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We consider a manufacturer’s planning problem to schedule order production and transportation to
respective destinations. The manufacturer in this setting can use two vehicle types for outbound
shipments. The first type is available in unlimited numbers. The availability of the second type, which is
less expensive, changes over time. Motivated by some industry practices, we present formulations for
three different solution approaches: the myopic solution, the hierarchical solution and the coordinated
solution. These approaches vary in how the underlying production and transportation subproblems
are solved, that is, sequentially versus jointly or heuristically versus optimally. We provide intractability
proofs or polynomial-time exact solution procedures for the sub-problems and their special cases.
We also compare the three solution approaches over a numerical study to quantify the savings from
integration and explicit consideration of transportation availabilities. Our analytical and numerical
results set a foundation and a need for a heuristic to solve the integrated problem. We thus propose a
tabu search heuristic, which quickly generates near-optimal solutions.
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1. Introduction and related literature

Transportation of finished goods to customers is an impor-

tant logistical activity companies must plan for, along

with production and inventory management. In traditional

supply-chain research and in many industries, planning

activities revolve around production, and transportation

decisions typically follow production and inventory deci-

sions. However, a growing body of research emphasizes the

importance of making these decisions in an integrated

manner, particularly accounting for transportation issues

(vehicle routing, cost, delivery time, etc) at earlier stages of

production planning, to reduce overall costs and increase

service levels (Sarmiento and Nagi, 1999; Hall and Potts,

2003; Dawande et al, 2006; Chen, 2010). In keeping with

this trend, we consider the production scheduling problem

of a company that faces varying vehicle availabilities

and costs over time for outbound shipments. We propose

mathematical formulations representing different decision-

making approaches (ie, sequential versus integrated, opti-

mal versus heuristic) and compare their solutions in terms

of overall costs.

In the system under consideration, a manufacturer must

schedule a certain number of orders. Job processing must

be completed by deadline to ensure on-time delivery. Jobs

can be delivered to the customers as soon as the order is

ready; holding costs are incurred for items that stay in the

inventory. Deliveries can be made using a combination of

heterogenous vehicles. There are two vehicle types, which

differ in their availability and costs over time. An order

destined to a specific customer cannot be delivered in

multiple batches, and orders for different customers cannot

be delivered in the same vehicle. We study the manufac-

turer’s production planning problem in this setting to

minimize total inventory holding and outbound transpor-

tation costs.

The problem as described above originates from a real-

world application. Therefore, in the following sub-section,

we begin with a description of the practical setting that

motivated our study and a discussion of the extent to

which our paper captures the actual practice. We also

provide some thoughts on the applicability of the model

and the analysis to other settings.

1.1. Description of the practical motivation

The problem analysed in the paper is motivated by the

practice of a major global appliance manufacturer. This

company owns several plants around a certain country,

each dedicated to manufacturing a specific family of pro-

ducts (eg, a dishwasher plant, a cooking-appliances plant,

a refrigerator plant). The company has domestic and
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international customers. International orders, which con-

stitute the largest portion of sales, have deadlines, whereas

domestic orders have due dates. Decisions regarding the

acceptance of orders are made ahead of time by the

company’s sales department for all plants, considering their

production capacities. The order information for the

amount to be produced in a certain month and their

due dates/deadlines are sent by the sales department to

each plant about 3 weeks before the start of the month.

Plants then make their own detailed production planning

decisions. Our paper deals with the type of planning

problem that a plant faces in this setting.

A characteristic of the appliance manufacturing industry

is that many of the same raw materials are used in all

products or in a family of products, for example, steel

sheets, plastic and packaging material, among many

others. As the consumption rates of these materials are

quite independent of the model specifications for actual

orders, their replenishment decisions can be made in

advance, according to sales forecasts of aggregate units.

For example, the company mentioned above imports

plastic from outside of the country. Because plastic is

highly consumed by all plants, and there are significant

set-up costs for ordering, it is purchased in bulk and

stored in a central warehouse. The replenishment of

plastic by individual plants is then made according to an

inventory policy, which often results in periodic, frequent

replenishments from the central warehouse. The ownership

of the amount of plastic ordered passes to a plant as

soon as the material is loaded, and the plant is held

accountable for the transportation- and production/

inventory-related costs thereafter. It is because of this

predetermined replenishment policy for many materials

that a plant has prior information about the arrival times

of some containers/vehicles used for inbound shipments

before monthly production planning decisions must

be made.

The company relies on the services of a few third-party

logistics (3PL) providers for all shipments. Three types of

containers are commonly used, irrespective of the 3PL

provider: 200, 400 and 400 high-cube containers. Forty-foot
containers are the most frequently used and specifi-

cally to deliver international orders. In shipping inter-

nationally, multi-modal transportation in the form of

land–sea–land usually occurs. In fact, one aspect of

international orders is the necessity of containers being

at the harbour before a ship’s scheduled departure time.

Plants incur the costs of first-phase transportation, that

is, shipping containers via truck trailers to the harbour.

Another characteristic of the majority of international

deliveries is that orders for different customers cannot

be consolidated within the same container and an order

cannot be delivered in multiple batches over time. In

contrast, domestic orders can be consolidated and/or

split.

In delivering the finished goods to the customers or to

the harbour, plants may utilize newly hired vehicles and/or

arrange for extended use of incoming vehicles that have

been already hired for inbound shipments. With the latter

option, an additional fee is paid in proportion to the

extended usage time of a vehicle. Using an already hired

vehicle may be less costly than hiring a new one, depending

on the extra time. There is no limit to the number

of vehicles that can be hired; however, the number of

incoming vehicles is limited and changes over time. A plant

decides the composition of vehicles to be used for each

delivery, given the production plan and arrival times of

incoming vehicles.

Motivated by the above real-life setting, we focus on a

simplified version of a plant’s production and outbound

transportation planning problem. We consider a setting

where all orders have deadlines, different orders cannot

be shipped in the same vehicle and an order cannot be

delivered in multiple batches. Note that in the real setting,

a plant may have a combination of orders with different

delivery characteristics or different restrictions on delivery

dates, some with due dates and others with deadlines. We

also assume that all vehicles have the same capacity,

whereas in practice, vehicles with different capacities are

available. These aspects of our study better relate to the

plant’s international orders, which constitute a major

portion of sales for the appliance manufacturer. Although

our analysis in this paper considers a scenario in which

different orders cannot be consolidated, we discuss in

Section 7 how the analytical development herein can be

extended to the case of consolidation.

The main characteristic common to the manufacturer in

our study and a plant in the example is that arrival times of

some inbound vehicles are known a priori and can be taken

as an input to the planning problem. It is important to note

that incoming vehicle schedules may be available before a

detailed production plan is made for reasons other than the

above noted inventory replenishment policies, for example,

purchasing commitments made in advance to take advan-

tage of discounts, or inbound replenishment schedules

enforced by suppliers. In the rest of the paper, for the

purpose of generality, we simply assume that there are two

vehicle types that differ in their availability and costs. The

first type of vehicle is available in unlimited numbers,

whereas the second type, which is less costly, has limited

and time-varying availability. Because the heterogeneity of

outbound vehicles as modelled herein may be encountered

in practice for reasons other than incoming vehicles

(eg, different vehicle types offered by different 3PL pro-

viders or the pricing strategy of a single 3PL provider), we

do not specifically refer to the second type of vehicle as an

incoming vehicle.

In the next subsection, we discuss the theoretical and

practical contributions of the paper in relation to the

literature.
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1.2. Contributions of the paper in relation to the literature

As reported in many recent papers on supply chain schedu-

ling (eg, Chen and Vairaktarakis, 2005; Wang and Lee,

2005; Chen, 2010), and evidenced in our relations with this

manufacturer as well with others, we concluded that it is

common industry practice that outbound transportation

decisions (eg, transport mode choice, vehicle schedul-

ing and routing) are made, following a production plan.

Furthermore, as objectives related to production and

customer service are given more priority, transportation

costs are either ignored or considered too late in the

process to determine a less costly delivery plan. We have

identified three solution approaches regarding the decision-

making process for planning order production and out-

bound transportation: the myopic solution, the hierarchical

solution and the coordinated solution. In the myopic and the

hierarchical solutions, production planning decisions are

made first, followed by outbound transportation decisions.

In the myopic solution, planning efforts for transportation

are limited, often made using a heuristic and without giving

explicit consideration to transportation costs and constraints.

In the hierarchical solution, transportation planning is

done in more detail in an effort to optimize the related

costs. Finally, in the coordinated solution, production and

transportation decisions are made jointly, aiming to mini-

mize overall costs. Explanations of these solution approaches

within the specific context of our problem will be provided

in Section 3.

We first present mathematical formulations for solving

the problem using the three approaches. The formulations

for the myopic and hierarchical solutions are based on

identifying two subproblems: the production subproblem

and the transportation subproblem. In the production

subproblem, the objective is to find a schedule of jobs to

minimize inventory holding costs with no job being tardy.

In the transportation subproblem, a plan is made to deliver

completed orders with the least cost considering the dif-

ferent vehicle availabilities. We show that solving the

production subproblem is NP-hard in the strong sense;

however, we come up with polynomial algorithms for

solving the two subproblems, given the delivery times of

orders. This problem structure enables us to propose a

novel application of the tabu search method as a heuristic

to minimize the sum of inventory holding and transporta-

tion costs.

This paper is related to the literature on integrated

production and transportation planning. Examples of

studies in this area are Chang and Lee (2004), Chen and

Vairaktarakis (2005), Chen and Pundoor (2006), Li and Ou

(2005), Li and Vairaktarakis (2007), Geismar et al (2008),

Wang and Cheng (2009) and Geismar et al (2011). Chen

(2010) provides a review of this literature, focusing on

outbound transportation issues. Few papers account for

inbound and outbound transportation simultaneously

(ie, Li and Ou, 2005; Wang and Cheng, 2009), and our

study, like many (eg, Chang and Lee, 2004; Chen and

Vairaktarakis, 2005; Li et al, 2005; Li and Vairaktarakis,

2007; Zhong et al, 2007), concentrates on outbound

transportation. Some distinguishing features of our study

include modelling heterogenous vehicle types, the objective

function being considered and quantifying the differences

between various solution approaches.

It is important to note that a majority of the papers on

integrated production and transportation planning model

the existence of a single mode of transportation (eg, Chang

and Lee, 2004; Chen and Vairaktarakis, 2005; Li et al,

2005; Wang and Cheng, 2007; Geismar et al, 2011). Wang

and Lee (2005), Lei et al (2006), Stecke and Zhao (2007)

and Chen and Lee (2008) are examples of the few studies

that account for different transportation choices. However,

in most of these studies (eg, Wang and Lee, 2005; Stecke

and Zhao, 2007; Chen and Lee, 2008), the difference

among the transportation choices stems from delivery time

and cost. It is assumed that the mode of transportation

with a shorter delivery time is more costly. Transportation

costs are part of the objective function, and delivery times

of orders either contribute to the costs (see Chen and Lee,

2008, and the second problem in Wang and Lee, 2005) or

they are incorporated in a constraint allowing for no

tardiness (see Stecke and Zhao, 2007 and the first problem

in Wang and Lee, 2005). In our study, vehicle costs and

capacities are explicitly modelled, and vehicles are con-

sidered as heterogenous owing to the differences in their

costs and availabilities. Mainly, the less costly vehicle is less

available. Furthermore, we take minimization of inventory

holding and transportation costs as an objective and do not

allow for any job to be tardy.

A group of studies within the general area of inte-

grated production and transportation planning considers

coordinating the production, inventory and transportation

routing operations simultaneously (eg, Chandra and Fisher,

1994; Lei et al, 2006; Bard and Nananukul, 2009; Bard and

Nananukul, 2010). These studies consider inventory hold-

ing costs at all locations (including the customer locations),

and routing vehicles among geographically dispersed cus-

tomers is part of the problem. Another common prop-

erty of these papers is that delivering portions of an order

at multiple points in time and consolidating different

orders are allowed. Our model does not consider inventory

holding costs at customer locations nor vehicle routing.

However, orders that cannot be split and consolidated

must be assigned to heterogenous vehicles with the char-

acteristics mentioned previously, and this makes our prob-

lem challenging.

While it is obvious that integrating production schedul-

ing and transportation decisions reduces total costs, as

opposed to making the related decisions in a sequential

manner, the benefits of integration are not well studied.

We have identified few papers (Chandra and Fisher, 1994;
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Chen and Vairaktarakis, 2005; Pundoor and Chen, 2005;

Dawande et al, 2006) investigating this issue within the

contexts of their problem settings. By comparing our

hierarchical solution with our coordinated solution, we

quantify the savings because of integration, and similar to

the results of these studies, we conclude that these savings

can in fact be significant. Note that all of these studies

assume homogenous vehicles, and therefore allocating

deliveries among different types of vehicles is not an

issue. Furthermore, different from the reviewed papers, by

comparing our myopic solution with our hierarchical

solution, we quantify the savings that can be achieved by

optimal usage of the transportation choices. Our detailed

analysis of the underlying subproblems not only helps us in

making these comparisons, but our proposed tabu search

heuristic for the coordinated problem also relies on the

solutions of these subproblems. Chandra and Fisher (1994)

utilize a similar approach for a different setting, but the

transportation subproblem in their paper is a multi-

period vehicle-routing problem and is solved heuristically,

whereas in ours it is solved optimally. In addition, the

procedure they propose to solve the integrated problem is a

local improvement heuristic.

It is worthwhile to note that in comparing the different

solution approaches, our purpose is not to promote one

approach over another; there may be practical needs or

issues other than costs that companies consider when

choosing among different approaches. For example, the

myopic and the hierarchical solutions do not require that

the information regarding transportation availabilities is

known at the time that production decisions are made. In

fact, to make a transportation decision for a period, the

myopic solution uses only the information that is relevant

to that period. The hierarchical solution is based on the

premise that information regarding transportation avail-

abilities in all periods is known at the beginning of the

planning period. In situations where this information

becomes available at a cost, companies should weigh the

benefits of different approaches against the cost of infor-

mation. We note that the value of information sharing

between different parties in the supply chain, specifically a

retailer’s sharing demand information with his/her manu-

facturer, has been reported in the literature (eg, Lee et al,

2000; Li, 2002). The results of our paper indicate that a

manufacturer may achieve significant savings if a carrier

shares information about his/her vehicle availabilities at

the time that the manufacturer makes his/her production

planning decisions.

In the next section, we begin with a detailed description

of the problem and the notation. We continue in Section 3

with the explanation and the modelling of the three solu-

tion approaches. In Section 4, we provide a further analysis

of the underlying subproblems. In Section 5, we propose a

heuristic based on the tabu search for the joint problem of

minimizing inventory holding and transportation costs.

This is followed by the results of an extensive numerical

analysis comparing the three solution approaches and

the performance of the heuristic. Section 7 concludes the

paper.

2. Problem definition and notation

We consider a manufacturer’s production planning and

delivery scheduling problem, which concerns N orders to

be satisfied in T periods. The manufacturer’s production

capacity is limited by Pt units in period t, indepedent of the

type of items to be produced. The production for each

order i, which has size Si, must be completed and the order

must be delivered before its deadline Di. Late deliveries are

not allowed. In this setting, order acceptance and rejection

decisions have been already made, and there exists a

feasible production plan that ensures every order is ready

for delivery before its deadline. The cost of carrying one

unit of inventory from one period to the next amounts

to $ H for all orders.

Orders are delivered to customers at the expense of the

manufacturer. The manufacturer uses capacitated vehicles

for outbound transportation. Each vehicle holds up to

K units of the finished product. Any number of these

vehicles can be utilized at a cost of $ C1 per vehicle in each

period. However, in period t, a limited number (ie, At) of

vehicles is also available at a lower cost (ie, C2). In the rest

of the text, we will refer to the vehicles with cost C1 as

type I and to those with cost C2 as type II. The latter type

of vehicle can be held at the facility at an additional cost of

$ W per vehicle per period. The following restrictions exist

on outbound shipments: (i) customers do not accept partial

deliveries, and (ii) different orders cannot be shipped in the

same vehicle. Therefore, the number of vehicles needed for

delivery of order i is given by JSi/Kn. The problem is to

find a production plan that minimizes the sum of trans-

portation and inventory holding costs. The plan must

imply the order delivery schedule, the number of both types

of vehicles used in outbound transportation and the pro-

duction quantity in each period. Different approaches may

be used to solve the production planning problem in this

setting. Before proceeding with a detailed discussion of

these approaches in the next section, we summarize below

some of the notations used in the paper. Additional

notations will be defined when necessary.

N Number of orders.

T Number of periods.

Pt Production capacity in period t.

Si Size of order i.

Di Deadline of order i.

H Cost of carrying one unit of inventory from one

period to the next.

K Capacity of a truck in number of units.

C1 Cost of utilizing a type I vehicle.
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C2 Cost of utilizing a type II vehicle.

W Cost of holding a type II vehicle for a period.

At Number of type II vehicles available in period t.

Costm Total cost of the myopic solution.

Costh Total cost of the hierarchical solution.

Costc Total cost of the coordinated solution.

We would like to emphasize that the availability of

type II vehicles during the planning horizon (ie, At) is

exogenously given and is an input to the model.

3. Solution approaches

In this section, we discuss the three approaches briefly

introduced in Section 1 (coordinated solution, myopic solu-

tion and hierarchical solution) for solving the problem

of interest. In the coordinated solution, production and

transportation decisions are made jointly in a single step.

The other two approaches follow a two-step process, which

relies on sequentially solving the underlying subproblems

of production and transportation. The production sub-

problem is to, in each period, find the production quantity

and the order delivery schedule to minimize inventory

holding costs. Because this problem is solved indepen-

dently, without considering outbound shipment costs, its

optimal solution does not foresee savings from transporta-

tion costs if the completed orders are held in the inventory.

Therefore, a plan that minimizes inventory holding costs

delivers the orders as soon as they are completed. The

transportation subproblem is, given the delivery schedule

of orders, to determine the number of type I and type II

vehicles to be used over time to minimize transportation

costs. Note that in this setting, production and transporta-

tion decisions interact for the following two reasons: first,

the shipment costs of an order may be different in different

periods because of the time-varying availability of the

type II vehicles, and an order can be shipped only when its

production is completed; second, there is a trade-off

between increasing the inventory holding costs of completed

items and carrying them over periods to take advantage of

less costly transportation alternatives in the future.

The first steps of the myopic and the hierarchical

solutions are the same, and mainly solve the production

subproblem optimally. The two solutions differ in their

second step, where the transportation subproblem

is solved. In the hierarchical solution, this subproblem is

also solved optimally, whereas in the myopic solution it

is not. More specifically, in the myopic solution, transpor-

tation arrangements are made to deliver the completed

orders in each period using only the vehicles available in

that period. As type II vehicles are less costly, they are

preferred over type I vehicles. If there is no type II vehicle,

outbound shipments are made using type I vehicles. As an

implication of this difference, the hierarchical solution

allows for holding type II vehicles over periods to satisfy

future delivery requirements, while the myopic solution

does not.

In the remaining parts of this section, we present these

approaches in more detail. The following is a list of deci-

sion variables common to all three approaches:

pt Total production amount in period t t ¼ 1; . . . ;T
It Inventory carried from period t

to tþ 1 t ¼ 1; . . . ;T
yt Number of type I vehicles used

in period t t ¼ 1; . . . ;T
xt Number of type II vehicles used

in period t t ¼ 1; . . . ;T
wt Number of type II vehicles carried

from period t to tþ 1 t ¼ 1; . . . ;T

sti
1 If order i is delivered in period t
0 otherwise

�
t ¼ 1; . . . ;T ;
i ¼ 1; . . . ;N

3.1. Coordinated solution

In presenting the details of the different solution approaches,

we begin with the coordinated solution. The following inte-

ger programming formulation models all aspects of out-

bound transportation to obtain a production plan. We

refer to this model as the Integrated Model and its optimal

objective function value is for a problem instance using the

notation Costc.

Integrated Model:

Min
XT
t¼1

C2xt þ C1yt þWwt þHItð Þ

It ¼ It�1 þ pt �
XN
i¼1

stiSi t ¼ 1; . . . ;T ð1Þ

xtpAt þ wt�1 � wt t ¼ 1; . . . ;T ð2Þ

ptpPt t ¼ 1; . . . ;T ð3Þ

XN
i¼1
dSi=Kesti ¼ xt þ yt t ¼ 1; . . . ;T ð4Þ

XDi

t¼1
sti ¼ 1 i ¼ 1; . . . ;N ð5Þ

xt; yt;wt; pt; It 2 f0g [ Zþ t ¼ 1; . . . ;T ð6Þ

sti 2 f0; 1g t ¼ 1; . . . ;T ; i ¼ 1; . . . ;N ð7Þ

w0 ¼ 0; I0 ¼ 0 ð8Þ

The objective function in the above formulation is the

sum of the transportation and inventory holding costs.

The first constraint set represents the inventory balance

equations. Inequality (2) signifies that the number of type

II vehicles needed in period t cannot exceed the number

that is available in period t. The type II vehicles needed
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in period t include those used for the shipments in period t

(ie, xt) as well as those that are carried to the next period

(ie, wt). The number of type II vehicles available in period t

includes those that have been carried from earlier periods

(ie, wt�1) as well as those that have become recently

available in period t (ie, At). Constraint set (2) is in the

form of an inequality because some of the type II vehicles

available in period t may not be utilized at all. Inequality

(3) ensures that production capacity is not exceeded in any

period. Equation (4) implies that the total demand for

vehicles to be used in a period’s outbound shipment is

satisfied through either type I or type II vehicles. Equation

(5) guarantees that every order is delivered before its

deadline. Constraint sets (6)–(8) refer to the non-negativity,

integrality and initial conditions of some variables,

respectively. Here, Zþ is the set of positive integers.

The mathematical formulation introduced above expli-

citly considers the transportation costs and capacities in

making production planning decisions. Koç et al (2013)

show that the problem of interest as modelled herein is

NP-hard in the strong sense. In the next section, we present

the other two approaches in detail.

3.2. Other solution approaches: myopic and hierarchical

Recall that the myopic and hierarchical solutions rely on

the production subproblem and the transportation subpro-

blem. The formulations of these subproblems are decom-

posed from the Integrated Model and presented below.

Production Subproblem:

Min
XT

t¼1 HIt

It ¼ It�1 þ pt �
XN
i¼1

stiSi t ¼ 1; . . . ;T

ptpPt t ¼ 1; . . . ;T

XDi

t¼1
sti ¼ 1 i ¼ 1; . . . ;N

pt; It 2 f0g [ Zþ t ¼ 1; . . . ;T

I0 ¼ 0

sti 2 f0; 1g t ¼ 1; . . . ;T ;

i ¼ 1; . . . ;N

Transportation Subproblem:

Min
XT

t¼1 C2xt þ C1yt þWwtð Þ
xtpAt þ wt�1 � wt t ¼ 1; . . . ;T

xt þ yt ¼
XN
i¼1
dSi=Ke~sti t ¼ 1; . . . ;T

xt; yt;wt 2 f0g [ Zþ t ¼ 1; . . . ;T

w0 ¼ 0

In the production subproblem, issues related to transpor-

tation are not considered. Similarly, the transportation

subproblem does not consider production- and inventory-

related costs and constraints. Note also that the indicator

variable showing whether a delivery is to be made for order

i in period t, that is, sti, is a decision variable in the

production subproblem, whereas its value is an input to the

transportation subproblem. In the transportation subpro-

blem, ~sti denotes a given value of sti.
Now, we are ready to provide detailed descriptions of

the myopic and hierarchical solutions. Before doing so,

we define a further piece of notation. Let Costpr and sti� be
the optimal values of the objective function and sti, res-
pectively, as an output of the production subproblem. This

solution implies that the total vehicle requirement for

deliveries in period t is
P

i¼ 1
N JSi/Knsti� . Therefore, the

following description applies to the myopic solution.

Description of The Myopic Solution:

1. Solve the production subproblem.

2. Set xt¼min(
P

i¼ 1
N JSi/Knsti�,At), yt¼

P
i¼ 1
N JSi/Knsti��xt

and wt¼ 0. Compute the resulting costs as follows:

Costm ¼ Costpr þ
XT
t¼1

C2xt þ C1ytð Þ:

In comparison to the myopic solution, the second step of

the hierarchical solution exploits the possibility of carrying

type II vehicles from one period to the next to take better

advantage of the cheaper transportation alternative. More

specifically, holding a type II vehicle for a delivery that

must take place within the next b periods is less costly than

using a type I vehicle for the same delivery, where

b ¼ C1 � C2

W

� �
� 1: ð9Þ

As it will be discussed in Section 4, the value of b is

critical as an input to our proposed algorithm for the

optimal solution of the transportation subproblem. There-

fore, it is also utilized by the following algorithm for

obtaining the hierarchical solution and the resulting cost.

Description of the Hierarchical Solution:

1. Solve the production subproblem and do the following

initialization of variables:

(a) For t¼ 1 to t¼T and for i¼ 1 to i¼N, set ~sti ¼ s�ti:
(b) Compute the value of b using Expression (9).

2. Solve the transportation subproblem given ~sti and b.
Compute Costh as the summation of the optimal costs

of the two subproblems (ie, Costh ¼ Costpr þ Costtrð~stiÞ).

Here, Costtrð~stiÞ refers to the optimal objective function

value of the transportation subproblem, given the delivery

dates of orders as implied by the optimal solution of the

production subproblem.
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The second step of the hierarchical solution is essentially

solving the transportation subproblem optimally, given the

optimal solution to the production subproblem. We note

that the transportation subproblem may be solved without

using the specific definition of b. How we use b in solving

the transportation subproblem will become clearer when

we present a polynomial-time exact solution procedure in

the next section.

4. Analysis of the subproblems

Recall from Section 3.2 that both the myopic and

hierarchical approaches utilize the solution of the produc-

tion subproblem, and the hierarchical approach further

requires the solution of the transportation subproblem. In

addition, the tabu search heuristic that will be described in

Section 5 is based on solving these two subproblems

optimally for given delivery dates. Therefore, we analyse

them further in this section. We start with establishing the

status of the production subproblem in the next theorem.

Thereafter, we present polynomial time algorithms for

obtaining optimal solutions of the two subproblems, given

the order delivery dates. How the delivery dates are

determined and updated through the steps of the tabu

search heuristic will be discussed in Section 5.

Theorem 1 The production subproblem (production planning

problem without transportation considerations) is NP-hard

in the strong sense

Proof The proof is done by a reduction from the

3-Partition (3P) problem. Note that the production

planning problem without transportation considerations

is clearly in NP. The 3P problem is defined as follows:

INSTANCE: Set G of 3t elements, a bound BAZþ and a

size s (a)AZþ for each aAG such that B/4os(a)oB/2

and such that
P

aAG s(a)¼ tB.

QUESTION: Can G be partitioned into t disjoint sets

G1,G2, . . . , Gt such that
P

a2Gt sðaÞ ¼ B for t¼ 1, 2, . . . , t

(note that each Gt must therefore contain exactly three

elements from G)?

REDUCTION: Take an arbitrary instance of 3P. The

corresponding instance of our problem is constructed as

follows: For each element a in set G define an order with

size Sa¼ s(a) (ie, N¼ ||G||). Set T¼ t, H¼ 1 and Pt¼B,

and, for each a¼ 1, 2, . . . ,N set Da¼T. We will show

that there is a solution to 3P if there is a solution to our

problem with cost less than or equal to z� ¼ 0.

Assume that there is a solution to our problem with cost

z that is less than or equal to 0. Thus, no inventory

holding cost is incurred. As there are 3t orders to be

satisfied with a total size of tB and total production

capacity of the facility is equal to total demand

(
P

t¼ 1
T Pt¼ tB), the total number of items produced at

each period is equal to B. This means that three orders

with total size equal to P are completed and delivered at

each period, with no inventory held at the facility. Now

construct a solution to 3P as follows: For all orders

produced and delivered in period t, put the correspond-

ing element in set G into Gt. As the size of orders

Sa¼ s(a), for each disjoint set Gt,
P
a2Gt

sðaÞ ¼ B

(t¼ 1, 2, . . . , t).

If there is a solution to 3P, construct a solution to our

problem instance as follows: For each disjoint set Gt,
t¼ 1, 2, . . . , t, produce and deliver all the items of order

aAGt in period t. A similar reduction with the previous

case implies that the solution has a cost of z¼ 0. &

Now, let us consider the two subproblems, given the

delivery dates of all orders. Note that it is always possible to

obtain a feasible solution to the transportation subproblem

simply by using the type I vehicles, which are abundant.

The production subproblem, on the other hand, may not

be feasible depending on the delivery dates given. More

specifically, if the total size of orders that must be completed

and sent by time t is greater than the cumulative production

capacity until that period, the production subproblem is

infeasible. We propose the following algorithm for finding

an optimal solution to the production subproblem, given

that sti ¼ ~sti . With a slight change of notation, Costprð~stiÞ
is used to refer to the optimal costs of the production

subproblem under the given order delivery dates.

Algorithm I Optimal solution of the production

subproblem given the delivery dates:

1. Do the following initialization of variables:

(a) Set Costprð~stiÞ ¼ 0 .

(b) For t¼ 1 to t¼T, set Ft ¼
PN

i¼1 ~stiSi.

2. For t¼T down to t¼ 1:

(a) Determine the production amount in period t

using pt¼min{Ft,Pt}.

(b) If Ft4 pt,
(i) If t¼ 1, then there is no feasible solution. Stop

and exit.

(ii) If ta1, do the following:

A. Ft�1¼Ft�1þFt�pt.
B. Update the optimal costs using Costprð~stiÞ ¼

Costprð~stiÞ þ ðFt � ptÞ�H .

In the above algorithm, Ft is the amount that must be

produced within [1, t] for the deliveries that will take place

within [t,T ]. The algorithm follows a backward recursive

path to find the production quantity in each period and the
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resulting cost. It can be observed that the above algorithm

runs in O(T).

Proposition 1 Algorithm I terminates with an optimal

solution for the production subproblem if the given delivery

dates are feasible, otherwise it returns no solution.

Proof Let us consider the last period for a problem with

T number of periods.
PN

i¼1 ~sTiSi is the total size of orders

that are to be delivered in the last period. As many as

possible of these items should be produced in the last

period, because doing otherwise increases inventory hold-

ing costs. Therefore, pT ¼ min
PN

i¼1 ~sTiSi;PT

n o
is the

amount to be produced in period T, as given by Step 2(a)

of the algorithm. If T¼ 1 and
PN

i¼1 ~s1iSi4P1, then the

production capacity in the whole planning horizon is not

enough to satisfy the demand, and therefore there is no

feasible solution. In this case, the algorithm terminates in

Step 2(b).i with no solution. If T¼ 1 and
PN

i¼1 ~s1iSipP1,

then p1 ¼ min
PN

i¼1 ~s1iSi;P1

n o
is the optimal solution,

and is given by Step 2(a).

If
PN

i¼1 ~sTiSi4PT and TX2, then the production

capacity in the last period is not enough to satisfy the

demand of that period, therefore FT � PT ¼
PN

i¼1 ~sTiSi �
PT of this amount should have been produced and carried

as inventory from earlier periods. Therefore, FT�1, which

is initially set to
PN

i¼1 ~sT�1;iSi, is increased by FT�PT in

Step 2(b).ii.A of the algorithm. Because at this point we

know that FT�PT number of items will be held in the

inventory for at least one period, the total costs are

updated in Step 2(b).ii.B to incorporate the cost of holding

this much inventory for a period. If
PN

i¼1 ~sTiSipPT and

TX2, then the production capacity in the last period is

enough to satisfy the demand in the last period, therefore

no inventory should be carried from earlier periods to the

last period, and hence FT�1 stays the same as its initial

value
PN

i¼1 ~sT�1;iSi.

The algorithm next finds the quantity to be produced in

period T�1 (ie, pT�1), and updates Ft�2. Continuing in this

manner, the algorithm finally arrives at the first period. F1
is the amount to be produced in period 1 for a feasible

solution to be obtained. If P1XF1, then the algorithm sets

p1¼F1 as the optimal production amount in period 1. If

P1o F1, then, because there are no more production

periods to supply the requirements, the algorithm exits

with no solution in Step 2(b).i. &

The following algorithm solves the transportation

subproblem optimally for the given delivery dates ~sti:

Algorithm II Optimal solution of the transportation

subproblem:

1. Do the following initialization of variables:

(a) Set Costtrð~stiÞ ¼ 0 .

(b) For t¼ 1 to t¼T, set xt¼ 0, wt¼ 0, Gt ¼PN
i¼1 dSi=Ke~sti and jt¼At.

2. For b¼ 0 to b:
For t¼ 1 to T�b:

(a) Determine the number of type II vehicles among

those that become available in period t to be used in

period tþ b. That is, compute vt¼min{Gtþ b,jt}.

(b) Update the number of vehicles needed for deliveries

in period tþ b using Gtþ b¼Gtþ b�vt.
(c) Decrease the number of type II vehicles available in

period t by vt (that is, set jt¼jt�vt).
(d) Increase the number of type II vehicles utilized in

period tþ b by vt (that is, set xtþ b¼ xtþ bþ vt).

(e) If b4 0, for t¼ 0 to (b�1) set wtþ t¼wtþ tþ vt.

3. For t¼ 1 to t¼T,

(a) Set yt¼Gt.

(b) Update the optimal costs using Costtrð~stiÞ ¼
Costtrð~stiÞ þ wt�W þ xt�C2 þ yt�C1 .

In the above algorithm, b represents the number of

periods for which a type II vehicle is held. Expression (9)

implies that it is not optimal to hold a type II vehicle for

more than b number of periods. Therefore, b ranges from

0 to b. Within steps 2(a)–2(e) of the algorithm, first, among

the type II vehicles that have been on hold for the last b

periods, the number that will be used in period tþ b is

found. Later, the overall need for vehicles in period tþ b

(ie, Gtþ b), the number of type II vehicles available in

period t (ie, jt), the number of type II vehicles used in

period tþ b (ie, xtþ b) and the inventory of vehicles

throughout periods t to tþ b�1 (ie, wtþ t for t¼ 0, . . . ,

b�1) are updated. The algorithm runs steps 2(a)–2(e) in

such a sequence of t and b values that type II vehicles are

used in the most immediate period that a need for vehicles

arises. In this way, the holding cost of vehicles is

minimized, along with the total transportation costs. In

the last step of the algorithm, a plan is made to satisfy the

remaining need for vehicles in any period using type I

vehicles, and the cost is updated. We note that the time

complexity of this algorithm is O(Tb2), which is bounded

by O(T 3).

Proposition 2 Algorithm II terminates with an optimal

solution for the transportation subproblem.

Proof If b¼ 0, then C1pC2þW, which implies that it is

never optimal to carry a type II vehicle over periods.

As C14 C2, if a type II vehicle becomes available in

period t and a need for a vehicle arises in that period,

then the type II vehicle must be utilized. Therefore, xt ¼
minf

PN
i¼1 dSi=Ke~sti;Atg for t¼ 1, 2, . . . ,T. This is given

by Steps 2(a) and 2(d) of the algorithm for a certain t.

If
PN

i¼1 dSi=Ke~sti4At for a period t, then the vehicle
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requirements cannot be satisfied by only using type II

vehicles but an additional Gt ¼
PN

i¼1 dSi=Ke~sti � At type I

vehicles are needed. If
PN

i¼1 dSi=Ke~stipAt , then there is

no need for type I vehicles in period t (ie, Gt¼ 0). The last

two statements are ensured by Step 2(b) of the algorithm.

At this point, Gt gives the number of type I vehicles

needed for deliveries in period t. Therefore, yt is set to Gt

in Step 3(a). The transportation cost of this plan isP
t¼ 1
t¼T(xt � C2þ yt � C1), as given in Step 3(b) of the

algorithm.

If bX1, then C2þ bWo C1 for 1pbpb because of

Expression (9). This implies holding a type II vehicle that

becomes available in period t for b periods and utilizing it

in period tþ b, is less costly than using a type I vehicle in

period tþ b, for all b such that bpb. Notice that as the

planning horizon is T periods, for a given value of b, it only

makes sense to carry a type II vehicle that becomes

available in periods t¼ 1 to t¼T�b for b periods. For all

such possible values of b and t, the algorithm first considers

the assignment of type II vehicles that become available in

period t to deliveries in period tþ b. Then, if there is still

need for vehicles in any period, it is satisfied through type I

vehicles in Step 3.

Now, let us show that the assignment of type II vehicles

to the deliveries in different periods, which is done in Step 2

of the algorithm, is optimal. In general, type II vehicles

must be used in the most immediate period that a need for

vehicles arises. Keeping a type II vehicle for future use

while there is a need in the current period, would increase

the transportation cost by as much as the holding cost of

the type II vehicle, and hence would not be optimal.

Therefore, the algorithm begins with b¼ 0 to satisfy as

many of the vehicle requirements as possible in each period

through the type II vehicles that become available in that

period. As a result, Step 2(a) and Step 2(d) jointly lead

to xt ¼ min
PN

i¼1 dSi=Ke~sti;At

n o
. If

PN
i¼1 dSi=Ke~stipAt,

then all the vehicle requirements in period t are satisfied

through type II vehicles that become available in period t.

There is no further requirement in period t, which implies

Gt¼ 0, as given by Step 2(b) of the algorithm. The

remaining jt ¼ At �
PN

i¼1 dSi=Ke~sti type II vehicles can

be used in future periods, as given by Step 2(c) of the

algorithm. If
PN

i¼1 dSi=Ke~sti4At, then all the type II

vehicles that become available in period t are used for

the deliveries in period t, therefore, we have jt¼ 0, as given

by Step 2(c). However, there is still need for Gt ¼PN
i¼1 dSi=Ke~sti � At additional vehicles in period t.

After as many of the type II vehicles as possible are

utilized in the period that they become available, the

algorithm considers utilization of type II vehicles one

period after they become available, that is, b¼ 1. Continu-

ing in this manner, Step 2 of the algorithm ends with

considering utilization of type II vehicles b periods after

they become available, that is, b¼ b. After this step, if there

is still a vehicle requirement in any period t (ie, Gt4 0),

then Gt type I vehicles are used. If there are type II vehicles

that are not assigned to the deliveries in any period, they

are unused/released. &

We conducted an extensive numerical analysis to com-

pare the three solution approaches introduced in Section 3.

The results, which are discussed in more detail in Section 6,

show that the total costs of the coordinated solution may

be less than that of the myopic solution by as much as 75%

and less than that of the hierarchical solution by as much

as 58%. Owing to such results derived from the computa-

tional analysis, we conclude that significant savings can be

achieved if the coordinated solution is used instead of the

other two approaches. Furthermore, all three approaches

rely on solving problems that are NP-hard in the strong

sense. Therefore, the myopic solution and the hierarchical

solution do not provide a computational advantage over

the coordinated solution. These results establish a need for

a heuristic that can be used in practice to make production

planning and transportation decisions jointly, as in the

coordinated solution. In the next section, we propose a

meta-heuristic that utilizes the tabu search technique for

this purpose.

5. Tabu search

The myopic and hierarchical solutions are based on our

observation that production planning decisions are made

before transportation decisions in many real-life practices.

In these two approaches, first, the production subproblem

is solved optimally. Then, transportation is arranged to

comply with a production plan that minimizes inventory

holding costs. In the hierarchical solution, the transporta-

tion subproblem is also solved optimally. As both

approaches focus on sequentially minimizing the two cost

components, total costs are not necessarily optimized. The

tabu search heuristic that we propose is also based on the

two subproblems. However, as opposed to the myopic and

hierarchical solutions, the tabu search uses the solutions of

these subproblems simultaneously rather than sequentially,

and aims to minimize total cost rather than individual cost

components.

Recall that the joint production and transportation

planning problem defined in Section 3 requires deter-

mining the following: production amount in each

period, order delivery times and the number of both

types of vehicles to be used for deliveries. If the order

delivery dates are known, the production amounts and

the vehicles used in each period can be determined

optimally using Algorithms I and II, respectively. This

structure of the joint problem enables us to define a

solution by an array of size N, where the ith element
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stores the information regarding the delivery period of

order i. The tabu search begins with an initial seed

solution in which each order’s delivery time is set to

its deadline. At each iteration, a neighbourhood of the

current seed is generated and all solutions in the

neighbourhood are evaluated for their costs. The cost

of a solution is simply the summation of the optimal

objective function values of the two subproblems. The

solution with the least cost in the neighbourhood and

that is not tabu is selected as the new seed, and a new

iteration begins. The search for the best solution

continues until the stopping criterion is met.

The neighbourhood of a seed is generated by changing

the delivery dates of all orders one order at a time, keeping

the delivery dates of the remaining orders as they stand at

that point. In changing the delivery date of order i, we

consider a feasible range of values, that is [Ei,Di]. Ei here

represents the earliest feasible delivery date of order i. Its

value is computed by taking into account the production

capacity over time and the sizes of all orders that must be

completed before Di. Defining dt,i as the total size of all

orders apart from order i that must be completed in or

before period t, we propose the following procedure to

obtain values for Ei for all i:

Algorithm III Computing values for earliest delivery

dates (Ei):

For i¼ 1 to i¼N, do the following:

(a) For t¼ 1 to t¼T, initialize dt,i as dt;i ¼
P

j:jai;Djpt Sj

(b) For t¼T�1 down to T¼ 1, update the value of dt,i
using the following:

dt;i ¼ maxfdtþ1;i � Ptþ1; dt;ig: ð10Þ

(c) Set Ei¼min{t:
P

k¼ 1
t Pk�dt,iXSi}.

To explain why Ei, as found in the above algorithm, is

the earliest delivery date for order i, let us start elaborat-

ing from the last step of the algorithm.
P

k¼ 1
t Pk�dt,i

is the remaining of the total production capacity in

periods 1, . . . , t that can be reserved for order i. IfP
k¼ 1
t Pk�dt,io Si for some period t, then it is not possible

to finish the production of order i before or in period t. If

order i can be delivered before or in period t, then it must

be true that
P

k¼ 1
t Pk�dt,iXSi, and therefore, in order to

determine the earliest delivery date, we choose the smallest

among all such t. The dt,i values for all t are found in the

first and second steps of the algorithm. Initially, dt,i is set toP
j:jai;Djpt Sj, that is, the total size of all orders other than i

with deadlines smaller than or equal to t. Thereafter, dt,i
values are updated by tracing backwards from t¼T�1 to

all periods T�2, . . . , 1. The update is done using Equa-

tion (10). In this equation, if the maximum is given by

dtþ 1,i�Ptþ 1, then, given that only dt,i units are produced

within the first t periods for orders other than i, the

production capacity in period tþ 1 is not enough to make

timely future deliveries. Therefore, the excess requirement

(ie, dtþ 1,i�Ptþ 1�dt,i) also must be satisfied through the

production in the first t periods.

The job of which delivery date has been changed to form

the newly selected seed at each iteration is added to the

tabu list. Therefore, a solution in a neighbourhood is

considered tabu if this solution is constructed by changing

the delivery date of a job on the tabu list. However, we use

the following rule as an aspiration criterion: If the best

solution in the neighbourhood has less cost than that of the

best solution so far, then it is taken as the new seed, even if

it is tabu. In the next section, we present our numerical

experimentation with the three solution approaches and

the tabu search heuristic. As will be discussed in this

section, we use varying tabu lengths for instances with

different order sizes.

6. Computational analysis

We first report the results of a computational analysis to

quantify the savings from the coordinated solution and to

examine how the resulting costs of the three approaches

differ under varying problem parameters. Thereafter, we

present some results from a comparison of the tabu search

heuristic with the coordinated solution, that is, the optimal

solution of the Integrated Model. More specifically, we

seek answers to the following questions:

K How do the inventory holding cost (ie, H) and the

vehicle holding cost (ie, W) affect the outcomes of the

three solution approaches? How do the results change

with varying order sizes?

K How does the availability pattern of the type II vehicles

affect the differences in costs? Here, we consider the

average number of type II vehicles available in each

period during the planning horizon and the degree of

changes in their availability from one period to another.

K What is the impact of production capacity on the out-

comes of the different solutions? How do the results

change at varying levels of the inventory holding cost

and the vehicle holding cost?

K What is the worst case and the average performance of

the tabu search heuristic compared with the coordinated

solution? How do these results change under varying

problem parameters?

As discussed in Section 3, the coordinated solution

leads to the optimal costs and the hierarchical solution

is an improvement over the myopic solution. Therefore,

it is true for any instance that CostmXCosthXCostc.

However, in light of the first three questions above, our

objective is to examine the magnitudes of the differences
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between the cost values under relevant combinations of

parameter settings. With this objective, we define the

following measures for a problem instance:

Dm;h ¼
Costm � Costh

Costm
� 100%;

Dh;c ¼
Costh � Costc

Costh
� 100% and

Dm;c ¼
Costm � Costc

Costm
� 100%:

Note that each of the Dm,h, Dh,c and Dm,c values refers to

the percentage cost improvement of one solution approach

over another. Given that the mathematical models for the

production subproblem and the coordinated solution are

solved optimally, we have Dm,hX0, Dh,cX0 and Dm,cX0.

To test the performance of the heuristic, we consider how

the resulting cost for an instance compares with the lower

bound provided by GAMS. Before we proceed with a

detailed discussion of these results, we first present the

experimental design.

6.1. Experimental design

Considering the questions highlighted at the beginning of

this section, we use the following six parameters as factors

in our experiment: vehicle holding cost (W), inventory

holding cost (H), production capacity, order sizes, average

number of type II vehicles per period and period-to-period

variability of type II vehicles. The length of the production

planning horizon is taken as 1 month, and 1 day is

considered as a period (ie, T¼ 30). We do not take the

length of the planning horizon, vehicle costs and capacities

as factors of analysis, and therefore we keep their values

fixed as T¼ 30, C1¼ 1000, C2¼ 100 and K¼ 100, respec-

tively. In what follows, we describe the factor levels used in

the experimentation and how they are generated.

Vehicle holding cost: We consider five levels for this

factor and generate them around the value of b, which is

the maximum number of periods that holding a vehicle is

justified. It can be observed from Expression (9) that there

exists a unique value of b that corresponds to every value

of W. Furthermore, the hierarchical solution explicitly

utilizes this value. A commonly used value of b by the

industry practice that motivated this study is equal to 4.

Therefore, we take low, medium and high values of b as 2,

4 and 8, respectively. As b is an important parameter for

the purposes of this study, our analysis also considers its

extreme values, which are b¼ 0 and b¼ 32. The values of

W that correspond to the different levels of b are reported

in Table 2.

Inventory holding cost: Five levels of H are generated

around a factor that we refer to as a and define as follows:

a ¼ C1 � C2

H�K

� �
� 1: ð11Þ

In our setting, when an order is ready to be delivered,

there clearly exists a trade-off between delivering it right

away or holding it in the inventory so that a less costly

delivery option available in a future period can be used.

a shows the maximum number of periods that a full

truckload of items can be stocked at the expense of

inventory holding costs but where the savings in transpor-

tation costs exceed these extra costs. Expression (11)

implies that there exists a unique value of a for eachH. We

consider 10, 4, 2, 1 and 0.25 as different levels of H, which

correspond to a values of 0, 2, 4, 8 and 32, respectively.

Production capacity: It is assumed that there are 6

working days followed by a no-production day. Therefore,

there are 26 production periods within the planning

horizon. Although there is no production during the

remaining 4 days, costs are incurred for carrying inven-

tories of items and inventories of vehicles over these

periods. The production capacity over the production

periods is constant. We consider two levels for production

capacity: 1000 units/day and 1500 units/day. As will be

discussed later, we generate the order sizes in such a way

that the sizes of all orders to be produced sum up to 24000

units. This being said, the average load of the system,

defined as total size of all orders/total production capacity, is

approximately 90% in the low production–capacity case

(ie, 24 000/(26� 1000), and is approximately 60% in the

high production–capacity case (ie, 24 000/(26� 1500)).

Order sizes: Three different sets of orders are used in

combination with other factors. All orders in a set have

small, medium or large sizes. An order’s size is determined

by how it compares with the vehicle capacity (ie, K¼ 100)

and with the low level of the daily production capacity (ie,

Pt¼ 1000). Small-sized orders have fewer than 100 items,

medium-sized orders have more than 100 items but fewer

than 1000 items, and large-sized orders have more than

1000 items. The number of items in a small order is taken

as a uniformly distributed random variable between 10 and

100. The number of items in a medium order is generated

from a uniform distribution ranging from 100 to 1000. The

sizes of orders in the third set are generated using a

uniformly distributed random variable between 1000 and

4000. The total number of items over all orders in a set is

kept at 24 000 units. This sum is maintained by reducing

the number of items in the first order that makes the total

size greater than 24000. As a result, for our experiment, the

number of orders in the sets of small, medium and large

orders turns out to be 450, 45 and 10, respectively.

Availability pattern of type II vehicles: The average

number of type II vehicles per period and their period-to-

period variability determine the pattern of type II vehicle

arrivals. These two attributes are taken as the factors of

analysis and two levels are considered for each. The

number of type II vehicles in each period is generated using

a discrete uniform distribution, and the availability pattern

of type II vehicles is controlled using the mean and the
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coefficient of variation (CV) of this random variable. The

average number of type II vehicles per day assumes either a

value of 2.5 vehicles/day or 7.5 vehicles/day. The bounds of

the uniformly distributed random variable corresponding

to the number of type II vehicles per day are chosen in such

a way that the CV is either 0.2 or 0.6. The parameters of

the uniformly distributed random variable used to create

different availability patterns are reported in Table 1. For

example, an average number of 2.5 vehicles/day combined

with 0.2 as the CV represents a case where type II vehicles

are less available but arrive in a steady stream. Similarly,

an average number of 7.5 vehicles/day combined with 0.6 as

the CV represents a case where type II vehicles are more

available in number, but their availability shows more

variability among different days.

The factor levels used in the analysis and described

above in detail are summarized in Table 2. In total, there

are 600 different experimental settings. For each combina-

tion of factor levels, 10 random instances are solved.

6.2. Comparison of the three solution approaches

To compare the three solution approaches, we coded all

the mathematical models discussed in Section 3 using

GAMS version 22.6 (with CPLEX 11.0 as the solver) and

run on a Linux box with 8GBs of physical memory,

running Debian Lenny (5.0.7) on 8 � Intel Xeon E5430

processors at 2.66GHz. Recall from Theorem 1 that the

production subproblem is NP-hard in the strong sense;

therefore, for practical problem sizes, these solutions may

require extensive computational time. Thus, we have

limited the solution time of each model for a problem

instance to 36 000 CPU seconds. The model for the

production subproblem was solved with a less than 0.02%

optimality gap in 5950 out of 6000 instances and the

Integrated Model was solved with a less than 0.11%

optimality gap. For the remaining 50 instances, GAMS

failed to provide a solution because of memory interruption.

For these instances, we modified the GAMS model and

accepted a 0.2% optimality gap as the termination criterion.

6.2.1. The effects of the inventory holding cost and the

vehicle holding cost. In this section, we report our

observations on how the inventory and vehicle holding

costs affect the outcomes of the three solution approaches

and how the results change with varying order sizes. For

this analysis, we look into the averages of Dm,h, Dh,c and

Dm,c over all instances of the same-sized orders. The

results for small, medium and large orders are summar-

ized in Tables 3, 4 and 5, respectively. The values of a and

b change along the rows and columns of these tables. In

each cell, the averages of Dm,h, Dh,c and Dm,c over all

instances with the corresponding a and b values are noted.

For example, the entries in the second row, second

column of Table 3 show that over all instances with small

orders, a¼ 0 and b¼ 0, the averages of Dm,h, Dh,c and Dm,c

amount to 0.00%, 10.58% and 10.58%, respectively.

It can be observed from Tables 3, 4 and 5 that Dm,h¼ 0

when b¼ 0. This result is because the first steps of the

myopic solution and the hierarchical solution are the same,

Table 2 Experimental design

Design parameter Levels

Vehicle holding cost b=(0, 2, 4, 8, 32) or
W=(1000, 400, 200, 100, 25)

Inventory holding cost a=(0, 2, 4, 8, 32) or
H=(10, 4, 2, 1, 0.25)

Production capacity High (1500), Low (1000)
Average # of type II
vehicles per day

Low (2.5), High (7.5)

Variability of the # of
type II vehicles per day

CV=0.2, CV=0.6

Order sizes Low BU(10, 100),
MediumBU(100, 1000),
HighBU(1000, 4000)

Table 3 Average of Dm,h, Dh,c and Dm,c values for
small-sized orders

b=0 b=2 b=4 b=8 b=32

a=0 0.00% 2.21% 3.19% 3.69% 4.06%
10.58% 8.60% 7.73% 7.49% 7.68%
10.58% 10.58% 10.64% 10.86% 11.38%

a=2 0.00% 2.23% 3.18% 3.66% 4.02%
11.28% 9.30% 8.42% 7.97% 7.84%
11.28% 11.28% 11.28% 11.29% 11.49%

a=4 0.00% 2.20% 3.15% 3.63% 3.99%
11.45% 9.50% 8.63% 8.18% 7.87%
11.45% 11.45% 11.45% 11.45% 11.48%

a=8 0.00% 2.20% 3.16% 3.65% 4.01%
11.43% 9.48% 8.60% 8.14% 7.79%
11.43% 11.43% 11.43% 11.43% 11.43%

a=32 0.00% 2.26% 3.25% 3.75% 4.12%
11.52% 9.52% 8.60% 8.13% 7.77%
11.52% 11.52% 11.52% 11.52% 11.52%

Table 1 Parameter settings for arrival patterns of
type II vehicles

Average number
of vehicles per day

Period-to-period variability

CV=0.2 CV=0.6

Low (2.5 vehicles/day) [2, 3] [0, 5]
High (7.5 vehicles/day) [5, 10] [0, 15]
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but the hierarchical solution entails type II vehicles being

carried to future periods as long as the savings justify the

increase in vehicle holding costs. In the case of b¼ 0, it is

less costly to use a type I vehicle in any period rather than

carry a type II vehicle from an earlier period. Therefore,

the hierarchical solution reduces to the myopic solution,

and hence Dm,h¼ 0.

Examining Tables 3, 4 and 5, we observe that the

maximum of the average Dm,h values is 4.12%, 16.77%

and 40.30% for the small, medium and large orders,

respectively. These values are realized when b attains its

highest value. Excluding the values when b¼ 0, the

minimums are 2.20%, 5.91% and 6.90%, and these

values are realized when b¼ 2. Furthermore, the average

Dm,h values increase as b increases in each row of

Tables 3, 4 and 5. This implies that as it becomes less

costly to carry type II vehicles over periods, the

hierarchical solution uses this opportunity to reduce

the costs of the myopic solution, and the potential of

improvement is highest when the order sizes are largest.

The maximum of the average Dh,c values is 11.52%,

25.50% and 9.23% for the small, medium and large orders,

respectively. These values are realized when a attains its

highest value. The minimums are 7.49%, 10.74% and

2.42%, and they coincide with the cases where a¼ 0.

Furthermore, the average Dh,c values increase as a increases
in each row of Tables 4 and 5, and in most rows of Table 3.

This implies that the performance of the hierarchical

solution approaches that of the coordinated solution as the

inventory holding cost rate, H, increases. This result is

because at high values ofH, transportation costs constitute

a lesser portion of total costs, and just by solving the

production subproblem optimally (as in the hierarchical

solution), the most substantial advances in minimizing

total costs can be made. It is worthwhile to note that

Table 3 exhibits some exceptions. For example, average

Dh,c is 9.50% when a¼ 4 and b¼ 2, whereas it is equal to

9.48% when a¼ 8 and b¼ 2. We believe this result is

because of the fact that inventory holding costs constitute a

lesser portion of total costs compared with transportation

costs for small orders. Therefore, average Dh,c is not very

sensitive to changes in a, and hence these exceptions are

not representative of the general behaviour.

Tables 3, 4 and 5 suggest that the maximum of the

average Dm,c values is 11.52%, 26.70% and 44.59% for

small, medium and large orders, respectively. These values

are realized when a and b are at their highest values. The

minimums are 10.58%, 11.20% and 2.70%, and these

values are realized when a and b assume their smallest

values. Furthermore, average Dm,c values are non-decreasing

in b in all order sizes, and increasing in a when orders are

medium or large sized. As seen in Table 3, the values are

predominantly increasing in a when orders are small, but

there are some exceptions. We again attribute this result

to the fact that the amount of inventory held is lower for

small orders, and therefore the behaviour of average Dm,c

with respect to a is not well observed. As a result of these

observations, we conclude that the savings because of

the coordinated solution are in fact significant, and the

percentage savings over the myopic solution increases as

inventory and vehicle holding costs become smaller. Our

reasoning for why Dm,c decreases with an increasing H is

similar to the reason that we propose for why Dh,c

follows the same pattern. Recall that in the myopic

and hierarchical solutions, the production subproblem is

solved optimally. On the other hand, we think Dm,c

Table 4 Average of Dm,h, Dh,c and Dm,c values for
medium-sized orders

b=0 b=2 b=4 b=8 b=32

a=0 0.00% 5.91% 10.42% 13.75% 16.39%
11.20% 10.97% 11.22% 10.93% 10.74%
11.20% 15.97% 20.04% 22.66% 24.94%

a=2 0.00% 6.12% 10.74% 14.13% 16.77%
18.62% 14.96% 13.12% 11.97% 11.51%
18.62% 19.78% 21.88% 23.79% 25.68%

a=4 0.00% 6.20% 10.75% 14.03% 16.54%
22.10% 17.97% 14.83% 12.89% 12.22%
22.10% 22.60% 23.32% 24.41% 26.00%

a=8 0.00% 6.12% 10.74% 14.13% 16.77%
23.78% 19.84% 16.57% 13.57% 12.20%
23.78% 24.25% 24.85% 24.96% 26.25%

a=32 0.00% 6.11% 10.75% 14.02% 16.53%
25.50% 21.53% 18.08% 15.30% 13.07%
25.50% 25.74% 25.91% 26.23% 26.70%

Table 5 Average of Dm,h, Dh,c and Dm,c values for large-sized
orders

b=0 b=2 b=4 b=8 b=32

a=0 0.00% 6.90% 13.51% 18.23% 22.11%
2.70% 2.42% 2.62% 2.85% 3.11%
2.70% 9.07% 15.64% 20.34% 24.22%

a=2 0.00% 9.47% 18.55% 24.88% 30.06%
4.02% 3.66% 4.04% 4.66% 5.58%
4.02% 12.65% 21.60% 27.98% 33.32%

a=4 0.00% 10.92% 21.41% 28.70% 34.62%
5.36% 5.06% 5.35% 5.83% 6.98%
5.36% 15.22% 25.25% 32.32% 38.37%

a=8 0.00% 11.79% 23.12% 31.02% 37.43%
6.74% 6.55% 6.76% 7.08% 8.20%
6.74% 17.28% 27.83% 35.24% 41.61%

a=32 0.00% 12.60% 24.81% 33.37% 40.30%
8.59% 8.54% 8.52% 8.48% 9.23%
8.59% 19.70% 30.57% 38.11% 44.59%
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decreases with an increasing vehicle holding cost for the

following reason: In this case, carrying type II vehicles over

periods becomes cost-ineffective, and the coordinated

solution approaches an output where no vehicles are

carried over periods and type I vehicles are used only if

they are needed in addition to the number of type II

vehicles that become available in a period. Notice that this

is basically the output of the myopic solution for the

transportation subproblem.

6.2.2. The effects of the availability pattern of type II

vehicles. In this section, we discuss the results of our

computational study within the context of the second

objective, that is, to determine how the availability

pattern of type II vehicles affects cost differences. For

this purpose, we look into the averages of Dm,h, Dh,c and

Dm,c over all instances with the same arrival pattern.

Recall that the arrival pattern of type II vehicles is

identified by two attributes, the mean and the variability

of the number of type II vehicles per day. The results for

four different availability patterns are summarized in

Table 6. The values of the two attributes change along

the rows and columns of these tables. In each cell, the

averages of Dm,h, Dh,c and Dm,c over all instances with the

same availability pattern of type II vehicles are noted.

It can be observed from Table 6 that percentage

improvements of both the hierarchical solution and the

coordinated solution over the myopic solution, as repre-

sented by Dm,h and Dm,c, respectively, increase with an

increase in the average number of type II vehicles available.

This result implies that the value of coordination is higher

when the opportunity of savings because of effective

utilization of the different transportation options is higher.

Observe also that Dh,c¼ 2.02% when CV¼ 0.2, and

Dh,c¼ 2.97% when CV¼ 0.6. This suggests that although

the opportunity of savings is limited at low levels of the

average number of type II vehicles per day, the hierarchical

solution performs almost as well as the coordinated

solution in capturing this opportunity. When the results

in Table 6 are examined for the variability in number of

type II vehicle arrivals, we observe that the value of

coordination becomes higher as the dispersion increases.

In addition, the discrepancy between the performances of

the coordinated solution and the hierarchical solution

grows with increased variability.

6.2.3. Effects of production capacity. To determine the

effects of production capacity on the performance of the

three solution approaches, we investigate how the

averages of Dm,h, Dh,c and Dm,c change at different

production levels. The results are summarized in Table 7.

Recall that we consider average Dm,h as a measure to

quantify the savings that can be achieved by optimal usage

of transportation availabilities when production and

transportation decisions are made sequentially. Table 7

shows that when production capacity is increased from its

low level to its high level, Dm,h decreases slightly, implying

that a less-stringent constraint on production capacity does

not particularly improve the hierarchical solution’s trans-

portation decisions. This is because the production capa-

city has a foremost impact on the production subproblem

and an increasing production capacity helps reduce inven-

tory holding costs in both the myopic and the hierarchical

solutions; however, depending on the time-varying avail-

ability of type II vehicles, a different output of the pro-

duction subproblem because of changes in production

capacity may either decrease or increase transportation

costs for both solutions. On the other hand, Dh,c and Dm,c

increase significantly at the high level of the production

capacity. This result shows that integrating production and

transportation decisions helps take better advantage of

resources (in particular, increased production capacity) to

decrease total cost.

6.2.4. Performance of the tabu search heuristic. In light of

the fourth question of interest, we test the performance of

the heuristic with respect to the coordinated solution

using the 6000 instances described in Section 6.1. As the

Integrated Model for obtaining the coordinated solution

cannot be solved optimally for all instances, we compare

the cost of the heuristic solution with the lower bound

Table 6 Average of Dm,h, Dh,c and Dm,c values under different
arrival patterns of type II vehicles

Average # of vehicles/day Day-to-day variability

CV¼ 0.2 CV¼ 0.6

Low (2.5 vehicles/day) 4.26% 4.81%
2.02% 2.97%
6.23% 7.68%

High (7.5 vehicles/day) 14.90% 16.38%
15.38% 19.46%
28.40% 33.12%

Table 7 Average of Dm,h, Dh,c and Dm,c values at varying levels
of production capacity

Production capacity

Low (%) High (%)

10.51 9.66
4.59 15.33
14.64 23.07
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provided by GAMS. In obtaining heuristic solutions for

instances with low, medium and high order sizes, we set

the tabu length as 200, 25 and 7, respectively. We also use

the following scheme for terminating the search: If the

algorithm fails to improve the best solution for 2000

consecutive iterations, the seed is replaced with the best

solution so far, but the tabu list is not changed. The

algorithm is terminated if this happens 100 times or if the

total search time exceeds 60 CPUs.

As a result of our experimentation, we observed that the

tabu search performs quite well in general. In more than

37% of the instances (2256 out of 6000), the tabu search

terminated with an optimal solution. In approximately

90% of the instances (5421 out of 6000), the deviation

between the cost of the heuristic solution and the lower

bound was as much as 1% of the lower bound, and in

approximately 99.7% of the instances (5983 out of 6000),

the deviation was at most 5% of the lower bound. The

average and the maximum percentage deviations were

0.31% and 10.13%, respectively. The maximum deviation

was realized at an instance where the vehicle holding cost

is high (ie, b¼ 0), the inventory holding cost is high

(ie, a¼ 0), production capacity is low, orders are of

medium size and the number of type II vehicles per day

is high on average but shows variability among different

days. In fact, after a detailed analysis of the results, we

observe that only two of the parameters have an impact

worth noting on the performance of the heuristic: order

size and variability in the number of type II vehicles. As

Table 8 shows, the average deviation of the heuristic from

the lower bounds is most when orders are of medium size,

and the mean and the variability of the number of type II

vehicles are high. Recall that the proposed tabu search is

based on optimally solving the production and transporta-

tion subproblems for different delivery dates of orders at

consecutive iterations. Although the maximum average

percentage deviation (ie, 1.62%) is still very small, the

reason why this value occurs on medium-size orders and

with high mean and variability of the number of type II

vehicles, may be because of the mechanism of the tabu

search. More specifically, when the orders are of extreme

sizes (either small or large), there are few alternative

combinations of delivery dates and it is more likely that

the true combination is considered within the tabu

search. However, if the orders are of medium size, there

may be many combinations of delivery dates and the

impact of a suboptimal combination may be amplified

when the number of type II vehicles has high mean and

variability.

7. Extensions and conclusions

In this paper, we studied a manufacturer’s joint produc-

tion and transportation planning problem, specifically, to

schedule orders with deadlines to minimize the sum of

inventory holding and outbound transportation costs

without allowing any tardiness. An important character-

istic of the problem setting is that there are two vehicle

types; one of unlimited availability but high cost, and the

other of limited and time-varying availability but lower

cost. As Chen (2010) reports, there are few papers on

integrated production and outbound scheduling that con-

sider heterogenous vehicles. In all these papers, hetero-

geneity is due to differences in delivery speed and cost. One

contribution of our study is that we model the existence of

heterogenous vehicles that differ in their time-varying

availability and cost. As companies are increasingly relying

on the services of multiple carriers to outsource their

freight, we believe modelling this type of vehicle hetero-

geneity will find many applications and is also worthy of

investigation in other problems settings.

Motivated by our observations from several industry

practices, we have presented three approaches to solve the

manufacturer’s production and transportation planning

problem in our setting: the myopic solution, the hierar-

chical solution and the coordinated solution. These

approaches rely on solving two underlying subproblems

(production and transportation), which were identified and

mathematically formulated in the paper. The myopic

solution and the hierarchical solution are based on solving

the production subproblem first, followed by the transpor-

tation subproblem. Their difference is that, given the

production decisions, the transportation subproblem is

solved optimally in the hierarchical solution. The coordi-

nated solution, on the other hand, aims to minimize total

cost by making all related decisions in an integrated manner.

The problem of making production and transportation

decisions in an integrated manner, however, as in the

Table 8 Average percentage deviation of the heuristic from the lower bounds, under different arrival patterns of type II vehicles and
order sizes

Average # of vehicles/day Small-sized orders Medium-sized orders Large-sized orders
Day-to-day variability Day-to-day variability Day-to-day variability

CV=0.2 CV=0.6 CV=0.2 CV=0.6 CV=0.2 CV=0.6

Low (%) 0.03 0.07 0.08 0.11 0.04 0.05
High (%) 0.22 0.32 0.94 1.62 0.15 0.15
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coordinated solution, is NP-hard in the strong sense. We

show that the production subproblem has similar complex-

ity. However, given the order delivery dates, we provide

polynomial algorithms for solving the two subproblems.

On the basis of these algorithms, we propose a tabu search

heuristic for minimizing the total cost. The results of an

extensive numerical analysis reveal that the heuristic takes

less than a minute to find a solution, which deviates from

the lower bound by at most 10.13% and by 0.31% on the

average.

We also numerically compare the three solution

approaches and provide several insights about how they

differ under varying problem parameters. Recall that the

myopic and the hierarchical solutions use the same input

(the optimal solution of the production subproblem);

however, the hierarchical solution explicitly considers the

transportation availabilities to optimize the shipment costs.

On the other hand, in the myopic solution, transportation

decisions are made in a short-sighted manner, often with

the sole objective of complying with an optimal production

plan. Therefore, a detailed comparison of these two

solution approaches helps us quantify the savings that can

be achieved by explicit consideration of transportation costs

and availabilities. In fact, our numerical results reveal

that the maximum savings could amount to 71% compared

with the cost of the myopic solution. On the average,

the percentage cost improvement due to the hierarchical

solution over the myopic solution is 10.08%. A similar

comparison between the hierarchical and coordinated

solutions provides useful insights about the value of

integrating transportation and production planning deci-

sions; doing so can decrease total cost by as much as 58%

compared with the cost of the hierarchical solution. The

average percentage cost improvement because of the

coordinated solution over the hierarchical solution is

9.97%. Finally, comparing the myopic and coordinated

solutions highlights the impact of optimally making

transportation and production planning decisions and in

an integrated manner. The maximum savings in this case

can amount to 75% of the costs that occur when trans-

portation planning is made non-optimally and following

production decisions, that is, using the myopic solution. On

the average, the percentage cost improvement due to the

coordinated solution over the myopic solution is 18.9%.

As a result of our numerical experimentation, we also

arrive at several findings related to the questions highlighted

at the beginning of Section 6. These findings, discussed in

detail in the same section, suggest overall that the myopic

solution performs close to the hierarchical solution as the

type II-vehicle holding cost increases, and that the value of

integration is particularly high when orders have large sizes,

inventory and vehicle holding costs are low and the

availability of the lower-cost vehicle shows high variability.

In our study, we considered a scenario in which different

orders cannot be consolidated in the same vehicle and

orders cannot be shipped in partial deliveries over

time. Several extensions of this study can be developed

considering different delivery characteristics. We would

like to note that our analysis can easily be extended to allow

for consolidation by slightly modifying Expression (4) of

the Integrated Model and the second constraint of the

transportation subproblem.

References

Bard JF and Nananukul N (2009). The integrated production-
inventory-distribution-routing problem. Journal of Scheduling
12(3): 257–280.

Bard JF and Nananukul N (2010). A branch-and-price algorithm
for an integrated production and inventory routing problem.
Computers & Operations Research 37(12): 2202–2217.

Chandra P and Fisher ML (1994). Coordination of production and
distribution planning. European Journal of Operational Research
72(3): 503–517.

Chang Y-C and Lee C-Y (2004). Machine scheduling with job
delivery coordination. European Journal of Operational Research
158(2): 470–487.

Chen B and Lee C-Y (2008). Logistics scheduling with batching and
transportation. European Journal of Operational Research 189(3):
871–876.

Chen Z-L (2010). Integrated production and outbound distribu-
tion scheduling: Review and extensions. Operations Research
58(1): 130–148.

Chen Z-L and Pundoor G (2006). Order assignment and scheduling
in a supply chain. Operations Research 54(3): 555–572.

Chen Z-L and Vairaktarakis GL (2005). Integrated scheduling of
production and distribution operations. Management Science
51(4): 614–628.

Dawande M, Geismar HN, Hall NG and Sriskandarajah C (2006).
Supply chain scheduling: Distribution systems. Production and
Operations Management 15(2): 243–261.

Geismar HN, Laporte G, Lei L and Sriskandarajah C (2008). The
integrated production and transportation scheduling problem for
a product with a short lifespan. INFORMS Journal on
Computing 20(1): 21–33.

Geismar HN, Dawande M and Sriskandarajah C (2011). Pool-
point distribution of zero-inventory products. Production and
Operations Management 20(5): 737–753.

Hall NG and Potts CN (2003). Supply chain scheduling: Batching
and delivery. Operations Research 51(4): 566–584.
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