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In a centrally managed system, inventory at a retailer can be transshipped to a stocked-out retailer to
meet demand. As the inventory at the former retailer may be demanded by future customers of that
retailer and transshipment time/cost is non-negligible, it can be more profitable to not transship in some
situations. When unsatisfied demand is backordered, reassignment of inventory to a previously
backordered demand can perhaps become profitable as demand uncertainty resolves over time. Despite
this intuition, we prove that no reassignments are necessary for cost optimality under periodic holding
cost accounting in a two-retailer system. This remains valid for multi-retailer systems according
to numerical analyses. When holding costs are accounted for only at the end of each replenishment
cycle, reassignments are necessary for optimality but insignificant in reducing the total cost. In most
instances tested, the decrease in total cost from reassignments is below 2% for end of cycle holding
cost accounting. These results simplify transshipment policies and facilitate finding good policies in
both implementation and future studies, as reassignments can be omitted from consideration in
optimization models under periodic holding cost accounting and in approximation models under cyclical
cost accounting.
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1. Introduction

Inventory sharing is an inventory pooling strategy where

a retailer with available inventory shares units with a

stocked-out retailer. Although inventories need not be

physically pooled in an inventory sharing system, inventory

costs can be decreased as in physical pooling. Besides

retailers sharing inventory to satisfy end-customer demand,

also distributors, warehouses, or manufacturers can share

inventory to satisfy downstream demand. These contexts

can be formulated as inventory sharing among retailers,

which is the focus of this study wlog (without loss of

generality).

A common method of inventory sharing is transshipping

that happens in various forms in practice. Inventory can be

transshipped in individual units upon a single demand

realization or in small lots after a certain amount of unmet

demand accumulation. Decisions can be centrally or

independently managed by retailers. Most of these

scenarios are investigated in the literature to a certain

level. When future demand is uncertain at the time of

transshipment, retailers can sometimes prefer to share only

a part (partial pooling) or none (no pooling) of their

available inventory. Archibald et al (1997), Zhao et al

(2008), and Çömez et al (2012a) obtain optimal partial

pooling policies in centrally managed systems. Zhao et al

(2006) and Çömez et al (2012b) develop policies for

independent retailers.

In a centrally managed system, a transshipment request

can be accepted or rejected by an inventory manager (IM).

Expecting a high amount of future demand at a retailer,

the IM can reject a transshipment request today to guard

inventory at that retailer for later. When a transshipment

request is rejected, the unsatisfied demand can be back-

ordered and recorded in a customer database (including

name, contact information, date, and backorder status).

The retailer with inventory may discover a few days later

that demand realization is less than expected and a high

amount of leftover inventory is likely. Then the IM could

revisit the denied transshipment request because trans-

shipping at this time to meet the backordered demand

in the database can decrease both inventory holding

and backorder costs. Sharing a unit of inventory to satisfy

a backordered demand (without a replenishment from a

supplier) is called inventory reassignment. The term trans-

shipment is reserved for sharing inventory to satisfy a

new demand. Previous models do not distinguish between
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transshipments and reassignments as either reassignments

are not relevant in lost sales models or backordered

demands are assumed to be satisfied by only supplier

replenishments. However, reassignments can be profitable

and sometimes necessary for optimality.

Despite having sophisticated information and logistics

infrastructure and because of lacking (near-)optimal

policies, many IMs in practice opt for simple but sub-

optimal decision rules, that is, always accept or reject

a (transshipment or reassignment) request. With a high

number of backorders, backorder costs increase, as well as

the psychological pressure from customer complaints. In

order to maintain a reputable customer service, some

IMs may be more likely to transship when there are more

backorders. However, a transshipment policy that depends

on the number of backorders is not very practical for an

IM as it requires tracking the number of backorders at

each retailer and a backordered customer database to

contact each customer separately when a reassignment is

initiated. On the other hand, it may be unfair to transship

for a new customer while an existing customer is waiting

for his demand to be satisfied. Such an unfair practice can

damage the reputation of a retailer among customers. We

aim to improve these practices by deriving optimal and fair

policies, and pointing out when a cost-minimizing IM

should consider reassignments and/or backorders. Since

accepting a reassignment could be a profitable option, we

explicitly consider both transshipments and reassignments

to assess the possible benefit of reassignments under

periodic or cyclic holding cost accounting. Our results

can help researchers and managers assess the value of

reassignments in different contexts.

We analytically study two centrally managed retailers

selling the same product for the same price. Retailer

inventories are replenished at the beginning of each

replenishment cycle. A cycle is divided into shorter time

intervals, called periods. For example, if a cycle is 22 eight-

hour working days in a month and a period is 4 h, there are

44 periods in each month-long cycle. In each period,

a retailer may satisfy the demand from a customer arriving

to his individual location directly from stock, if available.

If a retailer is out-of-stock and a customer demand occurs,

then the stocked-out retailer makes a transshipment

request. If the request is accepted, the unit is transshipped

in a positive transshipment time at a non-zero transporta-

tion cost and the customer demand at the stocked-out

retailer is satisfied. If not, the demand is backordered at

the requesting retailer. For each period, a retailer incurs

a backorder cost per demand backordered and a holding

cost per unit of on-hand inventory. Holding cost account-

ing can be periodic (Çömez et al, 2012a) where the cost is

assessed against the current on-hand inventory in each

period or it can be cyclic (Archibald et al, 1997) when

assessed against the leftover inventory at the end of a

replenishment cycle.

This paper studies optimal transshipment and reassign-

ment policies to answer three questions.

1. Do transshipment and/or reassignment decisions

depend on the number of outstanding backorders?

2. Can reassignments, in addition to optimal transship-

ments, reduce the cost of the system?

3. How can policy computation and implementation be

simplified by answering the questions above?

Under periodic holding cost accounting, the answers to

the first two questions are both ‘no’. In addition, we prove

that once a retailer backorders a demand, then he should

not transship for any of the newly arriving customers for

the rest of the replenishment cycle. Without reassignments

under periodic holding cost accounting, transshipments

can be optimally determined with only the available inven-

tory information in the current period. Thus, information

on outstanding backorders is not needed for optimal

inventory sharing. This significantly simplifies the state

space of the system for computations. We show that the

IM can compute a single critical number for each period

and each retailer to manage the retailer system with

optimal transshipments. Once these numbers are commu-

nicated to retailers as transshipment guidelines, the IM can

delegate transshipment decisions to retailers. These results

simplify implementation of the optimal transshipment

policy.

We investigate how our results change with multiple

(42) retailers and cyclic holding cost accounting. Our

numerical analysis shows that reassignments remain

unnecessary to minimize costs in the case of multiple

retailers periodically accounting for holding costs. Under

cyclic holding cost accounting, reassignments are surpris-

ingly necessary for optimality, even for two retailers. The

cost reduction that can be achieved with reassignments is

not significant for reasonable system parameters. There-

fore, a no-reassignment policy might be used as an effective

heuristic for a retailer system with cyclic holding cost

accounting and multiple retailers.

The literature review is in Section 2. In Section 3, the

optimal transshipment policy is obtained and the unne-

cessity of reassignments for optimality is proved for

periodic holding cost accounting. Holding cost account-

ing is cyclic in Section 4 and the resulting changes in

transshipment policy are discussed. Section 5 has numerical

analyses and Section 6 concludes the paper. All proofs are

in the appendix.

2. Literature review

The literature mostly allows transshipments once at the end

of a replenishment cycle, after all demand realizations.

This makes replenishments as frequent as transshipments,
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which can be called cyclic transshipments. Replenishments

in our model are much less frequent than transshipments,

that is (cyclic), replenishments are at the beginning of each

cycle, while (periodic) transshipments are considered in

each period during a cycle. In Tagaras and Cohen (1992),

Anupindi et al (2001), Rudi et al (2001), Hu et al (2007),

and Zhao and Atkins (2009), at the beginning of a cycle,

a replenishment from the manufacturer arrives. Demand

realized during the cycle is satisfied from stock as long as

there is enough stock. At the end of the cycle, if there

is some demand that could not be satisfied from stock

at some retailers and some unused inventory at other

retailers, transshipments take place between retailers. As all

transshipments are done after all demand is realized, there

is no demand uncertainty in the cycle when transshipments

take place. If there is some demand that is not satisfied

after transshipments, it is backordered and filled by

replenishments in the subsequent cycle. Reassignments

(transshipments for backordered demand) or periodic

transshipments are not considered in these studies.

In the studies described above, a complete pooling

policy, where all on-hand inventory is available for trans-

shipment, is used. In some problem settings, it can be more

profitable to use a partial pooling policy, where only some

part of on-hand inventory is used for transshipment, as in

Granot and Sos̆ić (2003) and Sos̆ić (2006). These studies

consider a single cycle, where transshipments are done after

all demand is realized at all retailers. In these studies, there

is no opportunity for reassignments as all transshipments

are done at the end of the single cycle.

Some literature allows for transshipments after indivi-

dual demand arrivals. Grahovac and Chakravarty (2001)

and Kukreja et al (2001) formulate one-for-one replenish-

ments so the frequency of replenishments and transship-

ments can be equal. If a transshipment is not available,

an order to satisfy the demand is given to the distributor.

Demand is backordered until this replenishment order

arrives, that is, reassignment is not considered for any

outstanding backorder.

Archibald et al (1997, 2010) allow multiple transship-

ments per cycle, for two-retailer and many-retailer systems,

respectively. They model an emergency order instead of

backordering when a transshipment is not available or

profitable to use. Without backorder in these models,

reassignment is not an option. In C¸ömez et al (2012a), all

unsatisfied demand is backordered until the next replen-

ishment.

Zhao et al (2005) model an (S,K) policy for decentra-

lized retailers, where S is the order-up-to level and K is the

threshold inventory level above which a transshipment

request is accepted. A retailer can reject a transshipment

request initially but will ship a unit to the stocked-

out retailer when a replenishment order arrives. This is

not inventory reassignment as a unit is shipped after a

replenishment from a supplier.

With a long-run average cost objective, in addition to

transshipments, Zhao et al (2008) consider replenishments,

where the replenishment lead time is an exponential random

variable. A decision epoch is either at a new demand or a

replenishment arrival. Zhao et al show that the transship-

ment request from retailer i to retailer j is rejected if and

only if xipKi(xj�1), where xi and xj are inventory levels.

The argument of the threshold function Ki( � ) is the

inventory (if negative, backorder) level at the stocked-out

retailer j except for the �1 term. So a transshipment

decision depends on the backorder level at the stocked-out

retailer. The model in Zhao et al considers transshipping to

meet backorders when a replenishment arrives. So there is

no consideration of reassignments. Our model differs from

Zhao et al (2008). First, our discrete-time model allows

reassignments in each period. Second, time between

replenishments is constant in our model and random in

Zhao et al. Thus, after considering reassignments, we can

study monotonicity properties in the deterministic number

of remaining periods until the next replenishment to prove

unnecessity of reassignments in the optimal policy under

periodic holding cost accounting.

3. Optimal transshipments and reassignments under

periodic holding cost accounting

This section studies a model of two retailers, in which the

cost of holding inventory is calculated periodically during

a replenishment cycle. The optimal costs incurred during a

cycle are computed with a dynamic program in Section 3.1.

In Section 3.2, optimal transshipment and reassignment

policies are obtained.

3.1. Formulation

A system of two retailers, whose replenishment, transship-

ment, and reassignment decisions are managed by a central

IM, is studied. Retailer inventories are replenished at the

beginning of each replenishment cycle. A discrete time

model is developed by dividing each cycle into N short

decision periods. The periods are short enough so that at

most one unit of demand is realized in each period, either

at retailer 1 with probability p1 or at retailer 2 with

probability p2 or at neither with probability 1�p1�p2,
where p1þ p2p1. Notation is summarized in Table 1. AsN

increases by a factor and p1 and p2 decrease by the same

factor, the demands converge to independent Poisson

processes with means Np1 and Np2. For correlated demand

models, see Çömez et al (2010). Discrete time models are

common (Lee and Hersh 1993; Talluri and van Ryzin,

2004; Iravani et al, 2007) and facilitate the analysis of the

IM’s responses to an individual demand and a transship-

ment request.
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The number of decision periods remaining in a cycle

until the next replenishment is n, 0pnpN. In period n, a

retailer with available on-hand inventory satisfies his

customer0s demand, if any. If the retailer has no inventory

to satisfy his demand, he sends a transshipment request to

the other retailer. The requesting retailer (he) requests a

transshipment from the requested retailer (she). The

requested retailer, depending on the IM’s instruction,

either accepts or rejects the request. If she accepts the

request, the unit is transshipped and during the transship-

ment lead time T, a transportation cost K is incurred.

During the transshipment lead time, the unit is owned by

the IM and the customer waits to receive the unit. Thus, a

backorder cost bT and a holding cost h0T are incurred by

the IM, where b is the backorder cost per unit per period

and h0 is the in-transit holding cost per unit per period.

Because of positive transshipment costs and expectations

on future demand at the requested retailer, the IM may

advise the requested retailer to reject the request. Then the

demand is backordered at the requesting retailer. For every

backorder, the IM incurs a cost of b per unit per period.

Also, for available on-hand inventory at retailers 1 and 2,

holding costs h1 and h2, respectively, are incurred per unit

per period. So holding cost accounting is periodic in this

section.

A rejected transshipment request becomes a backorder

at a retailer and remains so until either a unit is reassigned

from the other retailer or replenishments arrive at the end

of the cycle. If a unit is reassigned to the stocked-out

retailer, it arrives at the stocked-out retailer in T periods.

Then the number of backorders at the stocked-out retailer

and the inventory level at the other retailer both decrease

by one. The reassignment cost of a unit is K0:¼
T(bþ h0)þK, which is the total cost of a unit shipped

between retailers.

To obtain the optimal cost over a cycle, two value

functions Vn and Yn are defined in every period n. Let

Vn(x1,x2) be the minimum expected cost over the remain-

ing n periods with current inventory levels x1 and x2, at

retailers 1 and 2, respectively. Vn is the sum of the cost of

transshipment in period n, if any, and Yn. Yn (x1,x2) is the

minimum expected cost including the cost of reassignment

in period n, plus the holding and backorder costs in period

n, as well as all costs incurred in periods n�1, n�2, . . . ,1.
Vn and Yn are value functions of a two-stage dynamic

program in period n. The first stage deals with transship-

ment and the second stage deals with reassignment. Scopes

of functions Vn and Yn are illustrated in Figure 1.

In period n, if a retailer receives a demand and has on-

hand inventory, the demand is satisfied from the stock.

Otherwise, if the other retailer has on-hand inventory, a

transshipment decision is made, so that either a transship-

ment to satisfy the demand is sent or the demand is

backordered. When both retailers are out-of-stock, any

received demand is backordered. The Vn in each of these

situations are defined as follows. Inventory levels x1, x2 are

integers.

Vnðx1; x2Þ ¼ p1Ynðx1 � 1; x2Þ þ ð1� p1� p2ÞYnðx1; x2Þ
þ p2 min Ynðx1; x2 � 1Þ;K 0 þ Ynðx1 � 1; x2Þf g;
x1X1; x2p0: ð1Þ

Vnðx1; x2Þ ¼ p2Ynðx1; x2 � 1Þ þ ð1� p1� p2ÞYnðx1; x2Þ
þ p1 min Ynðx1 � 1; x2Þ;K 0 þ Ynðx1; x2 � 1Þf g;
x1p0; x2X1: ð2Þ

Vnðx1; x2Þ ¼ p1Ynðx1 � 1; x2Þ þ p2Ynðx1; x2 � 1Þ
þ ð1� p1 � p2ÞYnðx1; x2Þ;
x1; x2p0 or x1; x2X1: ð3Þ

Table 1 Notation

Parameters n Number of remaining periods
until the next replenishment

N Number of periods in a
replenishment cycle

pi Probability of a customer demand
at retailer i in a period

T Transshipment time between the
retailers

b Backorder cost per unit per period
hi Holding cost per unit per period at

retailer i
h0 Holding cost per unit per period

during a transshipment
K Transportation cost per unit

transshipped
K0 Transshipment cost per unit

transshipped, K0:=KþT(bþ h0)

Variables xi Inventory level at retailer i at the
beginning of a period

Cost Functions Vn (x1,x2) Minimum expected total cost for
the remaining n periods

Yn (x1,x2) Minimum expected total cost for
the remaining n�1 periods plus
the reassignment, holding, and
backorder costs in period n

Demand
realization Transshipment

decision
Reassignment

decision Charge holding and
Backorder costs

Costs within the region incorporated inVn

Period n-1Period n+1

Period n

Costs within the region incorporated in Yn

Figure 1 Scopes of functions Vn and Yn in modelling expected
costs.
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V0ðx1; x2Þ ¼ 0; for all x1; x2: ð4Þ

At the end of a replenishment cycle, the remaining

inventories and backorders are carried to the next replen-

ishment cycle to be used and satisfied, respectively.

In this paper, transshipments are considered only after

stock-outs, following common practice and literature.

Studies allowing transshipment before a stock-out such

as Zhao et al (2006) and Grahovac and Chakravarty (2001)

illustrated little need for such transshipments through

numerical analyses, while Zhao et al (2008) restricted

transshipments only to stock-out cases.

In period n, if there is a demand arrival, first the decision

to satisfy this demand is made, either directly from stock or

by using a transshipment. Then if there is an outstanding

backorder, a reassignment decision, whether (or not) to

transship one unit to satisfy one outstanding backorder, is

made. Yn includes the (possible) cost of reassignment, if

any, holding and backorder costs incurred in period n, and

also the costs for the periods remaining until the next

replenishment. Thus Yn depends on whether or not there is

any backorder. For nX1,

Ynðx1; x2Þ ¼ min Vn�1ðx1; x2Þ þ bð�x2Þ þ h1x1;f
K 0 þ Vn�1ðx1 � 1;x2 þ 1Þ
þbð�x2 � 1Þ þ h1ðx1 � 1Þg;

x1X1; x2p� 1: ð5Þ

Ynðx1; x2Þ ¼ min Vn�1ðx1; x2Þ þ bð�x1Þ þ h2x2;f
K 0 þ Vn�1ðx1 þ 1; x2 � 1Þ
þbð�x1 � 1Þ þ h2ðx2 � 1Þg;

x1p� 1; x2X1:

Ynðx1; x2Þ ¼ Vn�1ðx1; x2Þ þ h1x1 þ h2x2; x1; x2X0: ð6Þ

Ynðx1; x2Þ ¼ Vn�1ðx1; x2Þ þ bð�x1 � x2Þ; x1; x2p0: ð7Þ

During a cycle, either retailer 1 or retailer 2 or neither

may stock-out. Transshipment and reassignment decisions

are needed when one of the retailers is stocked-out, while

the other retailer has inventory. To study transshipment

and reassignment decisions, wlog, the case when retailer 2

is stocked-out and retailer 1 has inventory is examined.

Thus the transshipment and reassignment policies of

retailer 1 are studied in the remainder of the paper. When

main results are stated as theorems, they are generalized to

both retailers.

3.2. Optimal transshipments and reassignments

To study transshipment and reassignment decisions, two

cost differences are defined when retailer 2 is stocked-out.

For x2p0, dn(x1,x2)¼Yn(x1�1,x2)�Yn(x1,x2�1) for nX1

and gn(x1,x2)¼Vn(x1�1,x2)�Vn(x1,x2�1) for nX0. dn
and gn can be computed recursively as shown in (8)–(13).

These recursive equations are used subsequently to

optimize transshipment and reassignment decisions. dn
can be obtained from gn�1 for nX1.

dnðx1; x2Þ ¼ gn�1ðx1; x2Þ � b� h1

þmin bþ h1;K
0 þ gn�1ðx1 � 1; x2 þ 1Þf g

�min bþ h1;K
0 þ gn�1ðx1; x2Þf g;

x1X2; x2p� 1: ð8Þ

dnðx1; x2Þ ¼ gn�1ðx1; x2Þ �min bþ h1;K
0 þ gn�1ðx1;x2Þf g;

x1X1; x2 ¼ 0 or x1 ¼ 1; x2p� 1: ð9Þ

dnðx1; x2Þ ¼ gn�1ðx1; x2Þ; x1; x2p0: ð10Þ

Equations (8) and (10) are obtained from, respectively,

(5) and (7). Equation (9) is obtained from (5), (6), and (7).

For n¼ 1, we have gn�1¼ g0 and g0(x1,x2)¼ 0 for all x1, x2
from (4). For nX2, gn is obtained from dn.

gnðx1;x2Þ ¼ p1dnðx1 � 1; x2Þ þ ð1� p1 � p2Þdnðx1; x2Þ

þ p2 dnðx1; x2 � 1Þ þmin 0;K 0 þ dnðx1 � 1;x2Þf g½

�min 0;K 0 þ dnðx1;x2 � 1Þf g�;

x1X2;x2p0: ð11Þ

gnðx1; x2Þ ¼ p1dnð0; x2Þ þ ð1� p1 � p2Þdnð1; x2Þ

þ p2 dnð1; x2 � 1Þ �min 0;K 0 þ dnð1; x2 � 1Þf g½ �;

x1 ¼ 1; x2p0: ð12Þ

gnðx1; x2Þ ¼ p1dnðx1 � 1; x2Þ þ p2dnðx1; x2 � 1Þ

þ ð1� p1 � p2Þ dnðx1; x2Þ; x1;x2p0: ð13Þ

Equations (11) and (13) are obtained from, respectively,

(1) and (3). Equation (12) is obtained from (1) and (3).

Transshipment and reassignment decisions can be

expressed in terms of dn and gn. From (1), when retailers

have x1X1 and x2p0 in period n, a unit is transshipped

from retailer 1 to retailer 2 to satisfy a new demand at

retailer 2 if and only if

dnðx1; x2Þp� K 0: ð14Þ

From (5), when retailers have x1X1 and x2p�1 in

period n, a unit is reassigned from retailer 1 to retailer 2 if

and only if

gn�1ðx1; x2 þ 1Þpbþ h1 � K 0: ð15Þ

The similarity of the transshipment and reassignment

conditions in (14)–(15) hint that transshipment and

reassignment policies may be similar. Before studying this

N Çömez et al—Optimal transshipments and reassignments 1521



similarity, some monotonicity results are provided in

inventory and over time by Lemma 1.

Lemma 1 For nX1, x1X1, and x2p0,

(i) dn(x1,x2) is non-increasing in x1: dn(x1,x2)pdn (x1�1,
x2),

(ii) gn(x1, x2) is non-increasing in x1: gn(x1, x2)p
gn(x1�1, x2),

(iii) dn(x1, x2) is non-increasing in n: dnþ 1(x1, x2)p
dn(x1, x2), and

(iv) gn(x1, x2) is non-increasing in n: gnþ 1(x1, x2)p
gn(x1, x2).

A transshipment request made by retailer 2 to retailer 1

is accepted in period n with inventory levels (x1,x2), if con-

dition (14) holds. The right-hand side of (14) is constant.

The left-hand side is non-increasing in x1 by Lemma 1(i).

Given two inventory levels x1 and x1
0, x1

0
Xx1, if the

transshipment request is accepted with inventory level x1, it

must also be accepted with inventory x1
0. If the transship-

ment request is rejected with inventory x1, it must also be

rejected with inventory x1
00, for x1

00px1. Thus Lemma 1(i)

leads to the existence of an optimal transshipment policy

based on holdback (inventory threshold) levels.

Similarly, a reassignment is made from retailer 1 to

retailer 2 in period n with inventory levels (x1,x2) if condi-

tion (15) is satisfied, in which the left-hand side is shown to be

non-increasing in x1 by Lemma 1(ii) and the right-hand side is

constant. Monotonicity of gn in x1 assures that reassignments

from retailer 1 to retailer 2 can also be based on holdback

levels. The optimal holdback levels for transshipments do not

have to be the same as those for reassignments.

Lemma 1 is sufficient to define holdback level-based

transshipment and reassignment policies. However, an aim

of this study is to examine the dependence of transship-

ment and reassignment decisions on outstanding back-

orders, which is not addressed by Lemma 1. Next,

benefiting from Lemma 1, Lemma 2 states that optimal

transshipment and reassignment decisions are independent

of outstanding backorders.

Lemma 2 For each n and (x1,x2) where x1X1 and x2p0,

the following results hold.

(A) One and only one of the following two statements holds.

ðiÞ dnðx1; x2 � 1Þ ¼ dnðx1; x2Þ4� K 0

or ðiiÞ dnðx1; x2 � 1Þpdnðx1; x2Þp� K 0:

(B) One and only one of the following two statements

holds.

ðiiiÞ gnðx1; x2 � 1Þ ¼ gnðx1; x2Þ4bþ h1 � K 0

or ðivÞ gnðx1; x2 � 1Þpgnðx1; x2Þpbþ h1 � K 0:

Lemma 2 shows that transshipment and reassignment

decisions are insensitive to the number of backorders. To

see this, consider two inventory levels at retailer 2, x2
0 and

x2
00, where x2

0 o x2
00o 0. So �x02 and �x200 denote the

number of backorders. Suppose that it is optimal to

transship a unit from retailer 1 to retailer 2 when there are

�x002 backorders at retailer 2. Then from (14), dn(x1,
x002)p�K0 holds. By Lemma 2(A(ii)), dn(x1,x2)p . . .p
dn(x1,x002)p�K0. Thus when the inventory level is x2

0, (14)
still holds, that is, it is also optimal to transship when the

backorder is �x20 On the other hand, suppose that it is

optimal to not transship a unit from retailer 1 to retailer 2

when retailer 2 has�x200 units of backorders, that is,

dn(x1,x200)4�K0 by (14). Combining this with Lemma

2(A(i)), it follows that dn(x1,x02)¼ . . . ¼ dn(x1,x002) 4
�K0. Thus, when the number of backorders is �x02, it is
not optimal to transship by (14). In conclusion, the optimal

decision to transship from retailer 1 to retailer 2 can be

made irrespective of the number of backorders at retailer 2.

By using Lemma 2(B), a similar conclusion can be made

regarding a reassignment decision. Optimal reassignment

decisions are independent of the number of backorders.

Recall that Lemma 1(i) and 1(ii) lead to the existence of

optimal transshipment and reassignment policies, each

based on holdback levels. Lemma 1(iii) says that for a fixed

number of backorders at retailer 2 and the fixed on-hand

inventory at retailer 1 (x1X1 and x2p0), dn(x1,x2)
decreases (not strictly) in n, that is, dn(x1,x2) increases

(not strictly) in calendar time. Then it is better to transship

earlier in a cycle (when n is larger) than to transship closer

to the end of the cycle. Similarly, Lemma 1(iv) leads to the

monotonicity of reassignment holdback levels in time.

Combining the existence and monotonicity of transship-

ment and reassignment holdback levels with Lemma 2,

optimal transshipment and reassignment policies are

formally defined in Theorem 1.

Theorem 1

1. For each period n, there exists a holdback level exni for

retailer i such that it is optimal to reject (respectively,

accept) a transshipment request when xipexni (respec-

tively, xi4exni ).

2. The transshipment holdback level is non-increasing in the

remaining number of periods: exnþ1i pexni
3. For each period n, there exists a reassignment holdback

level bxni for retailer i such that it is optimal to reject

(respectively, accept) a reassignment request when

xipbxni (respectively, xi4bxni ).

4. The reassignment holdback level is non-increasing in the

remaining number of periods: bxnþ1i pbxni .
Next we show that the optimal responses to both

(transshipment and reassignment) requests are the same. If

a transshipment request for a new demand is accepted
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(rejected) with inventory (x1,x2) in period n, a reassignment

request is also accepted (rejected) with inventory (x1,x2) in

period n.

Lemma 3 In period n, it is optimal to accept a transship-

ment request if and only if it is optimal to accept a

reassignment request: dn(x1,x2)p�K0 if and only if

gn�1(x1,x2þ 1)pbþ h1�K0 for x1X1 and x2p0.

From Lemma 3, transshipment and reassignment

decisions are governed by the same holdback levels ~xni ¼
x̂ni , which are non-decreasing in calendar time. Note that if

the inventory level is less than the holdback level in a

period, it remains less until the next replenishment. Let T i

be the number of remaining periods in a cycle when the

inventory at retailer i drops to her holdback level for

the first time in the cycle. Then retailer i accepts (both

transshipment and reassignment) requests in periods

nA{T iþ 1, . . . ,N} and rejects in periods nA{1, . . . ,T i}.T i

is a stopping time for retailer i and it depends on random

demand realizations during the cycle.

A demand in backorder in period n can be traced back

in time to the period n0 that it was first backordered

because either there was no inventory at the retailers when

it arrived or a transshipment request to satisfy this demand

was rejected. Although period n0 is before period n in

calendar time, we have n0 4n as a consequence of

numbering periods backward in time. If the retailers did

not have any inventory in period n0, they would not have

any in period n, so the IM cannot reassign inventory to

meet backordered demand. Otherwise, there was on-hand

inventory at the other retailer i when this demand arrived

in period n0. Since the transshipment request is rejected in

period n0, we must have T i4n0. Combining this with n04n,

we obtain T i4n. So retailer i continues to reject not only

transshipment requests but also reassignment requests by

Lemma 3. In summary, the presence of backorders at one

retailer is an indication that the other retailer is optimally

rejecting requests. In other words, it is optimal to reject all

of the reassignment requests.

This result also rules out an unfair but possible imple-

mentation, where a new customer0s demand is satisfied

through a transshipment before the demand of a customer

waiting for a reassignment. Presence of a waiting (back-

ordered) customer at a retailer in our optimal policy

ensures that the other retailer has been and will be rejecting

requests. Hence, demands are satisfied fairly in the order of

their arrival in our optimal policy. These interesting results

and characteristics of the optimal transshipment and

reassignment policies are specified in Theorem 2.

Theorem 2

(i) The optimal transshipment policy is such that in each

period n, retailer i transships to the other stocked-out

retailer if and only if xi4~xni . Also, the holdback level is

non-increasing in the remaining number of periods:

~xnþ1i p~xni
(ii) The optimal reassignment policy is that it is never

optimal to reassign.

In summary, Theorem 2 shows that transshipments for

newly arrived demand are done according to optimal

holdback levels, which depend only on the parameters in

Table 1 but not on backorders. If a transshipment for

a new demand is not optimal and the demand is

backordered, then it is never optimal to reassign for this

backordered demand. It is optimal to backorder the

demand until the next replenishment.

The transshipment problem formulation can be simpli-

fied by benefiting from the independence of transshipment

decisions from the amount of backorders. Since it is

optimal to not reassign, the reassignment decision can be

removed from the model. Accordingly, (5)–(7) collapse into

a single cost equality: Yn(x1,x2)¼Vn�1(x1,x2)þ h1x1
þ þ

h2x2
þ þ b(x1

�þx2
�), where xþ ¼max{0,x} and x�¼

max{0,�x}. This cost equality can be inserted in (1)–(3)

to eliminate Yn from cost computations.

According to Theorem 2(ii), backorders do not decrease

and can only increase over time. Since backorders remain

backorders, the entire backorder cost for a unit, nb, can

be charged when it is backordered in period n. This leads

to an alternative backorder cost accounting such that the

expected cost for the remaining n periods can be denoted

by V 0n(x1,x2)¼Vn(x1,x2)�nb(x1�þx2
�), for all x1 and x2.

Then, V 0n(x1,x2) does not include any backorder cost for

already backordered demands, that is, V 0n(x1,x2)¼V 0n(x1,
x2�1) for x2p0. The marginal benefit of a unit inventory

at retailer 1 can written as a function of only x1, that is,

d0n(x1)¼V 0n(x1�1,x2)�V 0n(x1,x2). Accordingly, a transship-

ment request is accepted in period n if and only if

d0n�1ðx1Þpnbþ h� K 0:

Computation of V 0n is easier than Vn, because recursive

equations are shorter than those in (1)–(7) and Yn is

eliminated. By using d0n�1(x1) computed from V 0n, in which

backorder costs are charged item by item until the next

replenishment, and the transshipment acceptance condi-

tion d0n�1(x1)pnb þ h�K 0, the transshipment policy can

be obtained more easily.

4. Optimal transshipments and reassignments under cyclic

holding cost accounting

In Section 3, it is proved that a reassignment is never used

with optimal transshipments under PHA (periodic holding

cost accounting). On the other hand, CHA (cyclic holding

cost accounting) simplifies cost computation within the

cycle. A CHA scheme may be suitable when the holding
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cost for inventory held during the cycle is not significant.

However, when the holding cost accounting used by the

IM changes, the structure of the optimal transshipment

and reassignment policies may be affected. To investigate

this, transshipment and reassignment policies are next

studied under CHA.

The cost functions Vn and Yn are redefined under CHA:

(1), (2), and (3) remain the same. Only (4) changes as

follows.

V0ðx1; x2Þ ¼ h1x
þ
1 þ h2x

þ
2 ; for all x1; x2: ð16Þ

No holding cost is charged in a period under CHA, so

Yn for nX1 is redefined as follows.

Ynðx1; x2Þ ¼ min Vn�1ðx1; x2Þ þ bð�x2Þ;K 0f
þVn�1ðx1 � 1; x2 þ 1Þ þ bð�x2 � 1Þg;

x1X1; x2p� 1:

Ynðx1; x2Þ ¼ min Vn�1ðx1; x2Þ þ bð�x1Þ;K 0f
þVn�1ðx1 þ 1; x2 � 1Þ þ bð�x1 � 1Þg;

x1p� 1;x2X1:

Ynðx1; x2Þ ¼ Vn�1ðx1; x2Þ; x1; x2X0:

Ynðx1; x2Þ ¼ Vn�1ðx1; x2Þ þ bð�x1 � x2Þ; x1; x2p0: ð17Þ

Wlog, transshipment and reassignment decisions are

studied for retailer 1 when retailer 2 is stocked-out. Then

difference functions dn(x1,x2)¼Yn(x1�1,x2)�Yn(x1,x2�1)
and gn(x1,x2)¼Vn(x1�1,x2)�Vn(x1,x2�1) are needed for

x2p0. For nX1,

dnðx1; x2Þ ¼ gn�1ðx1;x2Þ � b

þmin b;K 0 þ gn�1ðx1 � 1; x2 þ 1Þf g
�min b;K 0 þ gn�1ðx1; x2Þf g;
x1X2; x2p� 1: ð18Þ

dnðx1;x2Þ ¼ gn�1ðx1; x2Þ �min b;K 0 þ gn�1ðx1; x2Þf g;
x1X1;x2 ¼ 0 or x1 ¼ 1; x2p� 1: ð19Þ

dnðx1; x2Þ ¼ gn�1ðx1; x2Þ; x1; x2p0: ð20Þ

While defining gn, (11), (12), and (13) remain the same.

For n¼ 0,

g0ðx1; x2Þ ¼ �h11x1X1; x2p0: ð21Þ

The indicator variable 1x1X1 is equal to 1, if x1X1 and 0,

otherwise.

Transshipment and reassignment decisions can be

expressed in terms of dn and gn. When retailers have

inventory (x1,x2) in period n, a unit is transshipped from

retailer 1 to retailer 2 to satisfy a new demand at retailer 2

if and only if dn(x1,x2)p�K 0 for x1X1, x2p0. When

retailers have inventory (x1,x2) in period n, a unit is

reassigned from retailer 1 to retailer 2 if and only if

gn�1(x1,x2þ 1)pb�K0 for x1X1, x2p�1.
With some abuse of notation, we continue to call the

expected costs and cost differences above as Vn,Yn,dn, and
gn in this section. They are different from, but analogous

to, those defined in Section 3. One way to check this

analogousness is to examine them after setting h1¼ 0, in

which case the costs and cost differences of this section

coincide with those in Section 3. This leads to the question

of whether the cost functions of this section can be

obtained by setting h1¼ 0 in the functions of Section 3. The

answer is yes for recursive functions, which are all of the

functions except for (16) and (21). These two functions are

related to the costs at the end of a cycle when n¼ 0. Since

the functions change at n¼ 0, we expect that some of our

previous results may not hold. Lemma 4 and Theorem 3

provide a formal account of what happens under CHA.

Lemma 4 For nX1, x1X1, and x2p0,

(i) dn(x1, x2) is non-increasing in x1: dn(x1, x2)p
dn(x1�1,x2),

(ii) gn(x1, x2) is non-increasing in x1: gn(x1, x2)p
gn(x1�1,x2).

Lemma 4 specifies the monotonicity of dn(x1,x2) and

gn(x1,x2) in x1. Thus, as with PHA, the optimal transship-

ment and reassignment policies with the CHA scheme are

also characterized by holdback levels, which is stated by

Theorem 3.

Theorem 3 For xiX1 and xjp0 when i,jA{1, 2} and iaj,

we have the following for each period n.

(i) There exists a transshipment holdback level exni ðxjÞ for
retailer i such that it is optimal to reject (respectively,

accept) the transshipment request when xipexni ðxjÞ
(respectively, xi4exni ðxjÞ).

(ii) There exists a reassignment holdback level bxni ðxjÞ for
retailer i such that it is optimal to reject (respectively,

accept) the reassignment request when xipbxni ðxjÞ
(respectively, xi4bxni ðxjÞ).

Under CHA, the holdback levels of a retailer can depend

on the inventory of the other retailer and they are not

necessarily monotone over time. On the other hand, in the

case of PHA, holdback levels are monotone over time; see

Theorem 1(ii) and 1(iv). This monotonicity is instrumental

for establishing that the inventory level remains below

the holdback level if it falls below that level. It is a key

ingredient of the argument, in Theorem 2 and before, that

leads to the unnecessity of reassignments.

Without monotone holdback levels under CHA, reas-

signments may be necessary to minimize cost. Namely,
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because of the absence of monotonicity in n for either the

transshipment or the reassignment holdback levels, proper-

ties such as those stated by Lemmas 2 and 3 cannot be

obtained. Accordingly, there is not a nice and strong

conclusion about the relation between transshipment and

reassignment decisions such as that given by Theorem 2.

Thus reassignments may decrease the total cycle cost under

CHA.

5. Numerical analyses to assess benefits of reassignments

for multi-retailer systems

Extension of the optimal transshipment and reassignment

policies to multiple (42) retailers is not straightforward.

Archibald (2007) shows that a holdback level-based

transshipment policy that is optimal in a two-retailer

system is not optimal in a multi-retailer system. This can be

proved also in our setting, which includes reassignments.

With multiple retailers, the transshipment decision from a

retailer with on-hand inventory to a stocked-out retailer

relies also on inventory levels at other retailers. This

requires tracking inventory levels at all retailers for every

transshipment decision and makes it difficult to define the

optimal policy structure.

For PHA, to compute costs without fully understanding

the policy structure, let M be the number of retailers and

x¼ (x1,x2, . . . ,xM) be the vector of inventory levels.

Similarly, h and b are vectors of the holding costs and

backorder costs, respectively. Let P(x) and N (x) be the set

of indices for retailers with, respectively, positive and

negative inventory levels. Let ei denote a unit vector whose

ith element is one while all others are zero. Let eij¼ ej�ei
and p0¼ 1�

P
i¼ 1
M pi. The cost functions with reassignment

for the PHA scheme are V0
P(x)¼ 0 and

VP
n ðxÞ ¼ p0Y

P
n ðxÞ þ

X
m2PðxÞ

pmY
P
n ðx� emÞ

þ
X

m=2PðxÞ
pm min min

i2PðxÞ
K 0 þ YP

n ðx� eiÞ;
��

YP
n ðx� emÞ

��
ð22Þ

where xþ ¼max{0,x} and x�¼max{0,�x} are performed

component-wise for vector x. For the cost without

reassignments, each Yn
P(x0) in (22) is replaced by

Vn�1
P (x0)þ hx0

þ þ bx0
� for x0A{x,x�em,x�ei}.

Under PHA, we have numerically compared the costs of

multi-retailer systems with and without reassignments

using randomly generated instances described below.

Failing to find a difference in costs, we conjecture that

reassignments are not necessary to obtain the optimal cost

under PHA in multi-retailer systems. Therefore, numerical

analyses under PHA are not reported.

The rest of this section focuses only on CHA and

illustrates the benefit of reassignments. For this purpose,

two separate settings are considered: one with optimal

reassignments and another without reassignments. To

calculate the total optimal expected cost over N periods,

starting with n¼ 0 and V0
C(x)¼ h(x)þ , we use

VC
n ðxÞ ¼ p0Y

C
n ðxÞ þ

X
m2PðxÞ

pmY
C
n ðx� emÞ

þ
X

m=2PðxÞ
pm min min

i2PðxÞ
fK 0 þ YC

n ðx� eiÞ;
�

YC
n ðx� emÞg

�
; ð23Þ

and the computation of Yn
C(x) in Table 2, which allows

for multiple reassignments. For the cost with no reassign-

ments, each Yn
C(x0) in (23) is replaced by Vn�1

C (x0) þ
bx0
�for x0A{x,x�em,x�ei}.
As in the two-retailer system, there is at most one

demand arrival to the multi-retailer system in each period.

According to (22) and (23), the cost of transshipping from

a retailer with inventory to a stocked-out retailer is

compared with the cost of not transshipping. If more than

one profitable transshipment alternative are found, the

most profitable one is executed. Thus the transshipment

decision is made optimally. Similar observations based on

Table 2 yield that the reassignment decision is also optimal.

Note that the optimal cost can be computed for the multi-

retailer case even though a simple optimal policy cannot be

identified.

To determine the replenishment quantities, the IM may

minimize the expected single-cycle cost, or the sum of

discounted cycle costs, or the long-run average cost.

Çömez et al (2012a) show that to minimize the expected

long-run average cost, it is enough to minimize the holding,

YP
n ðxÞ ¼ min min

i2PðxÞ;j2NðxÞ
K 0 þ VP

n�1ðxþ eijÞ þ hðxþ eijÞþ þ bðxþ eijÞ�
� �

;VP
n�1ðxÞ þ hxþ þ bx�

� �

Table 2 Pseudocode for multiple reassignments with given
Vn�1

C and x.

Initialize: Set complete :=False and reassigned :=0.

Iterate:

While N (x)a+ and complete=False,

If min
i2PðxÞ;j2N ðxÞ

K 0 þ VC
n�1ðxþ eijÞ þ bðxþ eijÞ�

� �
oVC

n�1ðxÞ þ bx�;

x:=xþ eij and reassigned:¼ reassignedþ 1;

else complete :=True.

Output: Yn
C (x):=reassigned* K0 þVn�1

C (x)þ bx�.
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backorder, and transshipment costs over a single cycle.

Thus, in numerical analyses, we minimize the single cycle

costs VN(Q) with complete enumeration over replenish-

ment quantities Q¼ [Q1,Q2,...,QM], where QiA{0, . . . ,N}.

Then we select the Q that minimizes VN(Q). We illustrate

the optimal stocking level and cost calculations for a small

size problem instance.

Illustrative example: Let M¼ 2, N¼ 2, p1¼ 0.3, p2¼ 0.5,

h1¼ h2¼ 3, h0¼ 0, b1¼ b2¼ 4, T¼ 1, and K¼ 5. So, K 0 ¼ 9.

Each retailer should stock at most two units, that is,

QiA{0, 1, 2} for i¼ {1, 2}. Starting with n¼ 0, a backward

induction is used to go from period n to n þ 1. For nX1,

Yn
C(x1,x2,xb) is computed for x1, x2 A{0, 1, 2} and

xbA{0, . . . , 3�n}, where xb is the total number of back-

orders before a potential reassignment. Then, Vn
C(x1,x2,xb)

is computed for x1, x2 A{0, 1, 2} and xbA{0, . . . , 2�n}, as
the number of backorders at the beginning of period n

can be at most 2�n. After all V2
C(x1,x2, 0) values are

calculated, the minimum value of V2
C(x1,x2,0) is selected

from all combinations of x1, x2 A{0, 1, 2}. In summary,

54 Vn
C’s and 45 Yn

C’s are computed to find the optimal V2
C

and Q1,Q2. All of the Vn
C’s and Yn

C’s are reported in Table

A1. Some computations are illustrated next.

Compute V0
C(x1,x2,xb)¼ 3x1þ 3x2 for x1, x2, xb A

{0, 1, 2}.

Compute Y1
C(x1,x2,xb) from V0

C as in Table 2 for x1, x2,

xb A{0, 1, 2}, for example, Y1
C(0, 1, 1)¼min{0, 1, 1}þ 4,

V0
C(0, 0, 0)þ 9}¼min{7, 9}¼ 7.

Compute V1
C(x1,x2,xb) from Y1

C as in (23) for x1, x2 A
{0, 1, 2} and xbA{0, 1}, for example, V1

C(0, 1, 0)¼ 0.3

min{Y1
C(0, 1, 1), Y1

C(0, 0, 0)þ 9}þ 0.5 Y1
C(0, 0, 0)þ

0.2Y1
C(0, 1, 0)¼ 0.3 min {7, 9}þ 0þ 0.2 � 3¼ 2.7.

Compute Y2
C(x1,x2,xb) from V1

C as in Table 2 for x1,

x2 A{0, 1, 2} and xbA{0, 1}, for example, Y2
C(0, 2, 1)¼

min{V1
C(0, 2, 1)þ4, V0

C(0, 2, 1)þ 9}¼min{13.7, 11.7}¼11.7
Compute V2

C(x1,x2, 0) from Y2
C as in (23) for x1,x2A

{0, 1, 2}, for example, V2
C(0, 2, 0)¼ 0.3min{Y2

C(0, 2, 1),

Y2
C(0, 1, 0)þ 9}þ 0.5Y2

C(0, 1, 0)þ 0.2 Y2
C(0, 2, 0)¼ 0.3

min{11.7, 11.7}þ 0.5 � 2.7þ 0.2 � 5.7¼ 6.

Compute Q1 and Q2 by minimizing V2
C(x1,x2,0) for

x1,x2A{0, 1, 2}. The optimal replenishment levels are

Q1¼Q2¼ 1 and V2
C(1,1,0)¼ 3.58.

As the VN(Q) computations should be repeated (in the

order of) NM times to obtain the optimal replenishment

levels, the computation time increases fast with the number

of retailers and the number of periods in a cycle. Thus

numerical analyses are conducted with N¼ 40 and

MA{2, . . . , 6}. Among the previous transshipment studies

considering optimal cyclic replenishments and periodic

transshipments between multiple retailers, M¼ 5 in Archi-

bald (2007) and van Wijk et al (2012), and M¼ 3 in

Archibald et al (2009 and 2010) for the purpose of

numerical analyses.

Parameter values are based on the past studies with

similar settings. C¸ömez et al (2010) and Mangal and

Chandna (2009) are two examples in the transshipment

literature that relate their problem parameters with actual

data. Çömez et al (2010) select their problem parameters

from the automotive industry and other past studies with

similar problem scenarios. Data in Mangal and Chandna

(2009) come from a bike distribution network in India.

A cycle is a month and each cycle has N¼ 40 periods.

Çömez et al (2010) show that changing N changes

holdback policy only slightly. Monthly demand rate at

retailer i is NPiA(0,N/M). Independent of the number of

retailers, the maximum monthly demand for an M-retailer

system is N¼ 40 and the minimum is zero.

Among the few studies allowing positive transshipment

time, Tagaras and Vlachos (2002) use a transshipment time

of 1 day. In our numerical studies, T is between 1 and 9

periods (0.75 to 6.75 days when a cycle is 30 days). T¼ 4 in

our base problem setting. The magnitude of the fixed

transportation cost can be assessed relative to the holding

cost as K/h, because both may depend on the unit product

cost. Mangal and Chandna (2009) have K/h¼ 0.19. C¸ömez

et al (2010) use K/hA[077,10]. In our numerical analyses,

K/hA[0.11, 5.56] and K/h¼ 0.33 in our base setting.

Similarly, (Nb)/h is the backorder cost relative to holding

cost over a cycle. In Mangal and Chandna (2009),

backorder cost is charged once (not over time) and (Nb)/

h¼ 2.5. In our numerical analyses, (Nb)/hA[0.67, 44.45]

and (Nb)/h¼ 2.67 in our base setting. In our base setting,

K¼ 20, T¼ 4, and N¼ 40, and retailers are identical so

both h and b are scalars with values h¼ 60 and b¼ 4.

For each MA{2, . . . 6}, 100 problem instances are

generated by sampling each parameter from a uniform

distribution over the following ranges: piA(0,1/M),

hiA(9,90), TA(1, 9), KA(10, 50), and bA(2, 10) for iA
{1, . . . ,M}. In each instance, retailers i and j can have

different demand probabilities and holding costs, that is,

piapj and hiahj, while other parameters T,K, and b are the

same. With pi uniformly distributed over (0,1/M), the total

expected demand per period is 1/2 in an M-retailer system.

Since the total demand does not change withM, the results

for systems with different number of retailers can be

compared.

A demand is satisfied by four methods: in-stock (pre-

vious replenishment), transshipment, reassignment, and

next replenishment. The average percentage of demand

satisfied by each of the four methods is in Table 3. The

results indicate that when there are more retailers, the

IM relies more on transshipments than the other three

methods. In general, the average use of reassignments is

also increasing in the number of retailers, while it is not

monotone. These increases in transshipments and reassign-

ments can be explained by the increasing number of

retailers and the independence of demand among these

retailers. More independence leads to higher chances of

finding a retailer that can accept a transshipment or

reassignment request.
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Next, the optimal costs VN
C,R and VN

C,NR, respectively

with reassignment and with no reassignments, are eval-

uated. Let DVC denote the cost decrease in the total cycle

cost with reassignments under CHA and it is computed as

DVC¼ 100(VC,NR�VC,R)/VC,NR. This decrease also is the

gap between VC,NR and VC,R. The gap is computed with

the same 100 instances for each M-retailer system used to

obtain Table 3. In the left panel of Figure 2, the average gap

is plotted, which is both small and non-monotone in M.

Among the 500 tested problems in the left panel of Figure

2, 95 per cent of the instances lead to a gap that is less than

1 per cent.

The gap is investigated as the total demand probability

1-p0 increases from 0.5 to 0.9 in the right panel of Figure 2.

In each instance, K¼ 20, T¼ 4, hi¼ 60, bi¼ 4, pi¼ (1�p0)/
M for iA{1, . . . ,M} andMA{2, . . . , 6}. The highest gap is

small at about 1.4%.

Lastly, the sensitivity of the gap to changes in costs

(holding h, backorder b, and transportation K) and

transshipment lead time T is investigated. In Figures 3

and 4, MA{2, 4, 6}, hi¼ h and pi¼ 0.7/M for iA{1, . . . ,

M}. In these figures, one of h, T, K, and b varies and is

shown in the horizontal axis while the other three

parameters are fixed at the base setting h¼ 60, b¼ 4,

K¼ 20 and T¼ 4. The gap and the percentage of demand

satisfied by reassignments are shown, respectively, in top

and bottom panels of the figures.

Figure 3 indicates that reassignments are more useful in

reducing the cost when h is higher or b is lower. While

satisfying backorders, reassignments eliminate excess

inventory. So reassignments are used more often and

become more valuable when h is higher and inventory

levels are lower. But when h increases further, retailers keep

significantly low levels of inventory, which reduces their

ability to reassign, as the bar chart in the bottom left panel

of the figure indicates. In sum, the gap still increases but at

a decreasing rate. As h increases, both the total cost VC,NR

and the gap DVC increase. This means that VC,R�VC,NR¼
VC,NRDVC increases faster than either VC,NR or DVC. Note

that VC,R�VC,NR can be an appropriate measure when bud-

geting for the logistics expenses of a distribution system.

The effect of b on the gap is more complicated than that

of h. One could expect that as b increases, the total cost of

backordering in a cycle increases. So reassignments that

eliminate some backorders could be more beneficial when

b is higher. On the other hand, a high b could lead to

both high replenishment levels and a large number of

transshipments. Hence, backorders, and in turn reassign-

ments, could occur less when b is higher. In Figure 3, the

combined effect of these factors decreases the gap as b

increases. So when b is low, reassignments can be valuable

to decrease the total cost, but both the number of

reassignments and the gap decrease with b.

On the other hand, the gap appears to be unimodal as

either K or T increases. An increase in K or T raises the cost

of each transshipment and increases the number of

backorders. Each extra backorder presents at least one

and at mostNmore reassignment opportunities. So despite

being non-monotone, the use of reassignments increases

in general with rising K or T as shown in Figure 4.

Figure 2 The gap (cost decrease) DVC between expected costs with and without reassignments. Left: Average gap versus M;
Right: Gap versus 1�p0.

Table 3 Demand fulfillment by four methods

Number of retailers Average percent(%) of demand fulfilled by four methods

In-stock Transshipment Reassignment Next replenishment

2 86.58 3.79 0.16 9.47
3 85.01 6.27 0.21 8.50
4 81.72 9.05 0.33 8.90
5 79.53 11.05 0.35 9.07
6 77.84 13.01 0.30 8.85
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However, this increase does not correspond to an increase

in the benefit of reassignments as the benefit can be

adversely affected by rising K or T.

All of the gaps (cost decreases) are less than 2% in

Figure 2�4, except for b¼ 1 in the top right panel of

Figure 3. With b¼ 1, the cost of backordering throughout

a cycle is extremely low, that is, Nb¼ 40o60¼ h. These

parameters in a newsvendor context give a service level of

only 40%¼ (Nb)/(Nb þ h). Apart from this extreme case,

the no-reassignment policy is an effective heuristic for

systems of multiple retailers as long as transshipments and

replenishments are optimal.

6. Conclusions

In this study, transshipments among retailers that are

managed by a central IM are studied. Different from

Figure 4 Top panels: The gap (cost decrease) DVC between expected costs with and without reassignments. Left: Gap versus
transportation cost K; Right: Gap versus transshipment time T. Bottom panels: The per cent use of reassignments to satisfy demand.
Left: Usage versus transportation cost K; Right: Usage versus transshipment time T.

Figure 3 Top panels: The gap (cost decrease) DVC between expected costs with and without reassignments. Left: Gap versus holding
cost h; Right: Gap versus backorder cost b. Bottom panels: The per cent use of reassignments to satisfy demand. Left: Usage versus
holding cost h; Right: Usage versus backorder cost b.
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previous transshipment studies in the literature, reassign-

ment of inventory to meet backordered demands is

explicitly examined. In a two-retailer system, reassignments

interestingly turn out to be unnecessary for optimality

under periodic holding cost accounting if retailers are

transshipping inventory optimally among each other to

meet new customer demands. The optimal transshipment

policy is based on holdback levels, which are shown to be

independent of outstanding backorders. If a retailer has

more inventory than the optimal holdback level, inventory

is transshipped to the stocked-out retailer in case of a need.

Holdback levels are non-decreasing in time, so a cycle is

split into acceptance and rejection time windows for a

retailer. All transshipment requests are accepted by the

retailer within the acceptance window, beyond which no

requests are accepted. The length of each window depends

on demand realizations and so cannot be determined at the

beginning of a cycle.

It is common in the literature that backorder costs are

charged period by period for all outstanding backorders.

This cost computation requires the IM to keep track of

backorders carefully to account for backorder costs over

time. Instead of charging backorder costs period by period

for all outstanding backorders, when a demand is not met

immediately, its total backorder cost until the next

replenishment can be charged at once to the cost function.

Such a backorder cost computation is possible in our

transshipment problem under periodic holding cost

accounting, because it is shown that optimal transshipment

decisions are independent of outstanding backorders and

reassignments are not useful to achieve optimal cost.

Although these analytical results cannot be extended to

systems of multiple retailers, numerical analyses confirm

that reassignments remain unnecessary for these larger

systems under periodic holding cost accounting. So once a

demand is backordered, it should stay backordered until

the next replenishment. These facts are used to streamline

backorder cost computations. Simplification of the com-

putations can facilitate implementation of optimal trans-

shipment policies in practice.

Surprisingly, cost accounting can change optimal

transshipment and reassignment policies. We show that

under cyclic holding cost accounting, while a holdback

level-based transshipment policy is still optimal, holdback

levels are not monotone in time. Also, under this

accounting scheme, reassignments can be necessary for

optimality. Necessity of reassignments for optimality

brings challenges in implementation such as additional

consideration and management of the reassignment

process. Thus some practitioners may want to avoid

reassignments although they are profitable under cyclic

holding cost accounting. Under this accounting scheme,

numerical tests were performed to measure the cost

improvement provided by reassignments. This cost im-

provement is very small for systems of multiple retailers. So

a no-reassignment policy is very effective also under cyclic

holding cost accounting.

The transshipment model studied in this paper can be

extended. In the current study, transshipments and

reassignments are allowed in single units of inventory,

which implicitly assumes no economies of scale in

transshipment costs. When reassigning in multiple units is

allowed, we expect that results on the unnecessity of

reassignments may still hold. The extension of the current

model to allow reassignments in multiple units may require

treating a single reassignment request for multiple units as a

series of multiple reassignment requests, each for one unit.

If each of these reassignment requests are rejected in the

optimal policy, then the single reassignment request for

multiple units should also be rejected. On the other hand, if

there are economies of scale in transportation costs, our

results may not hold anymore. Modelling fixed transship-

ment costs along with multiple transshipment opportunities

in an order cycle is an interesting open research question.
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Appendix

The following result is used in many intermediate steps of

the proofs. We call it a proposition as it is more

fundamental than the lemmas, which apply only to our

transshipment context.

Proposition 1 For any four real numbers a,b,c, and d,

minfa� c; b� dgpminfa; bg �minfc; dg
pmaxfa� c; b� dg:

Proof

minfa; bg �minfc; dg
¼ minfa; bg þmaxf�c;�dg

¼ min
n
aþmaxf�c;�dg; bþmaxf�c;�dg

o
Xminfa� c; b� dg;

minfa; bg �minfc; dg
¼ minfa; bg þmaxf�c;�dg

¼ max
n
� cþminfa; bg;�d þminfa; bg

o
pmaxfa� c; b� dg: &

Proofs of Lemmas

Proofs of Lemma 1 (i)–(ii): (i) and (ii) are proved

simultaneously by an induction on n. As the induction

hypothesis, assume that both (i) and (ii) hold for n�1.

We now prove that dn(x1,x2) is non-increasing in x1 for

x1X0, x2p0 by using the induction hypothesis that

gn�1(x1,x2) is non-increasing in x1 for x2p0. The induction

begins with n¼ 0, where g0( � , � )¼ 0. The proof specializes

for four cases: [x1¼ 1, x2p0], [x1X1, x2¼ 0], [x1¼ 2,

x2p�1], and [x1X3, x2p�1].

Case 1: [x1¼ 1,x2p0]. From (9) and (10),

dnð0; x2Þ � dnð1; x2Þ
¼ gn�1ð0; x2Þ � gn�1ð1; x2Þ
þmin bþ h1;K

0 þ gn�1ð1; x2Þf g

¼ min bþ h1 þ gn�1ð0; x2Þ � gn�1ð1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

;K 0 þ gn�1ð0; x2Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

8><
>:

9>=
>;

X0:

For x1,x2p0, gn(x1,x2)¼Vn(x1�1,x2)�Vn(x1,x2�1)¼
0, as the total cost depends only on the total backorder

x1þx2�1, which follows from combining (3), (4), and (7).

gn(x1,x2)¼ 0 implies that dn(x1,x2)¼ 0 for x1,x2p0

from (10).

Case 2: [x1X1 and x2¼ 0]. From (9)

dnðx1; 0Þ � dnðx1 þ 1; 0Þ
¼ gn�1ðx1; 0Þ � gn�1ðx1 þ 1; 0Þ
�minfbþ h1;K

0 þ gn�1ðx1; 0Þg
þminfbþ h1;K

0 þ gn�1ðx1 þ 1; 0Þg
Xgn�1ðx1; 0Þ � gn�1ðx1 þ 1; 0Þ

þmin 0; gn�1ðx1 þ 1; 0Þ � gn�1ðx1; 0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>;

¼ 0: ðA:1Þ

The inequality above results from Proposition 1 and

(A.1) follows from the induction hypothesis

Case 3: [x1¼ 2,x2p�1]. Using (8) and (9),

dnð1; x2Þ � dnð2; x2Þ
¼ gn�1ð1; x2Þ � gn�1ð2; x2Þ þ bþ h1

�minfbþ h1;K
0 þ gn�1ð1; x2Þg

�minfbþ h1;K
0 þ gn�1ð1; x2 þ 1Þg

þminfbþ h1;K
0 þ gn�1ð2; x2Þg

Xgn�1ð1;x2Þ � gn�1ð2; x2Þ þ bþ h1

�minfbþ h1;K
0 þ gn�1ð1; x2 þ 1Þg

þmin 0; gn�1ð2; x2Þ � gn�1ð1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>; ðA:2Þ

¼ bþ h1 �minfbþ h1;K
0 þ gn�1ð1; x2 þ 1Þg

X0: ðA:3Þ

Equation (A.2) is by Proposition 1 and (A.3) follows from

the induction hypothesis.

Case 4: [x1X3 and x2p�1]. From (8),

dnðx1 � 1; x2Þ � dnðx1; x2Þ
¼ gn�1ðx1 � 1;x2Þ � gn�1ðx1; x2Þ
þmin bþ h1;K

0 þ gn�1ðx1 � 2;x2 þ 1Þf g
�min bþ h1;K

0 þ gn�1ðx1 � 1;x2Þf g
�min bþ h1;K

0 þ gn�1ðx1 � 1;x2 þ 1Þf g
þmin bþ h1;K

0 þ gn�1ðx1;x2Þf g
Xgn�1ðx1 � 1; x2Þ � gn�1ðx1; x2Þ

þmin 0; gn�1ðx1 � 2; x2 þ 1Þ � gn�1ðx1 � 1; x2 þ 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

8><
>:

9>=
>;

þmin 0; gn�1ðx1; x2Þ � gn�1ðx1 � 1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>; ¼ 0:

ðA:4Þ
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The inequality above is from Proposition 1 and (A.4)

follows from the induction hypothesis. This completes the

proof for non-increasing dn(x1,x2) in x1, if gn�1(x1,x2) is
non-increasing in x1.

We now prove that gn(x1,x2) is non-increasing in x1 by

using the recently proved fact that dn(x1,x2) is non-

increasing in x1 as g0¼ 0. As induction hypothesis, suppose

that dn(x1,x2) is non-increasing in x1 for x1X1 and x2p0.

This hypothesis is true for n¼ 1. The proof specializes for

three cases: [x1¼ 1], [x1¼ 2], and [x1X3].

Case 1: [x1¼ 1]. From (12) and (13),

gnð0;x2Þ � gnð1; x2Þ

¼ p1ðdnð�1; x2Þ � dnð0; x2ÞÞ

þ ð1� p1 � p2Þðdnð0;x2Þ � dnð1; x2ÞÞ

þ p2

h
dnð0; x2 � 1Þ � dnð1; x2 � 1Þ

þminf0;K 0 þ dnð1;x2 � 1Þg
i

Xp1ðdnð�1; x2Þ � dnð0; x2ÞÞ

þ ð1� p1 � p2Þðdnð0;x2Þ � dnð1; x2ÞÞ

þ p2 min dnð0; x2 � 1Þ � dnð1; x2 � 1Þ;K 0
8<
:

þ dnð0; x2 � 1Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼0

9=
;

X0:

This follows from the induction hypothesis and dn(x1,x2)
¼ 0 for x1,x2p0, so that each of the three terms in

summation are non-negative.

Case 2: [x1¼ 2]. From (11) and (12)

gnð1; x2Þ � gnð2; x2Þ

¼ p1ðdnð0; x2Þ � dnð1; x2ÞÞ

þ ð1� p1 � p2Þðdnð1; x2Þ � dnð2; x2ÞÞ

þ p2ðdnð1; x2 � 1Þ � dnð2; x2 � 1ÞÞ

� p2

h
min

�
0;K 0 þ dnð1; x2 � 1Þ

�
þmin

�
0;K 0 þ dnð1; x2Þ

�
�min bigf0;K 0 þ dnð2; x2 � 1Þ

�i

Xp1ðdnð0; x2Þ � dnð1; x2ÞÞ
þ ð1� p1 � p2Þðdnð1; x2Þ � dnð2; x2ÞÞ

þ p2 dnð1; x2 � 1Þ � dnð2; x2 � 1Þ

2
64
�minf0;K 0 þ dnð1; x2Þg

þmin 0; dnð2; x2 � 1Þ � dnð1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>;
3
75

ðA:5Þ
¼ p1 dnð0; x2Þ � dnð1; x2Þð Þ
þ ð1� p1 � p2Þðdnð1; x2Þ � dnð2;x2ÞÞ
� p2 minf0;K 0 þ dnð1; x2Þg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p0

X0: ðA:6Þ

Equation (A.5) is obtained by using Proposition 1

and (A.6) follows from the induction hypothesis.

Case 3: [x1X3]. From (11)

gnðx1 � 1; x2Þ � gnðx1; x2Þ
¼ p1 dnðx1 � 2; x2Þ � dnðx1 � 1; x2Þð Þ
þ ð1� p1 � p2Þ dnðx1 � 1; x2Þ � dnðx1; x2Þð Þ

þ p2

�
dnðx1 � 1; x2 � 1Þ � dnðx1; x2 � 1Þ

þmin
n
0;K 0 þ dnðx1 � 2; x2Þ

o
�min

n
0;K 0 þ dnðx1 � 1; x2 � 1Þ

o
�min

n
0;K 0 þ dnðx1 � 1; x2Þ

o
þmin

n
0;K 0 þ dnðx1; x2 � 1Þ

o�
Xp1 dnðx1 � 2; x2Þ � dnðx1 � 1; x2Þð Þ
þ ð1� p1 � p2Þ dnðx1 � 1; x2Þ � dnðx1; x2Þð Þ

þ p2 dnðx1 � 1; x2 � 1Þ � dnðx1; x2 � 1Þ

2
64

þmin 0; dnðx1 � 2; x2Þ � dnðx1 � 1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

8><
>:

9>=
>;

þmin 0; dnðx1; x2 � 1Þ � dnðx1 � 1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>;
3
75

¼ p1ðdnðx1 � 2; x2Þ � dnðx1 � 1; x2ÞÞ
þ ð1� p1 � p2Þ dnðx1 � 1; x2Þ � dnðx1; x2Þð ÞX0:

ðA:7Þ

Equation (A.7) is obtained by using Proposition 1.

The rest follows from the induction hypothesis.

This completes the proof that if dn(x1,x2) is non-
increasing in x1, then gn(x1,x2) is also non-

increasing in x1.
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(iii)–(iv): The proof is done for (iii) and (iv) together.

To start the induction, we establish that g1(x1,x2)pg0(x1,
x2). Since g0(x1,x2)¼ 0, it suffices to show that g1(x1,
x2)p0. For n¼ 1,

d1ðx1; x2Þ ¼ 0; x1; x2p0: ðA:8Þ

d1ðx1; x2Þ ¼ �minfbþ h1;K
0g;

x1X1; x2 ¼ 0 or x1 ¼ 1; x2p� 1: ðA:9Þ

d1ðx1; x2Þ ¼ �ðbþ h1Þ; x1X2; x2p� 1: ðA:10Þ
For x2p0,

g1ðx1;x2Þ ¼ 0; x1p0:

g1ð1;x2Þ ¼ ð1� p1 � p2Þd1ð1; x2Þ
þ p2 d1ð1;x2 � 1Þ �minf0;K 0 þ d1ð1;x2 � 1Þgð Þ;
¼ �ð1� p1Þminfbþ h1;K

0g
� p2 min 0;K 0 �minfbþ h1;K

0gf gp0; ðA:11Þ

where (A.11) follows by using (A.9). Next, g1(x1,x2)p0 is

extended to x1X2.
g1ðx1; x2Þ ¼ p1d1ðx1 � 1; x2Þ þ ð1� p1 � p2Þd1ðx1; x2Þ

þ p2

h
d1ðx1; x2 � 1Þ

þmin
�
0;K 0 þ d1ðx1 � 1; x2Þ

�
�min

�
0;K 0 þ d1ðx1; x2 � 1Þ

�i
¼ p1d1ðx1 � 1; x2Þ þ ð1� p1 � p2Þd1ðx1; x2Þ

þ p2 �minfbþ h1;K
0g

2
64

þminf0;K 0 þ d1ðx1 � 1; x2Þg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

3
75

p0: ðA:12Þ
Equation (A.12) is obtained by replacing d1(x1,x2�1)
with �(bþ h1) from (A.10). The result follows from the

non-positivity of d1(x1�1,x2) and d1(x1,x2) in (A.8)–

(A.10). This completes the proof for g1(x1,x2)pg0(x1,x2)
for x1X0 and x2p0.

To prove dnþ 1(x1,x2)pdn(x1,x2) for nX1, assume that

gn(x1,x2)gn�1(x1,x2) for x1X0 and x2p0. For x1,x2p0,

from (10), dnþ 1(x1,x2)¼ dn(x1,x2)¼ 0. Now this inequality

is established for other values of x1 and x2 by considering

the following two cases.

Case 1: [x1X1, x2¼ 0 or x1¼ 1, x2�1]. From (9),

dnþ1ðx1; x2Þ � dnðx1; x2Þ

¼ gnðx1; x2Þ � gn�1ðx1; x2Þ �minfbþ h1;K
0 þ gnðx1; x2Þg

þminfbþ h1;K
0 þ gn�1ðx1; x2Þg

pgnðx1; x2Þ � gn�1ðx1; x2Þ

þmax 0; gn�1ðx1; x2Þ � gnðx1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

8><
>:

9>=
>; ¼ 0:

This follows by first applying Proposition 1 and then

from the induction hypothesis.

Case 2: [x1X2, x2p�1]. From (8),

dnþ1ðx1;x2Þ � dnðx1; x2Þ
¼ gnðx1; x2Þ � gn�1ðx1; x2Þ
þminfbþ h1;K

0 þ gnðx1 � 1; x2 þ 1Þg
�minfbþ h1;K

0 þ gnðx1; x2Þg
�minfbþ h1;K

0 þ gn�1ðx1 � 1; x2 þ 1Þg
þminfbþ h1;K

0 þ gn�1ðx1;x2Þg
pgnðx1;x2Þ � gn�1ðx1; x2Þ

þmax 0; gnðx1 � 1; x2 þ 1Þ � gn�1ðx1 � 1; x2 þ 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>;

þmax 0; gn�1ðx1; x2Þ � gnðx1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

8><
>:

9>=
>; ¼ 0:

This completes the proof of the monotonicity of dn in n.

To prove the monotonicity of gn, assume that dnþ 1(x1,

x2)pdn(x1,x2) for x1X0, x2p0, and nX1. For x1,x2p0,

from (13), gnþ 1(x1,x2)¼ gn(x1,x2)¼ 0. This inequality is

established for other values of x1 and x2 by considering the

following two cases.

Case 1: [x1¼ 1, x2p0]. From (12),

gnþ1ð1; x2Þ � gnð1; x2Þ
¼ ð1� p1 � p2Þðdnþ1ð1; x2Þ � dnð1; x2ÞÞ

þ p2

h
dnþ1ð1; x2 � 1Þ � dnð1; x2 � 1Þ

�min
�
0;K 0 þ dnþ1ð1; x2 � 1Þ

�
þmin

�
0;K 0 þ dnð1; x2 � 1Þ

�i
pð1� p1 � p2Þ dnþ1ð1; x2Þ � dnð1; x2Þð Þ
þ p2½dnþ1ð1; x2 � 1Þ � dnð1; x2 � 1Þ

þmax 0; dnð1; x2 � 1Þ � dnþ1ð1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

8><
>:

9>=
>;

¼ ð1� p1 � p2Þ dnþ1ð1; x2Þ � dnð1; x2Þð Þp0:
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Case 2: [x1X1]. From (11),

gnþ1ðx1; x2Þ � gnðx1; x2Þ
¼ p1 dnþ1ðx1 � 1; x2Þ � dnðx1 � 1; x2Þð Þ
þ ð1� p1 � p2Þ dnþ1ðx1;x2Þ � dnðx1; x2Þð Þ

þ p2

�
dnþ1ðx1; x2 � 1Þ � dnðx1; x2 � 1Þ

þmin
n
0;K 0 þ dnþ1ðx1 � 1; x2Þ

o
�min

n
0;K 0 þ dnþ1ðx1; x2 � 1Þ

o
�min

n
0;K 0 þ dnðx1 � 1; x2Þ

o
þmin

n
0;K 0 þ dnðx1; x2 � 1Þ

o�
pp1 dnþ1ðx1 � 1; x2Þ � dnðx1 � 1; x2Þð Þ
þ ð1� p1 � p2Þ dnþ1ðx1;x2Þ � dnðx1; x2Þð Þ

þ p2 dnþ1ðx1; x2 � 1Þ � dnðx1; x2 � 1Þ

2
64

þmax 0; dnþ1ðx1 � 1; x2Þ � dnðx1 � 1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>;

þmax 0; dnðx1; x2 � 1Þ � dnþ1ðx1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

8><
>:

9>=
>;
3
75

¼ p1 dnþ1ðx1 � 1; x2Þ � dnðx1 � 1; x2Þð Þ
þ ð1� p1 � p2Þ dnþ1ðx1;x2Þ � dnðx1; x2Þð Þp0:

This completes the proof of the monotonicity of gn in

n, and in turn, the proofs for parts (iii) and (iv) of the

lemma. &

Proof of Lemma 2 Lemma 2 is proved for parts (A) and

(B) simultaneously. The proof is by induction on n and

starts by checking the inequalities in (A) and (B) for g0
and d1. Note that g0(x1,x2�1) ¼ g0(x1,x2)¼ 0. Either

04b þ h1�K0 or 0pbþ h1�K0. So g0 satisfies either

(iii) or (iv).

At n¼ 1, d1 is defined by (A.8)�(A.10). For x1p0,

d1(x1,x2�1)¼ d1(x1,x2)¼ 0, so either (i) or (ii) is satisfied.

Similarly, for x1¼ 1, d1(1,x2�1)¼ d1(1,x2)¼�min{bþ h1,

K0}. Thus either (i) or (ii) is satisfied. When x1X2 and

x2p�1, d1(x1,x2�1)¼ d1(x1,x2)¼�(bþ h1), so either (i)

or (ii) is satisfied. When x1X2, x2¼ 0, and bþ h1o K0,
d1(x1,x2�1)¼�(bþ h1)¼�min{bþ h1,K

0}¼ d1(x1,x2)4
�K0. So (i) holds. When x1X2, x2¼ 0, and bþ h1XK0,
d1(x1,x2�1)¼�(bþ h1)pK0 ¼�min{bþ h1,K

0}¼ d1(x1,
x2). So (ii) holds. Thus d1 satisfies either (i) or (ii).

When statement (B) is proved for gn, the induction

hypothesis assumes that statement (A) holds for dn. On the

other hand, when statement (A) is proved for dn, the

induction hypothesis assumes statement (B) for gn�1. As in

the proof of Lemma 1, when a claim about dn in period n is

proved, the induction is on the cost gn�1. Since Lemma 2

holds for both g0 and d1, induction can start with either of

these.

In the proof, two mutually exclusive sets of cases are

considered as an induction hypothesis: rejection and

acceptance of a request by retailer 1. When an induction

hypothesis is made on dn, the acceptance case refers to the

acceptance of a transshipment request for a new demand.

When the induction hypothesis is made on gn, the

acceptance case refers to the acceptance of a reassignment

request for an outstanding backorder. The induction

argument addresses first x1¼ 1 and then x1X1.

The main induction steps and cases in the proof are

summarized in Figure A1. The initialization steps involve

g0 and d1, which are obtained above by using definitions.

Two major steps in the proof are proving Statement B in

period n by assuming Statement A in period n (a horizontal

step in Figure A1) and proving Statement A in period n by

assuming Statement B in period n�1 (a diagonal step in

Figure A1). &

Proof of Statement (B) for x1¼ 1: The induction hypoth-

esis is that dn(1,x2�1) and dn(1,x2) satisfy either

inequality (i) or (ii). Then the validity of statement (B)

is analysed.

Rejection: dn(1,x2)4 �K0. The induction hypothesis

provides that dn(1,x2�1)¼ dn(1,x2)4 �K0, for all x2p0.

Then dn(1,x2�2)¼ dn(1,x2�1)4 �K0. These inequalities

are used in the difference equation below, which is

obtained by using (12).

gnð1;x2Þ � gnð1; x2 � 1Þ
¼ p1ðdnð0; x2Þ � dnð0; x2 � 1ÞÞ
þ ð1� p1 � p2Þ dnð1; x2Þ � dnð1; x2 � 1Þð Þ

þ p2 dnð1; x2 � 1Þ � dnð1; x2 � 2Þ

2
4

�min 0;K 0 þ dnð1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
40

8<
:

9=
;

þþmin 0;K 0 þ dnð1; x2 � 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
40

8<
:

9=
;
3
5

¼ 0:

It is shown in the proof of Lemma 1 that dn(x1,x2) ¼ 0

for x1,x2p0. The rest of the result follows from the

induction hypothesis. Since gn(1,x2�1) ¼ gn(1,x2), either
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(iii) or (iv) must be true. This completes the inductive

argument for x1¼ 1 for the rejection case.

Acceptance: dn(1,x2)p�K0. The induction hypothesis

provides that dn(1,x2�1)dn(1,x2)p�K0 and dn(1,
x2�2)pdn(1,x2�1)p�K0 for all x2p0. These inequalities

are used in the difference equation below.

gnð1; x2Þ � gnð1;x2 � 1Þ
¼ p1 dnð0; x2Þ � dnð0; x2 � 1Þð Þ
þ ð1� p1 � p2Þ dnð1; x2Þ � dnð1; x2 � 1Þð Þ

þ p2 dnð1; x2 � 1Þ � dnð1; x2 � 2Þ

2
64

�min 0;K 0 þ dnð1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>;

þ p2 þmin 0;K 0 þ dnð1; x2 � 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>;
3
75

¼ ð1� p1 � p2Þ dnð1; x2Þ � dnð1; x2 � 1Þð ÞX0:

To complete the proof that (iv) holds in the acceptance

case, we need to show that gn(1,x2)pbþ h1�K0. For this

purpose, combining Lemma 1(iii) with the induction

hypothesis results in dnþ 1(1,x2)pdn(1,px2)p�K0. From
(9),

dnþ1ð1; x2Þ ¼ gnð1; x2Þ �min bþ h1;K
0 þ gnð1; x2Þf g

¼ �min bþ h1 � gnð1; x2Þ;K 0f g:

Using dnþ 1(1,x2)¼�min{bþ h1�gn(1,x2), K0}pdn(1,
x2)p�K0 and proof by contradiction, we obtain gn(1,x2)p
bþ h1�K0 as follows. Suppose to the contrary that

gn(1,x2)4bþ h1�K0. Then bþ h1�gn(1,x2)o K0. So

dnþ 1(1,x2)¼�(bþ h1�gn(1,x2))4 �K0. However, this

contradicts dnþ 1(1.x2)p�K0. This contradiction estab-

lishes gn(1,x2)bþ h1�K0. This completes the inductive

argument for x1¼ 1 for the acceptance case and for

statement (B) for x1¼ 1. &

Proof of Statement (A) for x1¼ 1: To analyse the validity

of statement (A) for x1¼ 1 in period n, the induction

hypothesis is that gn�1(1,x2�1) and gn�1(1,x2) satisfy
either inequality (iii) or (iv) in period n�1.

Rejection: gn�1(1,x2) 4bþ h1�K0. The induction hypoth-

esis provides that gn�1(1,x2�1)¼ gn�1(1,x2)4bþ h1�K0
for all x2p0. This is used in the below equality, which is

obtained from (9).

dnð1; x2Þ � dnð1; x2 � 1Þ
¼ gn�1ð1; x2Þ � gn�1ð1; x2 � 1Þ
�min bþ h1;K

0 þ gn�1ð1; x2Þf g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼bþh1

þmin bþ h1;K
0 þ gn�1ð1; x2 � 1Þf g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼bþh1

¼ 0:

Since dn(1,x2)¼ dn(1,x2�1), either (i) or (ii) is satisfied.

Acceptance: gn�1(1,x2)bþ h1�K0. The induction hypothesis

provides that gn�1(1,x2�1)pgn�1(1,x2)pbþ h1�K0 for all
x2 2 N� . Following the induction hypothesis

dnð1; x2Þ � dnð1; x2 � 1Þ
¼ gn�1ð1; x2Þ � gn�1ð1; x2 � 1Þ
�min bþ h1;K

0 þ gn�1ð1; x2Þf g
þmin bþ h1;K

0 þ gn�1ð1; x2 � 1Þf g
¼ 0:

Figure A1 Summary of the main steps and cases in the proof of Lemma 2.
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As in the rejection case, dn(1,x2)¼ dn(1,x2�1). Thus

either (i) or (ii) is satisfied. This completes the inductive

argument for statement (A) for x1¼ 1 .

Until now, it is proved that either (i) or (ii) holds for

statement (A) over the pairs (n¼ 1,x1X0) and (nA{0, . . . ,

N},x1¼ 1). It is also proved that either (iii) or (iv) holds

for statement (B) over the pairs (n¼ 0,x1X0) and

(nA{0, . . . ,N},x1¼ 1). The result is extended to a pair

(n,x1) for nX1 and x1X2. This is done inductively by

moving from (nA{0, . . . ,N},x1¼ 1) to (nA{0, . . . ,N},

x1¼ 2) and then to (nA{0, . . . ,N},x1¼ 3) and so on. For

a fixed x1, we also traverse the points in (nA{0, . . . ,N},x1)

in order of increasing n. &

Proof of Statement (B) for x1X2: To prove (iii) or (iv) for

inventory level x1 in period n, assume the following

induction hypotheses, which stem from statement (A).

In period n with x1, one and only one of the following

statements holds.

ðiÞ dnðx1; x2 � 2Þ ¼ dnðx1; x2 � 1Þ ¼ dnðx1; x2Þ4�K 0 or

ðiiÞ dnðx1; x2 � 2Þpdnðx1; x2 � 1Þpdnðx1; x2Þp�K 0:

In period n with x1�1, one and only one of the following

statements holds.

ðiÞ dnðx1 � 1; x2 � 1Þ ¼ dnðx1 � 1; x2Þ4� K 0 or
ðiiÞ dnðx1 � 1; x2 � 1Þpdnðx1 � 1; x2Þp� K 0:

Now statement (B) is validated in period n by using the

above induction hypotheses for two cases: acceptance and

rejection.

Rejection: dn(x1,x2)4 �K0. The induction hypothesis states

that (i) is satisfied for (n,x1). Combining dn(x1,x2)4 �K0
with Lemma 1(i), dn(x1�1,x2)Xdn(x1,x2)4 �K0. So for

(n,x1�1), only (i) can be satisfied. By using the fact that for

both (n,x1) and (n,x1�1), only (i) statements are satisfied,

the difference equation of gn can be written starting with

(11).

gnðx1; x2Þ � gnðx1; x2 � 1Þ
¼ p1 dnðx1 � 1; x2Þ � dnðx1 � 1; x2 � 1Þð Þ
þ ð1� p1 � p2Þ dnðx1; x2Þ � dnðx1; x2 � 1Þð Þ

þ p2 dnðx1; x2 � 1Þ � dnðx1; x2 � 2Þ

2
4

þmin 0;K 0 þ dnðx1 � 1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
40

8<
:

9=
;

�min 0;K 0 þ dnðx1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
40

8<
:

9=
;

�min 0;K 0 þ dnðx1 � 1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
40

8<
:

9=
;

þmin 0;K 0 þ dnðx1; x2 � 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
40

8<
:

9=
;
3
5

¼ 0:
Since gn(x1,x2)¼ gn(x1,x2�1), either (iii) or (iv) of

Lemma 2 is satisfied.

Acceptance: dn(x1,x2)pK0. The induction hypothesis states

that (ii) holds for (n,x1). This hypothesis is used in the

following difference equation for gn.

gnðx1; x2Þ � gnðx1; x2 � 1Þ
¼ p1 dnðx1 � 1; x2Þ � dnðx1 � 1; x2 � 1Þð Þ
þ ð1� p1 � p2Þ dnðx1; x2Þ � dnðx1; x2 � 1Þð Þ

þ p2 dnðx1; x2 � 1Þ � dnðx1; x2 � 2Þ

2
64

þmin 0;K 0 þ dnðx1 � 1; x2Þf g

�min 0;K 0 þ dnðx1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>;

�min 0;K 0 þ dnðx1 � 1; x2 � 1Þf g

þmin 0;K 0 þ dnðx1; x2 � 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p0

8><
>:

9>=
>;
3
75

¼ p1 dnðx1 � 1; x2Þ � dnðx1 � 1; x2 � 1Þð Þ
þ ð1� p1 � p2Þ dnðx1; x2Þ � dnðx1; x2 � 1Þð Þ

þ p2

h
min

�
0;K 0 þ dnðx1 � 1; x2Þ

�
�min

�
0;K 0 þ dnðx1 � 1; x2 � 1Þ

�i
Xp1 dnðx1 � 1; x2Þ � dnðx1 � 1; x2 � 1Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

X0

þ ð1� p1 � p2Þ dnðx1; x2Þ � dnðx1; x2 � 1Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

þ p2 min 0; dnðx1 � 1; x2Þ � dnðx1 � 1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

8><
>:

9>=
>;X0:

The second equality above is obtained by the induction

hypothesis that dn(x1,x2)p�K0 . Then Proposition 1 is

used to get the first inequality. For (n,x1-1), whether (i) or

(ii) is satisfied, it follows that dn(x1-1,x2)-dn(x1�1,
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x2�1)X0. The result follows from this fact and the

induction hypothesis.

To complete the proof that Lemma 2(iv) holds for the

acceptance case, it is shown that gn(x1,x2)pbþ h1�K0. For
x2�1, using (8) and Proposition 1,

dnþ1ðx1; x2Þ
Xgnðx1; x2Þ � b� h1

þminf0; gnðx1 � 1; x2 þ 1Þ � gn�1ðx1; x2Þg
¼ gnðx1; x2Þ � b� h1

þmin 0; gnðx1 � 1; x2 þ 1Þ � gnðx1; x2 þ 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
X0

8><
>:
þ gnðx1; x2 þ 1Þ � gn�1ðx1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

X0

9>=
>;

¼ gnðx1; x2Þ � b� h1:

gn(x1�1,x2þ 1)�gn(x1,x2þ 1)X0 is by Lemma 1(ii).

gn(x1,x2þ 1)�gn�1(x1,x2) follows from the induction

hypothesis.

On the other hand, combining Lemma 1(iii) with the

acceptance condition dn(x1,x2)p�K0, dnþ 1(x1,x2)pdn(x1,
x2)p�K0 or simply dnþ 1(x1,x2)p�K0. Combining this

result with dnþ 1(x1,x2)Xgn(x1,x2)�b�h1, we get gn(x1,
x2)pbþ h1�K0, which is (iv) of Lemma 2.

For x2¼ 0, using (9), dnþ1ðx1;x2Þ ¼ gnðx1; x2Þ �
minfbþ h1;K

0 þ gn�1ðx1; x2ÞgXgnðx1; x2Þ � b� h1 .

Again, by combining this result with the acceptance

condition, it follows that gn(x1,x2)o bþ h1�K0. This

completes the proof that for x1X2, gn(x1,x2�1)pgn(x1,
x2)pbþ h1�K0, which is (iv) of Lemma 2. &

Proof of Statement (A) for x1X2: To prove statement (A)

of Lemma 2 for period n and inventory level x1,

assume the following induction hypotheses for

x2p�1, which stem from statement (B).

In period n�1 with x1, one and only one of the following

statements holds.

ðiiiÞ gn�1ðx1;x2 � 1Þ ¼ gn�1ðx1; x2Þ
¼ gn�1ðx1; x2 þ 1Þ
4bþ h1 � K 0 or

ðivÞ gn�1ðx1; x2 � 1Þpgn�1ðx1; x2Þ
pgn�1ðx1; x2 þ 1Þ
pbþ h1 � K 0:

In period n�1 with x1�1, one and only one of the

following statements holds.

ðiiiÞ gn�1ðx1 � 1; x2Þ ¼ gn�1ðx1 � 1; x2 þ 1Þ
4bþ h1 � K 0 or

ðivÞ gn�1ðx1 � 1; x2Þpgn�1ðx1 � 1; x2 þ 1Þ
pbþ h1 � K 0:

To prove statement (A), induction hypotheses are made

over the range of x2p�1 instead of x2p0. This is because

x2þ 1 is used in the induction hypotheses (iii) and (iv)

above. The proof for x2¼ 0 is done after the proof is

completed for x2p�1.
The proof is done for rejection and acceptance cases

separately.

Rejection: gn�1(x1,x2þ 1)4bþ h1�K0. The induction hy-

pothesis says that (iii) holds for (n�1,x1). Combining this

fact with Lemma 1(i), it follows that (iii) holds for

(n�1,x1�1). Then by using (8) for x2p�1,

dnðx1; x2Þ � dnðx1; x2 � 1Þ
¼ gn�1ðx1; x2Þ � gn�1ðx1; x2 � 1Þ

þmin bþ h1;K
0 þ gn�1ðx1 � 1; x2 þ 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4bþh1

8><
>:

9>=
>;

�min bþ h1;K
0 þ gn�1ðx1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

4bþh1

8><
>:

9>=
>;

�min bþ h1;K
0 þ gn�1ðx1 � 1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4bþh1

8><
>:

9>=
>;

þminfbþ h1;K
0 þ gn�1ðx1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4bþh1

g ¼ 0:

Since dn(x1,x2)¼ dn(x1,x2�1), either (i) or (ii) of Lemma 2

is satisfied.

Acceptance: gn�1(x1,x2þ 1)bþ h1�K0. The induction hy-

pothesis says that (iv) holds for (n�1,x1). This fact is used
to obtain the below difference equation.

dnðx1; x2Þ � dnðx1; x2 � 1Þ
¼ gn�1ðx1; x2Þ � gn�1ðx1; x2 � 1Þ
þmin bþ h1;K

0 þ gn�1ðx1 � 1; x2 þ 1Þf g

�min bþ h1;K
0 þ gn�1ðx1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

pbþh1

8><
>:

9>=
>;

�min bþ h1;K
0 þ gn�1ðx1 � 1; x2Þf g

þmin bþ h1;K
0 þ gn�1ðx1; x2 � 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pbþh1

8><
>:

9>=
>;

¼ min bþ h1;K
0 þ gn�1ðx1 � 1; x2 þ 1Þf g

�min bþ h1;K
0 þ gn�1ðx1 � 1; x2Þf g:

For (n�1,x1�1), either induction hypothesis (iii) or (iv)

holds. If (iii) holds, dn(x1,x2)�dn(x1,x2�1)¼ 0. So either (i)
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or (ii) of Lemma 2 is satisfied. If (iv) holds, dn(x1,
x2)�dn(x1,x2�1)¼ gn�1(x1�1,x2þ 1)�gn�1(x1�1,x2)X0.

To complete the proof for the acceptance case, it should

be shown that when the induction hypothesis (iv) holds for

(n�1,x1�1), then dn(x1,x2)p�K0 for x2p�1. From (8),

dn(x1,x2) is as follows.

dnðx1; x2Þ

¼ gn�1ðx1; x2Þ � b� h1

þmin bþ h1;K
0 þ gn�1ðx1 � 1; x2 þ 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pbþh1

8><
>:

9>=
>;

�min bþ h1;K
0 þ gn�1ðx1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

pbþh1

8><
>:

9>=
>;

¼ gn�1ðx1 � 1; x2 þ 1Þ � b� h1p� K 0:

The two inequalities used above follow from the

induction hypotheses. This completes the proof of state-

ment (A) for x1X2 and x2p�1.
To prove statement (A) for x1X2 and x2¼ 0, first

consider an induction hypothesis that is a rejection case

gn�1(x1,x2)4bþ h1�K0. By statement (B) and Lemma

1(ii), it follows that gn�1(x1�1,x2)Xgn�1(x1,
x2�1)¼ gn�1(x1,x2)4 bþ h1�K0. By using these facts in

(8) and (9), we get

dnðx1; x2Þ � dnðx1; x2 � 1Þ

¼ gn�1ðx1; x2Þ � gn�1ðx1; x2 � 1Þ þ bþ h1

�min bþ h1;K
0 þ gn�1ðx1; x2Þf g

þmin bþ h1;K
0 þ gn�1ðx1; x2 � 1Þf g

�min bþ h1;K
0 þ gn�1ðx1 � 1; x2Þf g ¼ 0:

Thus either (i) or (ii) of Lemma 2 is satisfied.

For x1X2 and x2¼ 0, the induction hypothesis for an

acceptance case is that gn�1(x1,x2)pbþ h1�K0. By state-

ment (B), gn�1(x1,x2�1)gn�1(x1,x2)pbþ h1�K0 . Using

this fact with (8) and (9) yields

dnðx1; x2Þ � dnðx1; x2 � 1Þ

¼ gn�1ðx1; x2Þ � gn�1ðx1; x2 � 1Þ þ bþ h1

�min bþ h1;K
0 þ gn�1ðx1; x2Þf g

þmin bþ h1;K
0 þ gn�1ðx1; x2 � 1Þf g

�min bþ h1;K
0 þ gn�1ðx1 � 1; x2Þf g

¼ bþ h1 �min bþ h1;K
0 þ gn�1ðx1 � 1; x2Þf gX0:

To complete the proof for the acceptance case for x2¼ 0,

it should be shown that when the induction hypothesis

gn�1(x1,x2)bþ h1�K0 holds, then dn(x1,x2)p�K0. By

using (9),

dnðx1; x2Þ ¼ gn�1ðx1; x2Þ �min bþ h1;K
0 þ gn�1ðx1;x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

pbþh1

8><
>:

9>=
>;

¼ �K 0:
The result directly follows from the induction hypoth-

esis. This completes the proof of Lemma 2. &

Proof of Lemma 3 Consider the following statements.

(i) dn (x1,x2) 4 �K0, if gn�1(x1,x2þ 1) 4 bþ h1þK0

(ii) dn (x1,x2) p�K0, if gn�1(x1,x2þ 1) pbþ h1�K0.

Note that the contrapositive of (i) is gn�1(x1,
x2þ 1)bþ h1�K0 if dn(x1,x2)p�K0. Since this contra-

positive combined with (ii) is equivalent to Lemma 3, it

suffices to prove (i) and (ii). The proof is separated into two

cases: [x1X1,x2¼ 0 or x1¼ 1,x2p�1] and [x1X2,x2p�1].

Case 1: [x1X1,x2¼ 0 or x1¼ 1, x2p�1] Consider x1X1

and x2¼ 0, (9) can then be rewritten as dn �
ðx1; 0Þ ¼ gn�1ðx1; 0Þ �minfbþ h1;K

0 þ gn�1 �
ðx1; 0Þg , which leads to

bþ h1 þ dnðx1; 0Þ
¼ max gn�1ðx1; 0Þ; bþ h1 � K 0f g:

When dn(x1, 0)4�K0, the last equality gives bþ h1�K0o
max{gn�1(x1, 0), bþ h1�K0}, which in turn implies

gn�1(x1, 0)4bþ h1�K0. When dn(x1, 0)p�K0, we similarly

obtain bþ h1�K0Xmax{gn�1(x1, 0), bþ h1�K0}, which

leads to gn�1(x1, 0)pbþ h1�K0. The last two statements

prove (i) and (ii).

Consider x1¼ 1 and x2p�10, (9) can be rewritten as

dnð1; x2Þ ¼ �min bþ h1 � gn�1ð1; x2Þ;K 0f g: ðA:13Þ

Proof of (i): If gn�1(1,x2þ 1)4bþ h1�K0, then gn�1(1,
x2)¼ gn�1(1,x2þ 1)4bþ h1�K0 by Lemma 2. Using

bþ h1�gn�1(1,x2)o in (A.13), we obtain that dn(1,
x2)¼�(bþ h1�gn�1(1,x2))4�K0.

Proof of (ii): If gn�1(1,x2þ 1)pbþ h1�K0, then gn�1(1,
x2)gn�1(1,x2þ 1)pbþ h1�K0 from Lemma 2. Equation

(A.13) becomes dn(1,x2)¼�K0, which proves (ii).

Case 2: [x1X2,x2p�1]. In this case,

dnðx1; x2Þ
¼ gn�1ðx1; x2Þ � b� h1

þmin bþ h1;K
0 þ gn�1ðx1 � 1; x2 þ 1Þf g

�minfbþ h1;K
0 þ gn�1ðx1; x2Þg:& ðA:14Þ
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Proof of (i) If gn�1(x1,x2þ 1)4bþ h1�K0, then gn�1(x1,
x2)¼ gn�1(x1,x2þ 1)4bþ h1�K0 from Lemma 2.

Also, gn�1(x1�1,x2)Xgn�1(x1,x2) by Lemma 1. Then

from (A.14),

dnðx1; x2Þ
¼ gn�1ðx1;x2Þ � b� h1

þmin bþ h1;K
0 þ gn�1ðx1 � 1;x2 þ 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

4bþh1

8><
>:

9>=
>;

�min bþ h1;K
0 þ gn�1ðx1; x2Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

4bþh1

8><
>:

9>=
>;4� K 0: &

Proof of (ii) If gn�1(x1,x2þ 1)bþ h1�K0, then gn�1(x1,
x2)pgn�1(x1,x2þ 1)bþ h1�K0 by Lemma 2. Using

K0 þ gn�1(x1,x2)pbþ h1 in (37),

dnðx1; x2Þ
¼ �b� h1 � K 0

þmin bþ h1;K
0 þ gn�1ðx1 � 1; x2 þ 1Þf g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pbþh1

p� K 0: &

Proof of Lemma 4: This proof is very similar to the proof

of Lemma 1(i)–1(ii). The only difference is in the

initialization step of the inductive argument. This time,

we initialize with g0ðx1; x2Þ ¼ �h1Ix1X1, which is non-

increasing in x1. From this point on, the proof of

Lemma 1(i)–1(ii) can be replicated under h1 ¼ 0 to

make induction arguments (Table A1). &
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Table A1 Complete cost computations for the illustrative example

n=0 n=1 n=2

x1 x2 xb Vn
C Yn

C x1 x2 xb Vn
C Yn

C x1 x2 xb Vn
C Yn

C

0 0 0 0 — 0 0 0 3.2 0 0 0 0 9.6 3.2
0 0 1 0 — 0 0 1 7.2 4 0 0 1 — 11.2
0 0 2 0 — 0 0 2 — 8 0 1 0 5.35 2.7
0 1 0 3 — 0 1 0 2.7 3 0 1 1 — 10.7
0 1 1 3 — 0 1 1 6.7 7 0 2 0 6 5.7
0 1 2 3 — 0 1 2 — 11 0 2 1 — 11.7
0 2 0 6 — 0 2 0 5.7 6 1 0 0 7.83 4.1
0 2 1 6 — 0 2 1 9.7 10 1 0 1 — 12.1
0 2 2 6 — 0 2 2 — 14 1 1 0 3.58 3.6
1 0 0 3 — 1 0 0 4.1 3 1 1 1 — 11.6
1 0 1 3 — 1 0 1 8.1 7 1 2 0 4.83 6.6
1 0 2 3 — 1 0 2 — 11 1 2 1 — 12.6
1 1 0 6 — 1 1 0 3.6 6 2 0 0 9.2 7.1
1 1 1 6 — 1 1 1 7.6 10 2 0 1 — 13.1
1 1 2 6 — 1 1 2 — 14 2 1 0 5.95 6.6
1 2 0 9 — 1 2 0 6.6 9 2 1 1 — 12.6
1 2 1 9 — 1 2 1 10.6 13 2 2 0 7.2 9.6
1 2 2 9 — 1 2 2 — 17 2 2 1 — 15.6
2 0 0 6 — 2 0 0 7.1 6
2 0 1 6 — 2 0 1 11.1 10
2 0 2 6 — 2 0 2 — 14
2 1 0 9 — 2 1 0 6.6 9
2 1 1 9 — 2 1 1 10.6 13
2 1 2 9 — 2 1 2 — 17
2 2 0 12 — 2 2 0 9.6 12
2 2 1 12 — 2 2 1 13.6 16
2 2 2 12 — 2 2 2 — 20
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