hsa05223) Proliferation 160 91 0.004
Pathways in cancer (hsa05200) Block of differentiation 41 1052 0.009

Proliferation 239 1216 0.099
Regulation of actin cytoskeleton (hsa04810) Adherent junction 26 13 0.007

MAPK 109 2296 0.017
Renal cell carcinoma (hsa05211) Cell-junction, Migration, Invasion 147 627 0.055

Proliferation 149 80 0.004
Thyroid cancer (hsa05216) Proliferation 151 203 0.054

Survival 112 165 0.043
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In this study we also present the application of the tool on

datasets with complementary transcriptome and ChIP-seq

data. The results that we observed with the signal transduction

score flow algorithm were in correlation with the literature

data. Moreover, gene-level and global impacts of single or

multiple gene knockouts were examined by in silico knockout

analysis. The algorithm allows visualization of the impact of

deleting or inhibiting a protein node, not only on the first level

downstream protein but also related signalling pathways and

the various target cellular processes. Thus, it is possible to

visualize the side effects of inhibiting one protein, since its

influence on target processes other than the expected ones will

be demonstrated as well. It would be of great value to be able

to predict the drug combination that could not only increase

apoptosis in cancer cells but also decrease survival and cell

cycle. This in silico tool may suggest hypotheses about how a

drug of interest acts on the molecular cellular pathways, and it

may predict the synergistic effects of different inhibitors.

Algorithm 1

BFS-based algorithm for levelizing graph G.

Algorithm 2

Pathway scoring.

Fig. 4 Enrichment scores of apoptosis and cell cycle processes in the

manually curated PI3K/Akt pathway with KRas (G12D) mutation

data (A) and in silico p53-knockout (p53-KO) enrichment (B) with

Colo741 data. Activity scores of wildtype (wt) versus G12D mutation

are indicated in the table (C). Down-regulated and up-regulated genes

or processes are represented in color tones of green and red,

respectively.
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