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Contact imaging in the atomic force microscope using a higher order
flexural mode combined with a new sensor

S. C. Minne, S. R. Manalis, A. Atalar,a) and C. F. Quateb)
E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4085

~Received 4 December 1995; accepted for publication 2 January 1996!

Using an atomic force microscope~AFM! with a silicon cantilever partially covered with a layer of
zinc oxide ~ZnO!, we have imaged in the constant force mode by employing the ZnO as both a
sensor and actuator. The cantilever deflection is determined by driving the ZnO at the second
mechanical resonance while the tip is in contact with the sample. As the tip-sample force varies, the
mechanical boundary condition of the oscillating cantilever is altered, and the ZnO electrical
admittance is changed. Constant force is obtained by offsetting the ZnO drive so that the admittance
remains constant. We have also used the ZnO as an actuator and sensor for imaging in the
intermittent contact mode. In both modes, images produced by using the ZnO as a sensor are
compared to images acquired with a piezoresistive sensor. ©1996 American Institute of Physics.
@S0003-6951~96!02510-1#
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There has been recent effort toward the developmen
atomic force microscope~AFM! cantilevers which contain
integrated sensors and integrated actuators. The integr
sensor allows operation of the AFM in situations where e
ternal optical deflection would be cumbersome, nam
UHV1 environments and extension of the AFM to parall
operation.2 Tortonese3 has used the piezoresistor as a sen
for AFM imaging. Takata4 has used changes in impedance
a piezoelectric for dynamic AFM imaging. Hsu5 used the
same effect for imaging with a near-field scanning optic
microscope.

The integrated actuator has been worked on by ma
groups. Itoh6 reported on a single cantilever with two piezo
electric films of zinc oxide~ZnO!, one film for the detector
and the second for the actuator for use in the dynamic mo
Fujii7 has used lead Zirconate Titanate~PZT! films on a
single cantilever in conjunction with an optical senso
Takata8 has imaged with a piezoelectric bimorph for bo
sensing and actuation in the dynamic mode. Recently
reported construction of an AFM cantilever with an inte
grated piezoresistive sensor and integrated piezoelectric
tuator for use in the constant force mode.9 The integrated
actuator improves the performance of the microscope
eliminating the need for an externalz-axis actuator during
scanning, provides a means for feedback during para
probe operation, and increases the imaging bandwidth.10

In this letter, we report on a new method for consta
force imaging in which a silicon cantilever, partially covere
with a single film of ZnO~as described in Ref. 9!, is used as
both an actuator and a sensor. In this mode the same c
lever and experimental configuration can be used for b
static and dynamic applications. By employing the ZnO
both an actuator and a sensor, the design of our cantile
can be significantly simplified by eliminating the need for th
piezoresistor.

The cantilever consists of a rigid actuator supporting
flexible subcantilever which interacts with the surface~see

a!On leave from: Bilkent University, Ankara, Turkey.
b!Electronic mail: quate@ee.stanford.edu
Appl. Phys. Lett. 68 (10), 4 March 1996 0003-6951/96/68(10)/1
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Fig. 1!. The base of the cantilever is the ZnO actuator an
this region is roughly 10 times stiffer than the cantileve
extension. The extension that is attached to the cantilever
be made of any material. In our design it is silicon with
built-in piezoresistor.11 This geometry provides the versatil-
ity of a robust actuator and a soft cantilever for probing th
surface of the sample.

Our method for constant force imaging is based on t
second resonance of the cantilever. The first, or fundamen
resonance produces the maximum displacement at the
and is normally used for intermittent, or noncontact imagin
The second resonance is a flexural mode with a node at
tip, and does not appear when the tip of the cantilever is fre
When the tip is placed in contact with a surface, the seco
resonance appears and its amplitude varies as a function
force. The vibrating tip in contact with the surface transmi
energy into the sample to a degree that depends on the a
age force that the tip exerts on the sample. The power dis
pated by the tip is easily measured by monitoring the curre
into the ZnO film. Since the drive voltage is constant th
current is proportional to the ZnO admittance. The adm

FIG. 1. Schematic diagram of the experimental setup. When using the Z
as both the sensor and actuator, the relevant electronics are shown in
dashed box labeled ‘‘Admittance Image’’. The dashed box labeled ‘‘Piezo
sistor Image’’ represents the electronics for using the piezoresistor as
sensor.
1427427/3/$10.00 © 1996 American Institute of Physics
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tance will vary as the quality of the resonance changes
order to conserve power between the electrical and mech
cal systems. This admittance variation is used for the defl
tion signal in the feedback loop.

Figure 1 is a schematic of our experimental setup. Wh
using the ZnO as both the sensor and actuator the relev
electronics are shown in the dashed box labeled ‘‘ZnO A
mittance’’. The dashed box labeled ‘‘Piezoresistor’’ are th
electronics for using the piezoresistor as the sensor. A co
parison of the piezoresistive signals and the ZnO signals
presented later.

Figure 2~a! is a plot of piezoresistor amplitude versu
ZnO drive frequency for various tip sample spacings. T
line in the lowest part of the plot correspond to the tip bein
far away from the sample. As the lines progress upward,
tip is moved towards the sample by 150 Å per line. Th
resonant peak at 132 kHz represents the third mode of
cantilever. As the tip moves towards the sample the amp
tude is reduced because the tip intermittently strikes t
sample. This can be seen in the middle region of Fig. 2~a!.
The resonance at 132 kHz vanishes completely when the
comes into contact with the surface for the entire cycle.
this point, the boundary condition at the end of the cantilev
changes from a free unrestricted movement to constrain
motion due to the Hertzian contact with the surface.12 This
change creates a second resonance at 102 kHz. Increa
force after tip/sample contact changes the amplitude, theQ
of the resonance, and the resonant frequency.

Figure 2~b! is the same plot as Fig. 2~a! except the ad-

FIG. 2. Plot of the second and third resonant frequencies using the~a!
piezoresistor and~b! zinc oxide for different tip sample spacing. Each line i
the plot represents a 150 Å movement of the tip towards the sample. Cu
at the bottom of the plot represent no contact while curves at the top re
sent complete contact.~c! Plot of the fundamental resonant frequency usin
the piezoresistive sensor.
1428 Appl. Phys. Lett., Vol. 68, No. 10, 4 March 1996
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mittance of the ZnO is measured rather than the stress in th
piezoresistor. The coupling between the mechanical syste
and the ZnO is greater at higher order modes due to th
increased curvature in the ZnO. This allows us to monito
changes in the ZnO admittance at higher order modes, whic
was not possible at the fundamental. In Fig. 2~b! the varia-
tion at 120 kHz is an external electromagnetic interferenc
signal that is picked up by interconnecting wires, and is un
related to the cantilever.

Figure 2~c! shows the fundamental, or first, resonance o
the cantilever measured with the piezoresistor at 35.5 kH
We note that the fundamental resonance can be used for
termittent contact imaging with the piezoresistor as a sens
and the ZnO as an actuator.

To examine the degree of change in the resonant pea
with force we excite the ZnO at a given resonance, use a loc
in amplifier to measure the piezoresistor and the ZnO admi
tance, and vary the tip sample spacing. The results are pr
sented in Fig. 3 as standard force curves. In Fig. 3 negativ
tip sample distances represent the tip out of contact with th
sample. The sharp dip in the force curves corresponds
sticking due to the meniscus between the tip and sampl
Minimum detectable deflection interprets the signal to nois
information contained in the curves of Fig. 3, and is pre-
sented in the following section.

Figure 3~a! was performed with an excitation of 132 kHz
~third order mode! and a tip amplitude of 1000 Å~0.1 V to
ZnO!. The admittance is detected by measuring a curren
through a 10 kV resistor in series with the ZnO, and corre-
sponds to the cantilever deflection. The form of this curve
suggests an intermittent contact mode. There is no change
admittance while the tip is far from the sample. As the tip
approaches, it begins to strike the surface, and the amplitu
of the resonance decreases. Once the tip is in complete co
tact with the surface, the admittance no longer changes.

In Fig. 3~b! the cantilever was excited at the second~102
kHz! resonance, with the ZnO drive again at 0.1 V, and the
ZnO admittance was monitored. The form of this curve sug
gests a contact mode. When the tip is away from the samp
the response is zero. Once the tip contacts the surface t
response increases due to the increased amplitude of t

es
re-

FIG. 3. Force curves for~a! intermittent contact with the zinc oxide as a
sensor,~b! contact with the zinc oxide as a sensor,~c! intermittent contact
with the piezoresistor as a sensor,~d! contact with the piezoresistor as a
sensor. Negative distances represent the tip out of contact with the samp
Minne et al.
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resonance. Since there is no resonance present at 102
when the tip is away from the sample, an excitation of 0.1
to the ZnO causes only a 30 Å deflection at the tip. The ran
of the force curve shown extends over 2000 Å, which
considerably greater than the on, or off, resonance amplit
of the tip. This indicates that this is truly a contact mode, n
a modified intermittent contact mode.

Figures 3~c! and 3~d! correspond to measurements take
in the same manner as Figs. 3~a! and 3~b! except the piezore-
sistor is used as the sensor instead of the ZnO. From
traces in Fig. 3, it is apparent that the noise in the piezo
sistor ~PR! traces@Figs. 3~c! and 3~d!# is less than the noise
in the ZnO traces@Figs. 3~a! and 3~b!# for both intermittent
contact and contact modes. The minimum detectable defl
tion, where the cantilever response corresponds to the
noise, for the four modes in a 100 Hz bandwidth are:~a!
intermittent contact/ZnO530 Å, ~b! contact/ZnO540 Å, ~c!
intermittent contact/PR520 Å, ~d! contact/PR530 Å. The
minimum detectable deflection for intermittent contact usi
the fundamental mode and dc constant force are 10 Å i
100 Hz bandwidth.

In the design of this initial cantilever we were plannin
to use the ZnO only as an actuator, and did not anticipate

FIG. 4. Images taken in~a! intermittent contact with the zinc oxide as a
sensor,~b! contact with the zinc oxide as a sensor,~c! intermittent contact
with the piezoresistor as a sensor,~d! contact with the piezoresistor as a
sensor. In all images feedback to the ZnO actuator was used.
Appl. Phys. Lett., Vol. 68, No. 10, 4 March 1996
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use as a sensor. In order to facilitate the process of fabric
tion, we designed the ZnO film in such a way that the majo
portion covered the die with a minor portion covering the
cantilever. The major portion, of course, is insensitive to can
tilever vibration. The area of the film on the die is 26 time
larger than the area of the film on the cantilever. It is feasib
in a new design to eliminate most of the film on the die an
this should improve the sensitivity by an order of magnitude

Images are readily obtained from these four new probin
techniques, and are presented in Fig. 4. The images in Fig
are in the same order as that of Fig. 3:~a! intermittent
contact/ZnO,~b! contact/ZnO,~c! intermittent contact/PR,
~d! contact/PR. The sample is a two-dimensional gold gra
ing with a period of 1mm and height of 1000 Å. All of the
images were taken with feedback to the ZnO actuator.

We would like to thank Babur Hadimioglu and Jim
Zesch at Xerox PARC for the ZnO films. The primary sup
port for this work came from the Joint Services Electronic
Program N00014-91-J-1050 of the Office of Naval Researc
with partial support from NSF. S.C.M. acknowledges th
support of the Leland T. Edwards Fellowship and S.R.M
acknowledges the support of the Urbanek Fellowship.
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