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An optimal estimation framework is considered in the presence of cost-
constrained measurements. The aim is to maximise the average Fisher
information under a constraint on the total cost of measurement
devices. An optimisation problem is formulated to calculate the
optimal costs of measurement devices that maximise the average
Fisher information for arbitrary observation and measurement statistics.
In addition, a closed-form expression is obtained in the case of
Gaussian observations and measurement noise. Numerical examples
are presented to explain the results.

Introduction: In estimation problems, the Cramer-Rao lower bound
(CRLB) provides a lower bound on mean-squared errors (MSEs) of
unbiased estimators. In addition, when the prior distribution of the
unknown parameter is known, the Bayesian CRLB (BCRLB) can be cal-
culated to obtain a lower bound on the MSE of any estimator [1]. The
CRLB and BCRLB are quite useful in the analysis of estimation pro-
blems since (a) they provide lower bounds that can (asymptotically)
be achieved by certain estimators (e.g. the maximum likelihood estima-
tor), (b) they are easier to calculate than the MSE as their formulations
do not depend on any specific estimator structure. Recently, a novel
measurement device model has been proposed, and the problem of
designing the optimal linear estimator is studied under a total cost con-
straint on the measurement devices [2]. Unlike previous studies, it is
considered that each observation is measured by a measurement
device, the accuracy of which depends on the cost spent on that
device. In that way, a total cost constraint is taken into account and
the optimal linear estimator design is performed under that constraint.

In this Letter, we consider the problem of minimising the BCRLB
(equivalently, maximising the average Fisher information) at the
outputs of measurement devices under the total cost constraint intro-
duced in [2]. In other words, we propose a generic formulation for deter-
mining the optimal cost allocation among measurement devices in order
to maximise the average Fisher information. We also obtain a closed-
form expression for the Gaussian case, and present numerical examples.

Optimal solution: Consider a scenario as in Fig. 1 in which a K-dimen-
sional observation vector x is measured by K measurement devices, and
then the measured values in vector y are processed to estimate the value
of parameter u. The measurement devices are modelled to introduce
additive measurement noise denoted by m. In other words, the prob-
ability density function (PDF) of x is indexed by parameter u, and the
aim is to estimate that parameter based on the outputs of the measure-
ment devices. Although a linear system model and a different problem
formulation are considered in [2], motivations for that study can also
be invoked for the system model in Fig. 1. It should be emphasised
that the model in Fig. 1 presents a generic estimation framework in
which measurements are processed by an estimator in order to determine
the value of an unknown parameter. For example, in a wireless sensor
network application, measurement devices correspond to sensors,
which are used to estimate a parameter in the system, such as the
temperature.

measurement
devices

estimator
x y=x+m q̂

Fig. 1 Observation vector x measured by K measurement devices, and
measurements x + m are used by estimator to estimate value of unknown
parameter u

To consider practical system constraints, we assume that there is a
total cost constraint on the measurement devices, as proposed in [2].
Specifically, the total cost budget of the measurement devices cannot
exceed C, which is specified by
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where s2
xi

denotes the variance of the ith component of observation
vector x, and s2

mi
is the variance of the ith measurement device (i.e.,

the ith component of m). In other words, it is assumed that a
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measurement device has a higher cost if it can perform measurements
with a lower measurement variance (i.e. with higher accuracy).
Various motivations for the cost constraint in (1) can be found in [2].

To maximise the estimation accuracy, we consider the maximisation
of average Fisher information, or equivalently the minimisation of the
BCRLB at the output of the measurement devices. The main motivation
for the suggested approach is that an optimal cost assignment strategy
can be obtained by solving such an optimisation problem without
assuming a specific estimator structure. In addition, it is known that
some estimators, such as the maximum a-posteriori probability estima-
tor, can (asymptotically) achieve the BCRLB; hence, the minimisation
of the BCRLB corresponds to the (approximate) minimisation of the
MSE for certain estimators.

For an arbitrary estimator û , the BCRLB on the MSE is expressed as
[1]

MSE{û} = E{(û (y) − u)2} ≥ (JD+JP)−1 (2)

where JD and JP denote the information obtained from observations and
prior knowledge, respectively, which are stated as

JD = E
∂ log pu

Y(y)
∂u

( )2
{ }

, JP = E
∂ log w(u)

∂u

( )2
{ }

(3)

with pu
Y(y) and w(u) representing the PDF of Y and the prior PDF of the

parameter, respectively. As JP depends only on the prior PDF, it is inde-
pendent of the cost of the measurement devices. Therefore, the aim is to
maximise JD, which is defined as the average Fisher information, under
the cost constraint in (1). To specify this optimisation problem, it is
assumed that the observation is independent of the measurement
noise; hence, pu

Y(y) in (3) can be expressed more explicitly as the con-
volution of the PDFs of x and m; i.e. pu

Y(y) =



pu
X(y − m)pM(m)dm.

In addition, it is reasonable to assume that each measurement device
introduces independent noise, in which case pM(m) becomes
pM(m) = pM1 (m1) . . . pMK (mK ). As discussed in [2], the cost of a
measurement device can be expressed as a function of its measurement
noise variance (see (1)). Each measurement noise component can be
modelled as mi = smi

m̃i, where m̃i denotes a zero-mean unit-variance
random variable with a known PDF pM̃ i

, and s2
mi

represents the variance
of the measurement device, which determines its cost as defined in (1).
Hence, the PDF of the ith measurement noise can be expressed as
pMi (m) = s−1

mi
pM̃i

(s−1
mi

m).
Based on (1) and (3), the optimal cost assignment problem can be for-

mulated as
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It is noted that the expectation operator for the calculation of JD in (3)
is over both u and Y, resulting in the objective function in (4). From
the discussions in the previous paragraph, we have pu

Y(y) =

pu

X(y − m)
∏K
i=1

s−1
mi

pM̃i
(s−1

mi
mi)dm, which becomes
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in the case of independent observations. In fact, the objective function in
(4) can be written as the sum of K components in that case (see (3)) as
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(m)dm

Since the optimisation problem in (4) provides a generic formulation that
is valid for any observation PDF, the problem can be non-concave in
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general. Hence, global optimisation tools such as particle swarm optim-
isation and differential evolution can be used to obtain the solution [3].

Special case: In the case of independent Gaussian observations and
measurement noise, it is possible to obtain closed-form solutions of
the optimisation problem in (4). To that aim, let the observation
vector x have independent Gaussian components denoted as
Xi � N (u,s2

xi
) for i = 1, . . . ,K, and let each measurement noise com-

ponent have independent zero-mean Gaussian distribution with variance
s2

mi
. In that case, the average Fisher information JD can be calculated as∑K

i=1 (s2
mi
+ s2

xi
)−1. Hence, the aim becomes the maximisation of∑K

i=1 (s2
mi
+ s2

xi
)−1 over s2

m1
, . . . ,s2

mK
under the constraint in (1). It is

noted that both the objective function and the constraint are convex in
this optimisation problem. Since the maximum of convex functions
over convex sets has to occur at the boundary [4], the cost constraint
becomes equality, and the solution of the optimisation problem can be
obtained by using Lagrange multipliers [4], resulting in the following
algorithm for the optimal cost allocation:
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(6)

where SK = {i [ {1, . . . ,K} : s2
mi

= 1} and |SK | denotes the number
of elements in set SK . In other words, if the observation noise variance
is larger than a threshold g, a measurement device with infinite variance
(that is, with zero cost) is considered; namely, that observation is not
measured at all. On the other hand, for observations with variances
smaller than g, the noise variance of the corresponding measurement
device is determined according to the formulation in (6), which
assigns low measurement variances (high costs) to observations with
low variances.

Table 1: Measurement variances and corresponding Fisher infor-
mation for optimal strategy (see (6)), strategy 1, strategy 2

s2
m1

s2
m2

s2
m3

s2
m4

Fisher information

Optimal 0.0097 0.3973 3.533 1 10.45

Strategy 1 0.4373 0.4373 0.4373 0.4373 4.252

Strategy 2 0.0032 1 1 1 9.688

Parameters are C ¼ 2.5, sx1

2 ¼ 0.1, sx2

2 ¼ 0.5, sx3

2 ¼ 0.9, and sx4
2 ¼

1.3
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Fig. 2 Fisher information against total cost C for optimal strategy, strategy
1, strategy 2 where sx1

2 ¼ 0.1, sx2

2 ¼ 0.5, sx3

2 ¼ 0.9, and sx4

2 ¼ 1.3
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Alternative strategies: Instead of the optimal cost assignment strategy
specified in (4), one can also consider the following simple alternatives.
Strategy 1 (equal measurement device variances): In this strategy, it is
assumed that measurement devices with equal variances are used for
all observations; i.e. s2

mi
= s2

m, i = 1, . . . ,K. Then, the cost constraint
in (4) can be used with equality, and s2

m is simply obtained as the smal-

lest positive real root of
∏K
i=1

(1 + s2
xi
/s2

m) = 22C . If the observation var-

iances are also equal, s2
m becomes s2

m = s2
x/(22C/K − 1).

Strategy 2 (all cost to the best observation): In this case, the total budget
C is spent on the best observation, which has the smallest variance. If the
bth observation is the best one, the cost constraint in (4) can be used to
calculate the variance of the measurement noise for that observation as
s2

mb
= s2

xb
/(22C − 1). For all the other observations, the corresponding

measurement variances are set to infinity (i.e. no measurements are
taken from those observations).

Results and conclusions: To provide numerical examples of the results
in the preceding Sections, consider a scenario with independent
Gaussian observations and measurement noise. Let C = 2.5,
s2

x1
= 0.1, s2

x2
= 0.5, s2

x3
= 0.9, and s2

x4
= 1.3. In Table 1, the var-

iances of the measurement devices and the corresponding Fisher infor-
mation values are shown for the proposed optimal strategy (see (6)),
strategy 1 and strategy 2. It is observed that the optimal strategy
assigns smaller variances (larger costs) to observations with smaller var-
iances, and achieves the maximum Fisher information as expected. For
further investigations, Fig. 2 illustrates the Fisher information versus the
total budget C for different strategies. It is observed that the Fisher infor-
mation in strategy 2, which assigns all the cost to the best observation,
converges to 1/s2

x1
as expected (since s2

m1
converges to zero as C

increases). On the other hand, strategy 2 and the optimal strategy con-
verge for very small values of C since the optimal strategy involves
assigning all the cost to the best observation if C is small. Regarding
strategy 1, it converges to the optimal strategy for large C, and signifi-
cant deviations are observed for intermediate values of C. Overall, the
optimal cost assignment strategy yields the highest Fisher information
in all the cases, and indicates the opportunity to achieve high estimation
accuracy.
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