
Recursion operators of some equations of hydrodynamic type
M. Gürses and K. Zheltukhin 
 
Citation: J. Math. Phys. 42, 1309 (2001); doi: 10.1063/1.1346597 
View online: http://dx.doi.org/10.1063/1.1346597 
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v42/i3 
Published by the American Institute of Physics. 
 
Additional information on J. Math. Phys.
Journal Homepage: http://jmp.aip.org/ 
Journal Information: http://jmp.aip.org/about/about_the_journal 
Top downloads: http://jmp.aip.org/features/most_downloaded 
Information for Authors: http://jmp.aip.org/authors 

Downloaded 08 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions

http://jmp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/424854814/x01/AIP-PT/Maplesoft_JMPCoverPg_0513/JMP_Physics_advert1640x440_maple17.jpg/6c527a6a7131454a5049734141754f37?x
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=M. G�rses&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=K. Zheltukhin&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1346597?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v42/i3?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov


,

r.
ursion

ed

em of
amil-
e of the
of the

er in a
ie
r hand
, which
that the
hydro-
amil-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 3 MARCH 2001

Downloaded 08 May
Recursion operators of some equations
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We give a general method for constructing recursion operators for some equations
of hydrodynamic type, admitting a nonstandard Lax representation. We give sev-
eral examples forN52 andN53 containing the equations of shallow water waves
and its generalizations with their first two general symmetries and their recursion
operators. We also discuss a reduction ofN11 systems toN systems of some new
equations of hydrodynamic type. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1346597#

I. INTRODUCTION

Most of the integrable nonlinear partial differential equations admit Lax representations

Lt5@A,L#, ~1!

where L is a pseudo-differential operator of orderm and A is a pseudo-differential operato
Recently1 we established a new method for such integrable equations to construct their rec
operators. This method uses the hierarchy of equations,

Ltn
5@An ,L#, ~2!

and the Gel’fand–Dikkii2 construction of theAn-operators. Defining an operatorRn in the form

An5LAn2m1Rn , ~3!

one then obtains relations among the hierarchies,

Ltn
5LLtn2m

1@Rn ;L#. ~4!

This equation allows to findLtn
in terms ofLtn2m

. It is important to note that one does not ne
to know the exact form ofAn . For further details of the method see Ref. 1.

In Ref. 1 we introduced a direct method to determine a recursion operator of a syst
evolution equations when its Lax representation is known. It has no direct reference to the H
tonian operators. Hence one may be able to determine the recursion operators when any on
Hamiltonian operators are degenerate. In the same paper we gave several applications
method. In all these examples we have considered the Lax representation is given eith
pseudo-differential operator or in matrix form~taking values in some lower dimensional L
algebras!. We call such Lax representations as standard Lax representation. On the othe
there are some systems of evolution equations, such as the equations of hydrodynamic type
are obtained by nonstandard Lax represenations used in the present paper. We first show
method introduced in Ref. 1 is also applicable here in the case of systems of equations of
dynamic types and we give several examples for illustration. These equations and their H

a!Electronic mail: gurses@fen.bilkent.edu.tr
13090022-2488/2001/42(3)/1309/17/$18.00 © 2001 American Institute of Physics
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Downloaded 08 May
tonian formulation~sometimes called the dispersion-less KdV system! were studied by Dubrovin
and Novikov.3 See Ref. 4 for more details on this subject~see also Ref. 5!. It is known that these
equations admit a nonstandard Lax representation,

]L

]t
5$A,L%k , ~5!

whereA,L are differentiable functions oft,x,p on a Poisson manifoldM with local coordinates
(x,p) and$,%k is the Poisson bracket. OnM we take this Poisson bracket$,%k5pk $,%, where$,%
is the canonical Poisson bracket andk is an integer. For more information on Poisson manifo
see Refs. 6 and 7. Equations of hydrodynamic type with the above Lax representations
studied in Refs. 8–11. Having such a Lax representation, we can consider a whole hierar
equations,

]L

]tn
5$An ,L%k . ~6!

We can also represent functionAn in the form given in~3! and apply our method1 for the
construction of a recursion operator for the equation~6!. There are some other works12–14 which
also give recursion operators of some equations of hydrodynamic type. The form of these
tors are different than the recursion operators presented in this work. Our method1 produces
recursion operators for hydrodynamic type of equations in the formR5A1B D21 whereA and
B are functions of dynamical variables and their derivatives. All higher symmetries obtaine
the repeated application of this recursion operator to translational symmetries also belong
hydrodynamic type of equations. The recursion operators obtained in Refs. 12–14 are of th
R5C D1A1B D21 E, where A,B,C, and E are functions of dynamical variables and the
derivatives.

In the next section we discuss the Lax representation with Poisson brackets for polyn
Lax functions. In Sec. III we give the method of construction of the recursion operators follo
Ref. 1. In Sec. IV we give several examples fork50 andk51. In Sec. V we consider the Poisso
bracket for generalk and let

L5p1S1Pp21, ~7!

and find the Lax equations and the corresponding recursion operator forN52. In Sec. VI we
consider the Lax function

L5pg211u1
vg21

~g21!2 p2g11, ~8!

and takek50. We obtain the equations corresponding to the polytropic gas dynamics an
recursion operators.6,10 It is interesting to note that the systems of equations and their recu
operators obtained in Secs. V and VI are transformable into each other. In Sec. VII we g
method reduction from anN11 system to anN system and from anN11 system to anN21
system by letting one of the symmetrical variables~defined in the text! either to zero or equating
to another variable. The systems obtained by the reduction are equivalent to the systems o
by the Lax function~in symmetrical variables! having zeros with multiplicities greater than on
Reduced systems are shown to be also integrable, i.e., they admit recursion operators.

II. LAX FORMULATION WITH POISSON BRACKET

We start with the definition of the standard Poisson bracket. Letf (x,p) and g(x,p) be
differentiable functions of their arguments. Then the standard Poisson bracket is defined b~see
Refs. 6 and 9 for more details!
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$ f ,g%5
] f

]p

]g

]x
2

] f

]x

]g

]p
. ~9!

We give a slight modification of this bracket as9

$ f ,g%k5pk $ f ,g%, ~10!

wherek is an integer. It is easy to prove that$,%k also defines a Poisson bracket for allkPZ.
Although this bracket is equivalent to$,%, underpk (d/dp) 5 d/dq whereq is the new variable,
we shall keep using it. The main reason is technical. There is a nice duality between the s
obtained by polynomial Lax representation,L5pN1¯ , with Poisson bracket$,%k and by Lax
representionL5pg @pN1¯# with Poisson bracket$,%. For illustration we have examples, equ
tions governing the polytropic gas dynamics, given in Propositions 6 and 7.

For eachkPZ we can consider hierarchies of equations of hydrodynamic type, define
terms of the Lax function,

L5pN211 (
i 521

N22

piSi~x,t !, ~11!

by the Lax equation

]L

]tn
5$~Ln/~N21!!>2k11 ;L%k , ~12!

wheren5 j 1 l (N21) and j 51,2,. . . ,(N21),l PN. So we have a hierarchy for eachk and j
51, . . . ,(N21). Also, we requiren>2k11 to ensure that (Ln/(N21))>2k11 is not zero. With
the choice of Poisson brackets$,%k , we must take a certain part of the series expansion ofLn/(N21)

to get the consistent equation~12!. This part is (Ln/(N21))>2k11 .
The Lax function~11! can also be written in terms of symmetric variablesu1 , . . . ,uN ,

L5
1

p )
j 51

N

~p2uj !, ~13!

that isu1 , . . . ,uN are roots of the polynomial

pN211SN22pN221 . . . 1S21p21 .

In new variables the equation~12! is invariant under transposition of variables.

III. RECURSION OPERATORS

For each hierarchy of the equations~12!, depending on the pair (N,k), we can find a recursion
operator.

Lemma 1: For any n,

Ln5LLn2(N21)1$Rn ;L%k , ~14!

where function Rn has a form

Rn5 (
i 50

N22

pi 2kAi~S21 . . . SN22 ,]S21/] tn2~N21! . . .]SN22/] tn2~N21!!. ~15!

Proof:
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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~Ln/~N21!!>2k115@L~Ln/~N21! 21!>2k111L~Ln/~N21! 21!,2k11#>2k11 .

So,

~Ln/~N21!!>2k115L~Ln/~N21! 21!>2k111„L~Ln/~N21! 21!,2k11…>2k11

2„L~Ln/~N21! 21!>2k11…,2k11 . ~16!

If we put

Rn5„L~Ln/~N21! 21!,2k11…>2k112„L~Ln/~N21! 21!>2k11…,2k11 ,

then

~Ln/~N21!!>2k115L~Ln/~N21! 21!>2k111Rn .

Hence,

Ln5$~Ln/~N21!!>2k11 ;L%k5$L~Ln/~N21! 21!>2k111Rn ;L%k5LLn2(N21)1$Rn ;L%k , ~17!

and ~14! is satisfied. Evaluating powers of „L(Ln/(N21) 21),2k11…>2k11 and
2„L(Ln/(N21) 21)>2k11…,2k11 we get thatRn has form~15!. h

Lemma 2: A recursion operator for the hierarchy (12) is given by equalities, for m5N
22,N23, . . . ,21,

]Sm

] tn
5 (

j 521

m11

Sj

]Sm2 j

] tn2~N21!
1 (

j 521

m11

~ j 112k!Aj 11Sm2 j ,x2 (
j 521

m11

~m2 j !Aj 11,xSm2 j , ~18!

where to simplify the above formula we have defined that SN2151 and SN21,x50,
(]SN21/] tn)50. Coefficients AN22 ,AN23 , . . . ,A0 can be found from the recursion relations, fo
m5N22, . . . ,21,

~N21!Am,x5 (
j 5m

N21

Sj

]S~N22!1m2 j

] tn2~N21!
1 (

j 5m

N22

~ j 112k!Aj 11SN221m2 j ,x

2 (
j 5m

N22

~N221m2 j !Aj 11,xSN221m2 j . ~19!

Proof: Let us write the equality~14!, using~15! for Rn ,

(
i 521

N22

pi
]Si

] tn
5S pN211 (

i 521

N22

piSi D S (
i 521

N22

pi
]S~N22!1m2 j

] tn2~N21!
D 1pkS (

j 50

N21

~ j 2k!pj 2k21Aj D
3S (

j 521

N22

pjSj ,xD 2pkS (
j 50

N21

pj 2kAj ,xD S ~N21!pN221 (
j 521

N22

jp j 21Sj D .

To have the equality, the coefficients ofp2N23, . . . ,pN21 andp22 must be zero; it gives recursio
relations to findAN22 , . . . ,A0 . The coefficients ofpN22, . . . ,p21 give the expressions fo
]SN22/] tn, . . . ,]S21/] tn . h

Although the recursion operatorR, given by ~18!, is a pseudo-differential operator, but
gives a hierarchy of local symmetries starting from the equation itself. Indeed, equalities~18!, ~19!
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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give expressions]SN22/] tn, . . . ,]S21/] tn in terms ofSN22 , . . . , S21 and]SN22/] tn2(N21), . . . ,

]S21/] tn2(N21) . Hence, the recursion operatorR is constructed in such a way that

$~Ln/~N21! 11!>2k11 ;L%k5R~$~Ln/~N21!!>2k11 ;L%k!. ~20!

IV. SOME INTEGRABLE SYSTEMS

We shall consider first some examples fork50, k51 and the general case in the next sectio

A. Multicomponent hierarchy containing also the shallow water wave equations, kÄ0

This hierarchy corresponds to the casek50. Let us give the first equation of hierarchy and
recursion operator forN52,3.

Proposition 1: In the case N52 one has the Lax function,

L5p1S1P p21,

and the Lax equation for n52, given by (47), when k50,

1
2 St5SSx1Px ,

~21!
1
2 Pt5SPx1PSx ,

and the recursion operator, given by~48!,

R5S S1SxDx
21 2

2P1PxDx
21 S

D . ~22!

These equations are known as the shallow water wave equations or as the equat
polytropic gas dynamics forg52 ~See Sec. VI!.

The first two symmetries of the system~21! are given by

St1
5~S316SP!x ,

Pt1
5~3S2P13P2!x , ~23!

St2
5~S4112S2P16P2!x ,

Pt2
5~4S3P112SP2!x . ~24!

These are all commuting symmetries.
Remark 1: In symmetric variables the system (21) is written as

1
2 ut5~u1v !ux1uvx ,

~25!
1
2 v t5vux1~u1v !vx ,

and the recursion operator (22) takes the form

R5S u1v1uxDx
21 2u1uxDx

21

2v1vxDx
21 u1v1vxDx

21D . ~26!

Proposition 2: In the case N53 one has the Lax function

L5p21pS1P1p21Q,
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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and the Lax equation with n53 is

1
3 St5~ 1

2 P2 1
8 S2!Sx1 1

2 SPx1Qx ,

1
3 Pt5

1
2 QSx1~ 1

8 S21 1
2 P!Px1SQx , ~27!

1
3 Qt5

1
4 SQSx1 1

2 QPx1~ 1
8 S21 1

2P!Qx .

The recursion operator, corresponding to this equation, is

R5S 2
S2

4
1P1PxDx

212
Sx

4
Dx

21
•S

S

2
1

Sx

2
Dx

21 3

3Q

2
1S Qx1

PxS

2 DDx
212

Px

4
Dx

21
•S P1

Px

2
Dx

21 2S

SQ

4
1S SQx

2
1

SxQ

2 DDx
212

Qx

4
Dx

21
•S

3Q

2
1

Qx

2
Dx

21 P

D . ~28!

Proof: Using ~19! we find the functionRn and using~18! we find the recursion operato
~28!. h

Remark 2: In symmetric variables the equation (27) is written as

1
3 ut5~2 1

8 u21 1
2 ~uv1uw1vw!1 1

8 ~v1w!2!ux1~ 1
4 u21 1

4 uv1 3
4uw!vx1~ 1

4u
21 1

4uw1 3
4uv !wx ,

1
3v t5~ 1

4v
21 1

4uv1 3
4vw!ux1~ 1

4v
21 1

4vw1 3
4uv !wx1~2 1

8v
21 1

2~uv1uw1vw!1 1
8~u1w!2!vx ,

~29!

1
3wt5~ 1

4w
21 1

4uw1 3
4wv !ux1~ 1

4w
21 1

4wv1 3
4uw!vx1~2 1

8w
21 1

2~uv1uw1vw!1 1
8~v1u!2!wx ,

and the recursion operator takes the form (A1) given in the Appendix.

B. Toda hierarchy „kÄ1…

Toda hierarchy corresponds to the casek51.9 Let us give the first equation of hierarchy an
a recursion operator forN52 andN53.

Proposition 3: In the case N52 and n51 one has the Lax function

L5p1S1P p21,

and the Lax equation for n51, given by (41),

St5Px ,

Pt5PSx , ~30!

and the recursion operator, given by (42),

R5S S 21PxDx
21

•P21

2P S1SxPDx
21

•P21D . ~31!

The first two symmetries of the equation~30! are given by
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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St1
5~2SP!x ,

~32!
Pt1

5P~2P1S2!x ,

St2
5~3S2P13P2!x ,

~33!
Pt2

5P~6PS1S3!x .

Remark 3: In symmetric variables the equation (30) is written as

ut5uvx ,
~34!

v t5vux ,

and the recursion operator (31) takes the form

R5S u1v1uvxDx
21

•u21 2u1uvxDx
21

•v21

2v1vuxDx
21

•u21 u1v1vuxDx
21

•v21D . ~35!

Proposition 4: In the case N53 and n51 one has the Lax function

L5p21pS11P1p21Q,

and the Lax equation with n51 is

St5Px2 1
2SSx ,

Pt5Qx , ~36!

Qt5
1
2QSx .

The recursion operator, corresponding to this equation, is

R5S P2 1
4S

21~ 1
2Px2 1

4SSx!Dx
21 1

2S 312QxDx
21

•Q21

3
2Q1 1

2QxDx
21 P 2S1~SQ!xDx

21
•Q21

1
4SQ1 1

4SxQDx
21 3

2Q P1PxQDx
21

•Q21
D . ~37!

Proof: Using equalities~19! we find the functionRn and using~18! we find the recursion
operator~37!. h

Remark 4: In symmetric variables the equation (36) is written as

ut5
1
2u~2ux1vx1wx!,

v t5
1
2v~1ux2vx1wx!, ~38!

wt5
1
2w~1ux1vx2wx!,

and the recursion operator takes the form (A2) given in the Appendix.

V. LAX EQUATION FOR GENERAL k

We shall only consider the case whereN52. We have the Lax function

L5p1S1Pp21, ~39!
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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and the Lax equation

]L

]tn
5$~Ln!>2k11 ;L%k . ~40!

We consider two casesk>1 andk<0.

A. The first case kÐ1

Proposition 5: In the case N52 and k>1 one has the Lax equation

St5kPk21Px ,
~41!

Pt5kPkSx ,

and the recursion operator for this equation is

R5S S1~12k!SxDx
21 21kPk21PxDx

21
•P2k

2P1~12k!PxDx
21 S1kSxP

kDx
21

•P2k D . ~42!

Proof: The smallest power ofp in Ln is 2n. To have powers less than2k11 we must put
n5k. If there are no such powers then Poisson brackets are$(Ln);L%k50.

Let us calculate the Lax equation,

Lt5$~Lk!>2k11 ;L%k52$~Lk!<2k ;L%k .

We have (Lk)<2k5@(p1S1Pp21)k#<2k5Pkp2k, thus

Lt52$Pkp2k;p1S1Pp21%k .

And we get the equation~41!. Using ~18!, ~19! we find the recursion operator~42!. h

First two symmetries are given as follows:

St1
5~k11!~Pk S!x ,

~43!

Pt1
5~k11!PkS P1

k

2
S2D

x

.

St2
5~k11!~k12!S 1

2
PkS21

1

k11
Pk11D

x

,

~44!

Pt2
5~k11!~k12!PkS PS1

k

6
S3D

x

.

Remark 5: In symmetric variables the equation (41) is written as

ut5kukvk21vx ,
~45!

v t5kuk21vkux ,

and the recursion operator (42) takes the form
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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R5S u1v1~12k!uxDx
211 2u1~12k!uxDx

211

kukvk21vxDx
21

•u2kv2k11 kukvk21vxDx
21

•u2k11v2k

2v1~12k!vxDx
211 u1v1~12k!vxDx

211

kuk21vkuxDx
21

•u2kv2k11 kuk21vkuxDx
21

•u2k11v2k

D . ~46!

B. The second case kÏ0

Proposition 6: In the case N52 and k<0 one has the Lax equation

St5~2k12!~2k11!SSx1~2k12!Px ,
~47!

Pt5~2k12!~2k11!SPx1~2k12!SxP,

and the recursion operator for this equation is

R5S S1~12k!SxDx
21 21kPk21PxDx

21
•P2k

2P1~12k!PxDx
21 S1kSxP

kDx
21

•P2k D . ~48!

Proof: The largest power ofp in Ln is pn. To have powers larger than2k11 we must put
n52k11. Then we have

~L2k11!>2k115@~p1S1Pp21!2k11#>2k115p2k11;

thus

Lt5$p2k11;p1S1Pp21%k .

Then the Lax equation becomes

St5Sx ,

Pt5Px .

This is a trivial equation; let us calculate the second symmetry. We have (L2k12)>2k115@(p
1S1Pp21)2k11#>2k115p2k121(2k12)Sp2k11, thus

Lt5$p2k121~2k12!Sp2k11;p1S1Pp21%k .

We get the equation~47!. Using ~18!, ~19! we find the recursion operator~48!. h

First two symmetries are given as follows:

St1
5~k22!~k23!~P S1 1

6~12k!S3!x ,

~49!
Pt1

5~k22!~k23!~SSxP1 1
2~12k!S2 Px1PPx!,

St2
5~22k!~32k!~42k!S 1

2
S2P1

1

6
S41

1

2~22k!
P2D

x

,

~50!

Pt2
5~22k!~32k!~42k!S 1

2
S2SxP1

1

6
~12k!S3 Px1SPPx1

1

~22k!
P2SxD .

Remark 6: In symmetric variables the equation (47) is written as

ut5~2k12!~12k!~u1v !ux1~2k12!uvx ,
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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v t5~2k12!vux1~2k12!~12k!~u1v !vx , ~51!

and the recursion operator (48) takes the form

R5S u1v1~12k!uxDx
211 2u1~12k!uxDx

211

kukvk21vxDx
21

•u2kv2k11 kukvk21vxDx
21

•u2k11v2k

2v1~12k!vxDx
211 u1v1~12k!vxDx

211

kuk21vkuxDx
21

•u2kv2k11 kuk21vkuxDx
21

•u2k11v2k

D . ~52!

In this section, to obtain the recursion operators we have considered two different cak
<0 andk>1 to simplify some technical problems in the method. At the end we obtained re
sion operators having the same forms~42! and ~48!. Hence any one of these represent the rec
sion operator forkPZ. It seems, comparing the results, that the systems of equations in one
are symmetries of the other case. For instance, the system~47! is a symmetry of system~41!.
Hence we may consider only one case with recursion operator~42! for all integer values ofk.

VI. LAX FUNCTION FOR POLYTROPIC GAS DYNAMICS

In this section we consider another Lax function, introduced in Ref. 10,

L5pg211u1
vg21

~g21!2 p2g11, ~53!

and the Lax equation

]L

]t
5

g21

g
$~Lg/~g21!!>1 ,L%0 , ~54!

gives the equations of the polytropic gas dynamics.
Proposition 7: The Lax equation corresponding to (54) is

ut1uux1vg22vx50,

v t1~uv !x50. ~55!

Proof: Expanding the function~53! around the pointp5`, we have

S pg211u1
vg21

~g21!2 p2g11D g/~g21!

5pg1
g

g21
pu1 . . . ;

all other terms have negative powers ofp. Therefore

~Lg/~g21!!>15pg1
g

g21
pu,

and the Lax equation~54! corresponds to~55!. h

Proposition 8: The recursion operator for the equation (55) is

R5S u1
ux

g21
Dx

21 2vg22

g21
1

~vg22!x

g21
Dx

21

2v
g21

1
vx

g21
Dx

21 u1
g22

g21
uxDx

21
D . ~56!

Proof: Using the equation
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



rator

ax

one
we

1319J. Math. Phys., Vol. 42, No. 3, March 2001 Recursion operators of equations hydrodynamic type

Downloaded 08 May
]L

]tn11
5L

]L

]tn
1$Rn ,L%,

in the same way as for the polynomial Lax function one can find the recursion operator~56!. h

It is interesting to note that the equation~47! and equations of polytropic gas dynamics~55!
are related by the following change of variables:

S5
u

~2k12!~2k11!
,

~57!

P5
v1/~2k11!

~2k12!2 ,

whereg5 (2k12)/(2k11). We note that under this change of variables recursion ope
~48! is mapped to the recursion operator~56!.

VII. REDUCTION

In this section we consider reductions of the equation~12!, written in symmetric variables, by
setting u150, or u15uN ,..., or u15u25¯ ,5uN . These reductions correspond to the L
equations with different Lax functions. For reductionu150 we have a polynomial Lax function
with simple rootsL5(p2uN)¯(p2u2) and for reductionuN5u1 we have a polynomial Lax
function with a root of multiplicity twoL5 (1/p) (p2uN)2(p2uN21) . . . (p2u2), etc. We note
that instead of working on the Lax functions with higher multiplicities like the last example
can take a polynomial Lax function without any multiplicities and perform the reductions
propose in this section.

A. Reduction u 1Ä0

Let us write the equation~12! as

D~uN , . . . ,u1!50, ~58!

whereD is a differential operator. Then

D~uN , . . . ,u1!uu1505S D̃~uN , . . . ,u2!,

0
D , ~59!

where D̃ is another differential operator. Indeed, following Ref. 8 for the Lax functionL
5 (1/p) ) j 51

N (p2uj ) we have

]L

]t
5L(

j 51

N
uj ,t

p1uj
,

]L

]x
5L(

j 51

N
uj ,x

p1uj
,

and

]L

]p
5LS 2

1

p
1(

j 51

N
1

p1uj
D .

Thusuj ,t5Resp52uj
$M ,L%k , whereM5(Ln/(N21))>2k11 . The Lax equation~12! can be written

as
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(
j 51

N
uj ,t

p1uj
5pkM p(

j 51

N
uj ,x

p1uj
2pkMxS 2

1

p
1(

j 51

N
1

p1uj
D . ~60!

Note thatpkMx andpkM p are polynomials. So, if we putu150 and calculate the residue of th
right hand side atp50 we get~59!. A new equation,

D̃~uN , . . . ,u2!50, ~61!

is also integrable and a recursion operator of this equation can be obtained as a reduction
recursion operator of the equation~58!. Let R be the recursion operator of~58! given by Lemma
2, then

~62!

Indeed, we found the recursion operator using formula~14!. This formula can be written as

(
j 51

N uj ,tn

p1uj
5LLn2(N21)1pkRn,p(

j 51

N
uj ,x

p1uj
2pkRn,xS 2

1

p
1(

j 51

N
1

p1uj
D ~63!

and in the same way as for the reduction of~58! we have~62!; note, thatpkRn,x andpkRn,p are
also polynomials.

Lemma 3: The operator R˜ is a recursion operator of the equation (61).
Proof: Equation~61! is an evolution equation, so, to prove thatR̃ is a recursion operator we

must prove that for any solution (uN , . . . ,u2) of ~61! the following equality holds~see Ref. 6!:

D D̃R̃5R̃D D̃ ,

whereD D̃ is a Frechet derivative ofD̃.
If ( uN , . . . ,u2) is a solution of~61! then (uN , . . . ,u2 ,u150) is a solution of~58! and for the

solution (uN , . . . ,u2 ,u150) we have

DD R5R DD . ~64!

Next

and

Hence by~64! we haveD̃R̃5R̃D̃. Calculating the Frechet derivative, we take derivatives w
respect to one variable, considering other variables as constants. Thus, to calculateD̃ we can put
u150 and differentiate with respect to other variables or we can first differentiate and the
u150. It means thatD̃5D D̃ and

D D̃R̃5R̃D D̃ .
h

Let us consider the reduction of systems, given by Remark 2 and Remark 4 and their rec
operators.

Proposition 9: Putting w50 in (38) and (A2) we obtain a new system,
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ut5
1
2u~2ux1vx!,

~65!
v t5

1
2v~1ux2vx!,

and its recursion operator,

R5S 2uv1
u

4
~u1v ! 2

u

4
~u1v !

1
u

4
~ux2vx!Dx

21 1
u

4
~ux2vx!Dx

21

2
v
4

~u1v ! 2uv1
v
4

~u1v !

1
v
4

~2ux1vx!Dx
21 1

v
4

~2ux1vx!Dx
21

D , ~66!

respectively. h

Proposition 10: Putting w50 in (29) and (A1) we obtain a new system,

1
3ut5~2 1

8u
21 1

2uv1 1
8v

2!ux1~ 1
4u

21 1
4uv !vx ,

~67!
1
3v t5~ 1

4v
21 1

4uv !ux1~2 1
8v

21 1
2uv1 1

8u
2!vx ,

and its recursion operator,

R5S 2
u2

4
1

3uv
4

1S uxv
2

1
uvx

2 DDx
21 u

4
~u1v !1S uxv

2
1

uvx

2 DDx
21

2
ux

4
Dx

21
•u1

ux

4
Dx

21
•v 1

ux

4
Dx

21
•u2

ux

4
Dx

21
•v

v
4

~u1v !1S uvx

2
1

uxv
2 DDx

21 2
v2

4
1

3uv
4

1S uvx

2
1

uxv
2 DDx

21

2
vx

4
Dx

21
•u1

vx

4
Dx

21
•v 1

vx

4
Dx

21
•u2

vx

4
Dx

21
•v

D , ~68!

respectively. h

It is worth mentioning that by reduction we obtain a new equation. For example, consid
casek50. The equation~25!, corresponding toN52, and reduction of the equation~29!, corre-
sponding toN53, are not related by a linear transformation of variables. Indeed, in the equ
~25! coefficients ofux ,vx are linear inu,v but in the equation~67! coefficients ofux ,vx contain
quadratic terms. Hence they cannot be related by a linear transformation.

B. Reduction u NÄu 1

It follows from ~60! that the Lax equation~12! can be written as

ui ,t5(
j 51

N

hi
j~uN , . . . ,u1!uj ,x , ~69!

where i , j 51, . . . ,N and hi
j5h1(ui ,uN , . . . ,ûi , . . . ,u1) when iÞ j and hi

i

5h2(ui ,uN , . . . ,ûi , . . . ,u1), the overcaret denotes the absence of the corresponding variab
also follows from~60! that the functionsh1(xN , . . . ,x1) andh2(xN , . . . ,x1) are symmetric under
permutations of variablesxN21 , . . . ,x1 .

ReductionuN5u1 gives us a new integrable equation,
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uN,t5„hN
N~uN ,uN21 , . . . ,u2 ,uN!1hN

1 ~uN ,uN21 , . . . ,u2 ,uN!…uN,x

1 (
j 52

N21

hN
j ~uN ,uN21 , . . . ,u2 ,uN!uj ,x ,

~70!

ui ,t52hi
N~uN ,uN21 , . . . ,u2 ,uN!uN,x1 (

j 52

N21

hi
j~uN ,uN21 , . . . ,u2 ,uN!uj ,x ,

wherei 5(N21), . . . ,2.
The Frechet derivative of~69!, under conditionuN5u1 , has the form

DDuuN5u1
5S a11 a12 ¯ a1(N21) a1N

a21 a22 ¯ a2(N21) a21

] ] ¯ ] ]

a(N21)1 a(N21)2 ¯ a(N21)(N21) a(N21)1

a1N a12 ¯ a1(N21) a11

D , ~71!

whereai j , i , j 51, . . . ,N are differential operatos. So, the Frechet derivative of~70! can be writen
as

D D̄5S a111a1N a12 ¯ a1(N21)

2a21 a22 ¯ a2(N21)

] ] ¯ ]

2a(N21)1 a(N21)2 ¯ a(N21)(N21)

D . ~72!

Now let us write the recurcion operator of~69!, given by Lemma 2. From~63! it follows that,
under conditionuN5u1 , it has the form

RuuN5u1
5S b11 b12 ¯ b1(N21) b1N

b21 b22 ¯ b2(N21) b21

] ] ¯ ] ]

b(N21)1 b(N21)2 ¯ b(N21)(N21) b(N21)1

b1N b12 ¯ b1(N21) b11

D , ~73!

wherebi j , i , j 5N, . . . ,1 aredifferential operators.
Now we can write a recursion operator for Eq.~70!,

R̄5S b111b1N b12 ¯ b1(N21)

2b21 b22 ¯ b2(N21)

] ] ¯ ]

2b(N21)1 b(N21)2 ¯ b(N21)(N21)

D . ~74!

The form of ~74! can be deduced by applaing operatorRuuN5u1
to a symmetry

(]uN/] tn ,]uN21/] tn, . . . ,]u2/] tn, ]un/] tn).
Lemma 4: The operator R¯ in (74) is a recursion operator of the equation (70).
Proof: Equation~70! is an evolution equation, so, to prove thatR̄ is a recursion operator we

must prove that for any solution (uN , . . . ,u2) of ~70! the following equality holds~see Ref. 6!:

D D̄R̄5R̄D D̄ .
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If ( uN , . . . ,u2) is a solution of~70! then (uN , . . . ,u2 ,u15uN) is a solution of~69! and for the
solution (uN , . . . ,u2 ,u15uN) we have

DD R5R DD . ~75!

One can show that from commutation of~71! and~73! follows the commutation of~72! and~74!
that is equality~75!. h

Let us consider reduction of systems, given by Remark 2 and Remark 4 and their rec
operators.

Proposition 11: Putting w5u in (38) and (A2) we obtain a new system,

ut5
1
2uvx ,

~76!
v t5

1
2v~2ux2vx!,

and its recursion operator

R5S 2~2uv1u2!2 3
2uv 2 1

4u~2u1v !2 3
2u

2

1 1
2uvxDx

21 1 1
4u~2ux2vx!Dx

21

22u~uv !xDx
21

•u21 2u~uv !xDx
21

•v21

2 1
2v~2u1v !23uv 2~2uv1u2!1 1

4v~2u1v !

1 1
2v~22ux1vx!Dx

21 1 1
4v~22ux1vx!Dx

21

22v~uv !xDx
21

•u21 2v~u2!xDx
21

•v21

D . ~77!

h

Proposition 12: Putting w5u in (29) and (A1) we obtain a new system,

1
3ut5~u212uv1 1

8v
2!ux1~u21 1

4uv !vx ,
~78!

1
3v t5~ 1

2v
212uv !ux1~2 1

8v
21uv1u2!vx ,

and its recursion operator,

R5S u21 7
2uv1~u21uv !xDx

21 2u21 1
4uv1 1

2~u21uv !Dx
21

1 1
2uxDx

21
•v 1 1

2uxDx
21

•u2 1
4uxDx

21
•v

4uv1 1
2v

212~uv !xDx
21 2 1

4v
21 3

2uv1u21~uv !xDx
21

1 1
2vxDx

21
•v 1 1

2vxDx
21

•u2 1
4vxDx

21
•v

D . ~79!

h

We may go on introducing new reductions. For instance a reduction of the typeu15u25uN ,
(N.3), reduces anN-system to an (N22)-system. One may obtain this (N22)-system also
from the polynomial Lax function having the formL5p21 (p2u1)3(p2u3)¯(p2uN21) ~a zero
of L with multiplicity three!. In this way one obtains an infinite number of different classes
N52, N53 systems.

VIII. CONCLUSION

We have constructed the recursion operators of some equations of hydrodynamic typ
form of the these operators fall into the class of pseudo-differential operatorsA1B D21 whereA
andB are functions of dynamical variables and their derivatives. The generalized symmetr
these equations are local and all belong to the same class~i.e., they are also equations of hydro
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dynamic type!. We have introduced a method of reduction which leads also to integrable cla
Depending upon the type of reductions we may obtain infinitely many different classes ofN5k
systems. These properties, the bi-Hamiltonian structure of the equations we obtained and
tions with rational Lax functions, will be communicated elsewhere.

ACKNOWLEDGMENTS

We thank Burak Gu¨rel and Atalay Karasu for several discussions. We also thank the re
for his several suggestions on this work.

This work is partially supported by the Scientific and Technical Research Council of Tu
and by the Turkish Academy of Sciences.

APPENDIX: RECURSION OPERATORS FOR NÄ3 SYSTEMS „29… AND „38…

Recursion operators of the systems~29! and ~38! are, respectively, given by

R5

¨

2
u2

4
1

3

4
~uv1uw!1wv

u

4
~u1v1w!1

3uw

2

u

4
~u1v1w!1

3uv
2

1
ux

2
~v1w!Dx

21 1
ux

2
~v1w!Dx

21 1
ux

2
~v1w!Dx

21

1
u

2
~vx1wx!Dx

21 1
u

2
~vx1wx!Dx

21 1
u

2
~vx1wx!Dx

21

2
ux

4
Dx

21
•u1

ux

4
Dx

21
•v 1

ux

4
Dx

21
•u2

ux

4
Dx

21
•v 1

ux

4
Dx

21
•u1

ux

4
Dx

21
•v

1
ux

4
Dx

21
•w 1

ux

4
Dx

21
•w 2

ux

4
Dx

21
•w

v
4

~u1v1w!1
3vw

2
2

v2

4
1

3

4
~uv1vw!1uw

v
4

~u1v1w!1
3uv

2

1
vx

2
~u1w!Dx

21 1
vx

2
~u1w!Dx

21 1
vx

2
~u1w!Dx

21

1
v
2

~ux1wx!Dx
21 1

v
2

~ux1wx!Dx
21 1

v
2

~ux1wx!Dx
21

2
vx

4
Dx

21
•u1

vx

4
Dx

21
•v 1

vx

4
Dx

21
•u2

vx

4
Dx

21
•v 1

vx

4
Dx

21
•u1

vx

4
Dx

21
•v

1
vx

4
Dx

21
•w 1

vx

4
Dx

21
•w 2

vx

4
Dx

21
•w

w

4
~u1v1w!1

3vw

2

w

4
~u1v1w!1

3uw

2
2

w2

4
1

3

4
~uw1vw!1uv

1
wx

2
~u1v !Dx

21 1
wx

2
~u1v !Dx

21 1
wx

2
~u1v !Dx

21

1
w

2
~ux1vx!Dx

21 1
w

2
~ux1vx!Dx

21 1
w

2
~ux1vx!Dx

21

2
wx

4
Dx

21
•u1

wx

4
Dx

21
•v 1

wx

4
Dx

21
•u2

wx

4
Dx

21
•v 1

wx

4
Dx

21
•u1

wx

4
Dx

21
•v

1
wx

4
Dx

21
•w 1

wx

4
Dx

21
•w 2

wx

4
Dx

21
•w

©
,

~A1!
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R5

¨

2~uv1uw1vw! 2
u

4
~u1v1w! 2

u

4
~u1v1w!

1
u

4
~u1v1w! 2

3uw

2
2

3uv
2

1
u

4
~ux2vx2wx!Dx

21 1
u

4
~ux2vx2wx!Dx

21 1
u

4
~ux2vx2wx!Dx

21

2u~wvx1vwx!Dx
21

•u21 2u~wvx1vwx!Dx
21

•v21 2u~wvx1vwx!Dx
21

•w21

2
v
4

~u1v1w! 2~uv1uw1vw! 2
v
4

~u1v1w!

2
3vw

2
1

v
4

~u1v1w! 2
3uv

2

1
v
4

~2ux1vx2wx!Dx
21 1

v
4

~2ux1vx2wx!Dx
21 1

v
4

~2ux1vx2wx!Dx
21

2v~wux1uwx!Dx
21

•u21 2v~wux1uwx!Dx
21

•v21 2v~wux1uwx!Dx
21

•w21

2
w

4
~u1v1w! 2

w

4
~u1v1w! 2~uv1uw1vw!

2
3uw

2
2

3vw

2
1

w

4
~u1v1w!

1
w

4
~2ux2vx1wx!Dx

21 1
w

4
~2ux2vx1wx!Dx

21 1
w

4
~2ux2vx1wx!Dx

21

2w~uvx1vux!Dx
21

•u21 2w~uvx1vux!Dx
21

•v21 2w~uvx1vux!Dx
21

•w21
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