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Recursion operators of some equations
of hydrodynamic type

M. Gurses? and K. Zheltukhin
Department of Mathematics, Faculty of Sciences, Bilkent University,
06533 Ankara—Turkey

(Received 7 August 2000; accepted for publication 28 November)2000

We give a general method for constructing recursion operators for some equations
of hydrodynamic type, admitting a nonstandard Lax representation. We give sev-
eral examples foN=2 andN=3 containing the equations of shallow water waves
and its generalizations with their first two general symmetries and their recursion
operators. We also discuss a reductiomNef 1 systems tdN systems of some new
equations of hydrodynamic type. @001 American Institute of Physics.

[DOI: 10.1063/1.1346597

[. INTRODUCTION

Most of the integrable nonlinear partial differential equations admit Lax representations,
Le=[A.L] ()

wherelL is a pseudo-differential operator of order and A is a pseudo-differential operator.
Recently we established a new method for such integrable equations to construct their recursion
operators. This method uses the hierarchy of equations,

Ly, =[An.L], @
and the Gel'fand—Dikkfi construction of theA,-operators. Defining an operatBy, in the form
An=LA,_mt Ry, 3

one then obtains relations among the hierarchies,
L, =LL; __+[RniLl. (4)

This equation allows to findl; interms ofL; . Itis important to note that one does not need
to know the exact form of\,,. For further details of the method see Ref. 1.

In Ref. 1 we introduced a direct method to determine a recursion operator of a system of
evolution equations when its Lax representation is known. It has no direct reference to the Hamil-
tonian operators. Hence one may be able to determine the recursion operators when any one of the
Hamiltonian operators are degenerate. In the same paper we gave several applications of the
method. In all these examples we have considered the Lax representation is given either in a
pseudo-differential operator or in matrix forfbaking values in some lower dimensional Lie
algebrag We call such Lax representations as standard Lax representation. On the other hand
there are some systems of evolution equations, such as the equations of hydrodynamic type, which
are obtained by nonstandard Lax represenations used in the present paper. We first show that the
method introduced in Ref. 1 is also applicable here in the case of systems of equations of hydro-
dynamic types and we give several examples for illustration. These equations and their Hamil-
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1310 J. Math. Phys., Vol. 42, No. 3, March 2001 M. Gurses and K. Zheltukhin

tonian formulation(sometimes called the dispersion-less KdV systerere studied by Dubrovin
and Novikov® See Ref. 4 for more details on this subjéste also Ref.)5 It is known that these
equations admit a nonstandard Lax representation,

JL B
E—{Al}k, 5

whereA,L are differentiable functions dfx,p on a Poisson manifolt with local coordinates

(x,p) and{,}, is the Poisson bracket. Qv we take this Poisson brackgt,=p*{,}, where{,}

is the canonical Poisson bracket ands an integer. For more information on Poisson manifolds
see Refs. 6 and 7. Equations of hydrodynamic type with the above Lax representations were
studied in Refs. 8—11. Having such a Lax representation, we can consider a whole hierarchy of
equations,

L
E_{Anvl-}k- (6)

We can also represent functioh, in the form given in(3) and apply our methddfor the
construction of a recursion operator for the equati®n There are some other works**which

also give recursion operators of some equations of hydrodynamic type. The form of these opera-
tors are different than the recursion operators presented in this work. Our rhetiuztiices
recursion operators for hydrodynamic type of equations in the fBemA+B D~ ! whereA and

B are functions of dynamical variables and their derivatives. All higher symmetries obtained by
the repeated application of this recursion operator to translational symmetries also belong to the
hydrodynamic type of equations. The recursion operators obtained in Refs. 12—14 are of the form
R=CD+A+BD !E, whereA,B,C, andE are functions of dynamical variables and their
derivatives.

In the next section we discuss the Lax representation with Poisson brackets for polynomial
Lax functions. In Sec. Il we give the method of construction of the recursion operators following
Ref. 1. In Sec. IV we give several examples ket 0 andk=1. In Sec. V we consider the Poisson
bracket for generak and let

L=p+S+Pp 1 (7

and find the Lax equations and the corresponding recursion operatdi=f@. In Sec. VI we
consider the Lax function

pr 1
(y—1)°

and takek=0. We obtain the equations corresponding to the polytropic gas dynamics and its
recursion operator®®° It is interesting to note that the systems of equations and their recursion
operators obtained in Secs. V and VI are transformable into each other. In Sec. VII we give a
method reduction from ah+1 system to arN system and from aN+1 system to aiN—1

system by letting one of the symmetrical variabldsfined in the tejteither to zero or equating

to another variable. The systems obtained by the reduction are equivalent to the systems obtained
by the Lax function(in symmetrical variableshaving zeros with multiplicities greater than one.
Reduced systems are shown to be also integrable, i.e., they admit recursion operators.

L=p” '4u+ p- 7L, €S)

II. LAX FORMULATION WITH POISSON BRACKET

We start with the definition of the standard Poisson bracket. fl(gfp) and g(x,p) be
differentiable functions of their arguments. Then the standard Poisson bracket is defifssk by
Refs. 6 and 9 for more detaljls
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o= = oo 9
We give a slight modification of this bracket’as

{f.gh=p"{f.q}, (10)

wherek is an integer. It is easy to prove thit, also defines a Poisson bracket for lak 7.
Although this bracket is equivalent {o}, underpX (d/dp) = d/dq whereq is the new variable,
we shall keep using it. The main reason is technical. There is a nice duality between the systems
obtained by polynomial Lax representatidr=pN+---, with Poisson brackef,}, and by Lax
representior. =p”[pN+---] with Poisson brackef,}. For illustration we have examples, equa-
tions governing the polytropic gas dynamics, given in Propositions 6 and 7.

For eachke Z we can consider hierarchies of equations of hydrodynamic type, defined in
terms of the Lax function,

N-2
L=p" "1+ > p'si(xt), (12)
i=—1
by the Lax equation
aL
—={(L"N"D) gL, (12

at,

wheren=j+I(N—1) andj=1,2,...,(N—1),l e N. So we have a hierarchy for eag&hand |
=1,...,(N—1). Also, we requiren=—k+1 to ensure thatl(™N-1)__, _, is not zero. With
the choice of Poisson brackdt3,, we must take a certain part of the series expansiarfé¥ —)
to get the consistent equati¢h2). This part is ("N"Y)__,, ;.

The Lax function(11) can also be written in terms of symmetric variablgs . . . ,uy,

1 N
L=—1I (p—up, (13)
Pi=1

that isuq, ... ,uy are roots of the polynomial
pN14+Sy_pN %+ ... +S_p L.

In new variables the equatidi?) is invariant under transposition of variables.

[ll. RECURSION OPERATORS

For each hierarchy of the equatiofi®), depending on the pail\,k), we can find a recursion
operator.
Lemma 1: For any n

Ln:LLn—(N—1)+{Rn;L}kv (14
where function R has a form
N-2
Rn: IZEO pl_kAi(S,]_ e SN,Z,&S,llﬁtn,(N,l) . 'ﬂSV*Z/ﬂtn*(N*l))' (15)

Proof:
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1312 J. Math. Phys., Vol. 42, No. 3, March 2001 M. Gurses and K. Zheltukhin

(LYONZDY =LY N LYY e e

So,
(LYONTD) = LN D) LN ) )= ke
(LN T )k (16)
If we put
Ro=(L(LY™N"D ") D)o = LN Y )k
then
(LVINTD) g =LY NTD TR,
Hence,

Ln:{(Ln/(Nil))a—k+1;L}k:{L(Ln/(Nil) 7l)>7k+1+ Rn;L}= I—Lnf(Nfl)+{Rn;|—}ka (17

and (14) is satisfied. Evaluating powers of (L(LMN"D-Y__ .. ,,; and

—(L(LMN=D =y ) s we get thatR, has form(15). O
Lemma 2: A recursion operator for the hierarchy (12) is given by equalities, ferNm
—-2N-3,...,—1,
19Sm m+1 Sm m+1 m+1 .
> S S (4 1-KA 1S 2 (M=Aj1,8n-j, (18
I =t R T =
where to simplify the above formula we have defined that;$1 and Sy-;4=0,
(dSy_1/01,) =0. Coefficients f_,,AN_3, - - - A can be found from the recursion relations, for
m=N-2,...,—1,
N—1 IS N—2
N—2)+
(N=DAn,= 3§ =t 3 (+ 1A 1S 24m
Ith—(Nn—-1)  =m
N-2
=2 (N=2+M= DA 18-z (19

Proof: Let us write the equality14), using(15) for R,,

E P o

N—2 N—2 IS )
= pN 1+ piS)( S pt WNm2Emey
i=-1 i=-1

N—-1
1P <j—k>pl‘k‘lAj)

i==1 Ith—(n-1)
N-2 N-1 N-2
| 2 pJS;,x> —pk( p p"‘A;,x)<(N—1)pN2+jE_l ileSj)-
To have the equality, the coefficientspd" 2, . .. ,pN " andp 2 must be zero; it gives recursion
relations to findAy_,,...,Ay. The coefficients ofpN~2,... p~! give the expressions for
ISy_oldt,  dS_4lat,,. O

.....

Although the recursion operatdt, given by (18), is a pseudo-differential operator, but it
gives a hierarchy of local symmetries starting from the equation itself. Indeed, equalgieglL9)
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give expressiongSy_,/dt,  dS 1/dt, interms ofSy_ 5, ..., S 1 anddSy o/dt, (n-1)
dS_4/dt,_(n-1)- Hence, the recursion operatfris constructed in such a way that

{(LVIN=D ALy L ERALYNTDY L. (20

IV. SOME INTEGRABLE SYSTEMS

We shall consider first some examples ket 0, k=1 and the general case in the next section.

A. Multicomponent hierarchy containing also the shallow water wave equations, k=0

This hierarchy corresponds to the c&se0. Let us give the first equation of hierarchy and a
recursion operator foN=2,3.
Proposition 1: In the case N2 one has the Lax function

L=p+S+Pp 4
and the Lax equation for# 2, given by (47), when 0,

§S=SS+P,,

(21)
3P=SP+PS,,
and the recursion operator, given %8),
S+SD;t 2
= ] (22)
2P+P,D,* S

These equations are known as the shallow water wave equations or as the equations of
polytropic gas dynamics foy=2 (See Sec. VI
The first two symmetries of the syste(@1) are given by
S[1=(S3+68P)X,
Ptl=(382P+3P2)X, (23
S,=(S'+1258°P+6P?),,
P, =(4S°P+12SP),. (24)

These are all commuting symmetries.
Remark 1: In symmetric variables the system (21) is written as

2u=(U-+v)Uy+ Uy,

(25)
vi=vUy+ (U+v)vy,
and the recursion operator (22) takes the form
u+v+uD, b 2u+uD it
= (26)

2v+v,D, Y utvto,D )
Proposition 2: In the case N3 one has the Lax function

L=p?+pS+P+p !Q,

Downloaded 08 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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and the Lax equation with-a3 is

3S=(3P—58)S5+ 2SR+ Qy,

§P=3QS+ (G 3P)P+SQ,

(27)
1Qi=1SQ§+ QP+ (§S+3P)Q,.
The recursion operator, corresponding to this equation, is
s? S
-7 P+PXD;1—%D;1-S §+%D;l 3
P,S P P
R= 7Q+(QX+ %)D;l—sz;ls P+ %D;l 2S (28)
SQ (SQ  SQ)_ ; QO ., _ 3Q Q
| =X, Xx _ =X . =~ =X =]
4+2+2DX 4Dx32+2Dx
Proof: Using (19) we find the functionR,, and using(18) we find the recursion operator
(29). O
Remark 2: In symmetric variables the equation (27) is written as
3U=

(—2u+ F(uv+uw+ow) + S (v +W)?)u+ (3u?+ 2uv + 2uw)v, + (u?+ 2uw+ 2uv)wy,

$v= v+ Juv + ow)uy+ (G024 oW+ U)W, + (— 502+ 3(Uv + UW+ W) + U+ W)?)v,,
(29

W= (3wW2+ uw+ 2wo ) ug+ (GW2+ 2wo + 2uw) o+ (— 2w?+ S(uv Fuw+ow) + 3(v +u))w,,

and the recursion operator takes the form (A1) given in the Appendix

B. Toda hierarchy (k=1)
Toda hierarchy corresponds to the céisel ® Let us give the first equation of hierarchy and
a recursion operator fdd=2 andN=3.
Proposition 3: In the case N2 and n=1 one has the Lax function
L=p+S+Pp 1
and the Lax equation forf11, given by (41)
Si= Py,

P=PS, (30)
and the recursion operator, given by (42)

S 2+PD P!
2P s+sPD P

(31
The first two symmetries of the equati¢®0) are given by
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$,=(2SP),,
(32
P, =P(2P+S%),,
S,=(3S’P+3P?),,
(33
Pi,=P(6PS+S°),.
Remark 3: In symmetric variables the equation (30) is written as
Ut: va,
(34)
V{=0vUy,

and the recursion operator (31) takes the form

utv+uv,D,bu"t 2utuv, D tvt

R= _ _ . 35
ZU+UUXDX1-U71 u+v+vuXDXl-v7l @5

Proposition 4: In the case N3 and n=1 one has the Lax function
L=p®+pS;+P+p 1Q,
and the Lax equation with=al is
Si=P,— 1SS,
Py=Qx, (36)
Q= %QS(

The recursion operator, corresponding to this equation, is
S 3+2Q,0,'Q7?
R= 5Q+3Q:D, " P 25+(SQ.D, Q71| 37

iSQ+isQD,* Q. P+PQDQ7?

P— S+ (3P, —iSS)D;

N|=

Proof: Using equalitieg(19) we find the functionR,, and using(18) we find the recursion
operator(37). O
Remark 4: In symmetric variables the equation (36) is written as
U= %U(— Uy T 0yt Wy),
v=30(+ U=y +W,), (38)
W= %W(+ Uyt 0= Wy),

and the recursion operator takes the form (A2) given in the Appendix

V. LAX EQUATION FOR GENERAL k

We shall only consider the case wheéde=2. We have the Lax function

L=p+S+Pp 1, (39)
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and the Lax equation

JL
In:{(l—n)>—k+1;|—}k- (40)

We consider two casds=1 andk<0.

A. The first case k=1

Proposition 5: In the case N2 and k=1 one has the Lax equation

Si=kP<"1p,,
(41)
P.=kPkS,,
and the recursion operator for this equation is
S+(1-k)SD,' 2+kP<p,D, L. Pk
(42)

"l 2P+(1-kPD;!  S+kSPDL Pk
Proof: The smallest power g in L" is —n. To have powers less thank+1 we must put

n=k. If there are no such powers then Poisson bracket$(&rd;L},=0.
Let us calculate the Lax equation,

Le={(LM= e 1ibhe= —{(L= L
We have (M) _=[(p+S+Pp H¥-_,=P*p~K, thus
Li=—{P*p X p+S+Pp 1}.

And we get the equatio®1). Using (18), (19) we find the recursion operato42). O
First two symmetries are given as follows:

s, = (k+1)(P¥S),,

(43)
k
P.=(k+1)P¥ P+-%?| .
1 2 «
S, =(k+1)(k+2) EF>k52+ LPk“
2 2 k+1 o
(44)
k
Py, = (k+1)(k+ 2)Pk( PS+ 683) :
X
Remark 5: In symmetric variables the equation (41) is written as
ui=kuv* o,
(45)

v=ku<"pku,,

and the recursion operator (42) takes the form
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u+v+(1—kuD, T+ 2u+(1-kyuDy T+
kukvk*lvxD;l_uka*kle kukkalvxD;l.u*kﬁfl.U*k
R= 46
20+ (1—k)v D+ ut+v+(1—ko,Dy 1+ (46)
kuk 1 ku D 1. —kv—k+1 kuk 1 ku D 1. —k+lv—k
B. The second case k=0
Proposition 6: In the case N2 and k<0 one has the Lax equation
Si=(—k+2)(—k+1)SS§+(—k+2)P,,
(47)
=(—k+2)(—=k+1)SP+(—k+2)SP,
and the recursion operator for this equation is
S+(1-k)SDy'  2+kP<P,D Pk
(48)

"l 2P+(1-kPD;!  S+kSPDL Pk

Proof: The largest power gp in L" is p". To have powers larger thank+1 we must put
n=—k+ 1. Then we have

(LYo 1 =[(p+S+Pp™H) ]y =p~*t
thus
Li={p ¥ Lp+S+Pp 1.
Then the Lax equation becomes
S=5Sy,
P,=P,.

This is a trivial equation; let us calculate the second symmetry. We Hav&" @) _,.,=[(p
+S+Pp71)fk+l]>7k+l_ k+2+( k+2)S —k+1 thUS

Li={p “"2+(—k+2)Sp ¥ L;p+S+Pp .

We get the equatiod7). Using (18), (19) we find the recursion operato48). O
First two symmetries are given as follows:
S, =(k=2)(k—=3)(P S+ §(1-k)S%),,

(49
P, =(k—2)(k—3)(SSP+3(1-k)S* P, +PPy),

1
S, =(2-k)(3—K)(4- k)( SP+g 54+2<2—k>P2)x’

(50)
P,=(2—K)(3—Kk)(4—k)

SZSXP+ 5(1- k)S®*P,+SPR+ ——— ! ZSX)
(2—Kk)

Remark 6: In symmetric variables the equation (47) is written as

=(—k+2)(1—K)(Uu+v)Uy+ (—k+2)uv,,
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ve=(—k+2)ou,+(—k+2)(1—K)(u+0v)vy, (51)

and the recursion operator (48) takes the form

u+v+(1—kuD, T+ 2u+(1—k)uD T+
kukvk—lvxDXfl.u—kv—kﬁ-l kukvk—leD;l‘u—k#—lv—k ,
R= 20+ (1—K)v,D 1+ u+ov+(1—k)vD 1+ (52

kuk_lvkuXD)(_l'U_kU_k+l kuk_lkaxD;l~u_k+lv_k

In this section, to obtain the recursion operators we have considered two differentkcases
<0 andk=1 to simplify some technical problems in the method. At the end we obtained recur-
sion operators having the same for(d®) and(48). Hence any one of these represent the recur-
sion operator fok e Z. It seems, comparing the results, that the systems of equations in one case
are symmetries of the other case. For instance, the sy&t@nrs a symmetry of systenl).

Hence we may consider only one case with recursion opetd®rfor all integer values ok.

VI. LAX FUNCTION FOR POLYTROPIC GAS DYNAMICS

In this section we consider another Lax function, introduced in Ref. 10,

v? 1
L=p” *+u+ =D p-rtL (53)
and the Lax equation
b y—1 3
E:T{(L’W(y 1>)211L}01 (54)

gives the equations of the polytropic gas dynamics.
Proposition 7: The Lax equation corresponding to (54) is

Ui+ uu,+ov? %0,=0,
vt (U),=0. (55
Proof: Expanding the functiori53) around the poinp=c, we have

v 1 - yI(y=1) y
L B A L LA

all other terms have negative powerspfTherefore

pY +u+

_ Y
ylI(y=1) =p’+ ——
(L) =pre—Lopu

and the Lax equatiofb4) corresponds t@55). O
Proposition 8: The recursion operator for the equation (55) is

u 20772 v’ ?
us Y pos Chi P
y—1 y—1 y—1
R= : (56)
2v + X pot u+7;2u D ?!
y=1 y-17% y—170

Proof: Using the equation
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JL
[ Pe]

—LaL+R L
- In {na }v

in the same way as for the polynomial Lax function one can find the recursion op&sérof]
It is interesting to note that the equati¢fi7) and equations of polytropic gas dynami&®)
are related by the following change of variables:

u

S:(—k+2)(—k+1)’

(57)

pU—k+1)
EEI

where y= (—k+2)/(—k+1). We note that under this change of variables recursion operator
(48) is mapped to the recursion operatéf).

VII. REDUCTION

In this section we consider reductions of the equatid®), written in symmetric variables, by
settingu;=0, or u;=Uy,..., Oru;=U,=---,=Uy. These reductions correspond to the Lax
equations with different Lax functions. For reductiop=0 we have a polynomial Lax function
with simple rootsL=(p—uy)---(p—U,) and for reductionuy=u, we have a polynomial Lax
function with a root of multiplicity twoL = (1/p) (p—up)?(P—Un_1) - . . (P—U,), etc. We note
that instead of working on the Lax functions with higher multiplicities like the last example one
can take a polynomial Lax function without any multiplicities and perform the reductions we
propose in this section.

A. Reduction u;=0
Let us write the equatiofl2) as
A(uy,...,u))=0, (58

whereA is a differential operator. Then

(Z(UN, . ,u2),)
—0 |

AUy, . )]y, —0= (59

where A is another differential operator. Indeed, following Ref. 8 for the Lax function
= (1/p) Hszl(p—uj) we have

o7L_ Uj ¢
gt Siptuy’
N
s Y
ax TfZipty;’
and
N
aL 1 1
—=L|—=+
ap ( p j§=:lp+uj

Thusu; =Res,__, {M,L}x, whereM = (LV(N=1Y)_ .. The Lax equatiori12) can be written
as
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N N N

Uj Ui 1 1
TR RN D

=1 p+uj =1 p+uj p =1 p+uj

. (60)

Note thatp*M, and p"Mp are polynomials. So, if we put;=0 and calculate the residue of the
right hand side ap=0 we get(59). A new equation,

Z(UN, P ,Uz):O, (61)

is also integrable and a recursion operator of this equation can be obtained as a reduction of the
recursion operator of the equati¢s8). Let R be the recursion operator (68) given by Lemma

2, then
R |=* 62
0---0|0/

Indeed, we found the recursion operator using forniil. This formula can be written as

R|u1:0:

Uj,tn LL kR % Uj X
= N ’
. n—(N—-1) p n,pj:1 p+Uj

N
—|okRn,x(—1 21 ! (63

+
P Sipty

and in the same way as for the reduction(58) we have(62); note, thatp"Rn,X and kan,p are
also polynomials.

Lemma 3: The operator R a recursion operator of the equation (61)

Proof: Equation(61) is an evolution equation, so, to prove tfiis a recursion operator we
must prove that for any solutioru(, ... ,u,) of (61) the following equality holdgsee Ref. &

D;R=RDj},

whereD3 is a Frechet derivative of.
If (uy,...,Uy) is a solution of(61) then (uy, . . . ,u,,u;=0) is a solution of58) and for the
solution Uy, ... ,u,,u;=0) we have

DyR=RD,. (64)
Next
D | =%
0...0 *

Hence by(64) we haveDR=RD. Calculating the Frechet derivative, we take derivatives with

respect to one variable, considering other variables as constants. Thus, to céiculatean put
u;=0 and differentiate with respect to other variables or we can first differentiate and then put

u;=0. It means thab=Dj3 and

DA|u10:(

and

R|u1:0:

D;R=RDj.
O
Let us consider the reduction of systems, given by Remark 2 and Remark 4 and their recursion

operators.
Proposition 9: Putting w=0 in (38) and (A2) we obtain a new system
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= %U(_ux+vx),

1 (65
V=730 (+Uy—vy),
and its recursion operator
u u
—UU+Z(U+U) —Z(u-l—v)
u -1 u -1
+Z(ux_vx)Dx +Z(Ux_vx)Dx
R= , (66)
~Zuto) —Uo+ > (U+v)
4(u v vty v
v -1 v -1
+Z(_ux+vx)Dx +Z(_ux+vx)Dx
respectively O
Proposition 10: Putting w=0 in (29) and (A1) we obtain a new system
U= (— 3U%+ uv + ) Ut (3u+ fuv)vy,
(67)
0= (3024 3uv)u+ (— 2%+ 2uv + U)oy,
and its recursion operator
2
uc  3uv U Uoy| XU Uvy 1
"2t a (7+T)DX G| 5+ 5o
u u u u
—ZXDX*l.u+ZXD;1.u +ZXD;1~U—ZXD;1~U
R= v ot UUX+UXU D-1 v?2 3uv  [uvy uw D-1 ' 68
e S B I N
1% 1% 1% 1%
—fD;l-u+ZXD;1-v +ZXD;1~U—ZXD;1~U
respectively O

It is worth mentioning that by reduction we obtain a new equation. For example, consider the
casek=0. The equatior(25), corresponding tiN= 2, and reduction of the equatid@9), corre-
sponding toN= 3, are not related by a linear transformation of variables. Indeed, in the equation
(25) coefficients ofu, ,v, are linear inu,v but in the equatiori67) coefficients ofu,,v, contain
quadratic terms. Hence they cannot be related by a linear transformation.

B. Reduction upy=u;

It follows from (60) that the Lax equatioil2) can be written as

N

Z hi(Un, . UDUj (69)
where i,j=1,...N and h{=h1(ui JUny -0, .0 u) when i #j and h;
=h,(u;,uy, ...,0;,...,Uq), the overcaret denotes the absence of the corresponding variable. It
also follows from(60) that the functiondi;(xy, . . . X1) andhy(xy, . . . X;) are symmetric under
permutations of variablesy_4, ... X;.

Reductionuy=u; gives us a new integrable equation,
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uN,t:(hN(uN WUN—25 -+ ,Uz,UN)‘Fhr%j(UN JUN=15 -+« +5U2, Un))UN
N—1
+ ,Zz hi(Uy UnC1s - - U2, U U
(70
N-1
U= 2N (Un,UnC 1, - - U, Up) Uy T jgz hi(uy,Un—1, ... U2, UN)Uj
wherei=(N—-1),...,2.

The Frechet derivative a69), under conditioruy=u,, has the form

an aio e ain-1) ain

az az e azn-1) az
DA|uN=ul: : : : : ) (72)

AN-1)1 {N-1)2 T dN-1)(N-1) YN-1)1
ain aio e ain-1) ai

wherea;; , i,j=1,... N are differential operatos. So, the Frechet derivativ€r0f can be writen

as
aptan app ayn-1)
Di— 2<'?121 a?z aZ(l?lfl) 72
2ain-1y1 AN-1)2 T AN—1)(N-1)

Now let us write the recurcion operator 89), given by Lemma 2. Fron(63) it follows that,
under conditioruy=uy4, it has the form

b1y b, bl(Nfl) bin
by, b2 Tt b2(N—1) oy
Rluy-u,= : : : : , (73
b(Nfl)l b(Nfl)Z b(Nfl)(Nfl) b(Nfl)l
bin b, T bl(N—l) b1y
whereb;; , i,j=N,...,1 aredifferential operators.

Now we can write a recursion operator for E@0),

b1+ biy b, - bin-1)
e I 74
2bin-1)1 Bn-1)2 7 Bn-nyn-1)

The form of (74) can be deduced by applaing 0peratéR|uN=ul to a symmetry
(dunfdty,dun—1/dty AUyl dty, duyldt,).
Lemma 4: The operator k (74) is a recursion operator of the equation (70)

Proof: Equation(70) is an evolution equation, so, to prove tiRis a recursion operator we
must prove that for any solutioru(, ... ,u,) of (70) the following equality hold§see Ref. &

D,R=RDj}.
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If (uy,...,Up) is a solution of(70) then Uy, ... ,Us,u;=uy) is a solution of(69) and for the
solution Uy, . .. ,Us,u;=uy) we have
DAR=RD,. (75
One can show that from commutation @fl) and(73) follows the commutation of72) and(74)
that is equality(75). O
Let us consider reduction of systems, given by Remark 2 and Remark 4 and their recursion
operators.
Proposition 11: Putting w=u in (38) and (A2) we obtain a new system
U= 3Uvy,
) (76)
U= 30 (2Ux—vy),
and its recursion operator
—(2uv+u?) —3uv —tu(2u+v)— 3u?
+uv, Dt +3U(2u,—v,)Dy !
o —2u(uv),Dtu? —u(uv),Dtvt -
—(2u+v)-3uv  —(uv+ud)+iv(2uto) |
+(—2u+v)D, Y +3(2—ug+u,)D, !
—2v(uv), D tut —v(ud),D vt
O
Proposition 12: Putting w=u in (29) and (A1) we obtain a new system
U= (U%+2uv + Sv?)u+ (U%+ 2uv)vy,
(78)
=302+ 2uv) U+ (— 2+ uv +u?)u,,
and its recursion operator
u?+Zuv+(u2+uv),Dy b 2u?+ juv + Hu?+uv)Dy !
+%UXD;1'U +%UXD;1' _%UXD;l'U
R= 1.2 -1 1.2, 3 2 11" (79)
4uv +30°+2(uv)Dy — 30+ 3uv + U+ (uv),D,
+%UXDX_1'U +%vXDX_1~u—%vXDX_1~v
O

We may go on introducing new reductions. For instance a reduction of theutype,=uy,
(N>3), reduces aN-system to an Nl—2)-system. One may obtain thidN{2)-system also
from the polynomial Lax function having the forom=p~ (p—u;)3(p—ug)---(p—un_1) (a zero

of L with multiplicity three. In this way one obtains an infinite number of different classes of
N=2, N=3 systems.

VIIl. CONCLUSION

We have constructed the recursion operators of some equations of hydrodynamic type. The
form of the these operators fall into the class of pseudo-differential operatoB D~ whereA
andB are functions of dynamical variables and their derivatives. The generalized symmetries of
these equations are local and all belong to the same @lassthey are also equations of hydro-

Downloaded 08 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



1324

J. Math. Phys., Vol. 42, No. 3, March 2001

M. Gurses and K. Zheltukhin

dynamic typé. We have introduced a method of reduction which leads also to integrable classes.
Depending upon the type of reductions we may obtain infinitely many different clasdés of

systems. These properties, the bi-Hamiltonian structure of the equations we obtained and equa-
tions with rational Lax functions, will be communicated elsewhere.
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APPENDIX: RECURSION OPERATORS FOR N=3 SYSTEMS (29) AND (38)

Recursion operators of the systef29) and(38) are, respectively, given by

u2+3 +uw)+
T Z(UU uw) +wo

u
+5X(v+w)D;1

u -1
+ E(UX+WX)DX

Ux
4

Uy

D, b u+ 2

Dt
uX

2

-1
D, w

v oWt 3vw
4(u v+Ww) >
Uy _1
+?(U+W)DX

v -1
+ E(UX+WX)DX

4 x4

w . +3vw
gutvtwit —-

W
+7X(u+v)D;1
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u . +3uw

gUutvtwt ==
u
+5X(v+w)D;1

u -1
+ E(Ux"'wx)Dx

Ue U,
+ZDX .U_ZDX ‘U
Ue
+ZDX W

2

U+3 +ow)+
7 4(Uv VW) +Uuw

U
+§(u+w)D;1

v -1
+ E(UX+WX)DX

Ux Ux
+—Dytu——

2 Dx 2 D, v

w - +3uw
gutvtwit —-=

W
+7X(u+v)D;1

u o +3UU
gurvtw)+—=

u
+5X(v+w)D;1

u -1
+ E(Ux"'wx)Dx

Ux
4

Uy

* 4

D, u+ "D tw

v . +3UU
4(u vtWw) >

U
+§(u+w)D;1

v -1
+ E(UX+WX)DX

Ux
4

Ux

2 D, v

+—D tu+

v
—ZXD;1~W
W2

- — 4= + +
2 4(uw VW) +Uuv

W
+7X(u+v)D;1

w -1
+ E(ux_"vx)Dx

WX — WX —
+ZDX 1-U+ ZDX l'U

(A1)
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u u

—(Uv+uw+ow) _Z(U+U+W) _Z(U+U+W)

+ o (utot uw Suv
4(u v+Ww) > 5

u 4 u 1 u .
+Z(ux_vx_wx)Dx +Z(UX_UX_WX)DX +Z(UX_UX_WX)DX
—u(Woytow)D b ul —u(wogtow)Dr bl —u(wotow,)Dy twt

v v
_Z(U+U+W) —(Uuv+uw+ow) _Z(U+U+W)
3vw v 3uv
R= 3 +Z(U+U+W) ——

1% 1 v 1 v 1
+Z(_UX+UX_WX)DX +Z(_UX+UX_WX)DX +Z(_UX+UX_WX)DX
—v(Wu)pLuwx)DX’l-u*1 —U(WUX+UWX)D;1~U’1 —v(WuX+uwx)DX’1-w*1

W W
—z(utvtw) -z (utvtw) —(uv+uw+ow)
3uw 3vw +w -
2 2 4(U v W)

W -1 W -1 W -1
+Z(_UX_UX+WX)DX +Z(_UX_UX+WX)DX +Z(_ux_vx+wx)Dx

—W(va-i—vuX)D;lU_l —W(va-l-vux)D;l-v_ —W(va+vux)D;l-W_

1 1
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