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Convergence of a ‘‘discrete’’ operator to a ‘‘continuum’’ operator is defined. As
examples, the circular rotor, the one-dimensional box, the harmonic oscillator, and
the fractional Fourier transform are realized as limits of finite-dimensional quantum
systems. Limits, thus defined, preserve algebraic structure. The results prepare for a
sequel in which some affine canonical transforms will be ‘‘discretized.’’ ©2001
American Institute of Physics.@DOI: 10.1063/1.1398582#

I. INTRODUCTION

The continuum fractional Fourier transform of Namias1 is the limit of two discrete fractiona
Fourier transforms, namely, the Kravchuk function FRFT and the Harper function FRFT~see Refs.
2 and 3!. Some very straightforward continuum quantum systems, such as the circular roto
one-dimensional box and the harmonic oscillator, can easily be realized as limits of e
straightforward finite-dimensional systems whose Hamiltonians are difference operator
many purposes, the above assertions are clear enough without ‘‘limit’’ being understood to
any abstract meaning; nevertheless, the goal of this article is to assign an appropriate
meaning to ‘‘limit,’’ to state the above assertions precisely, and to prove them. It is not tha
object to the usual common sense techniques—on the contrary, we shall validate them
subsequently, in a sequel,4 some ideas pioneered by Atakishiyev–Chumakov–Wolf5 will be de-
veloped: continuum affine canonical transforms and continuum complex-order Fourier trans
will be realized as limits of analogous finite-dimensional transforms. In that application, com
sense would not suffice.

Consider a Hilbert spaceL` , and Hilbert spacesLn , where the indexn runs over some
infinite set of positive integers. In Sec. II, we shall interfaceL` with the spacesLn , and we shall
assign a meaning to equations of the form

K̂`5 lim
n

K̂n ,

whereK̂` is a bounded operator onL` , and eachK̂n is a bounded operator onLn . In Sec. III, we
shall assign a meaning to equations of the form

K`5 lim
n

Kn ,

whereK` andKn are quantum systems onL` andLn , respectively. Convergence of vectors h
already been discussed in two prequels to the present article. The first prequel6 explains howL`

is to be interfaced with the spacesLn , and gives meaning to equations of the form

c`5 lim
n

cn ,

a!Electronic mail: barker@fen.bilkent.edu.tr.
46530022-2488/2001/42(10)/4653/16/$18.00 © 2001 American Institute of Physics
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wherec`PL` and cnPLn . Some of the main definitions and results from Ref. 6 are brie
recalled later in Sec. II. The second prequel7 shows that widely used limiting techniques are
accordance with the definition of convergence.

With a view to applications, we might think ofL` as a ‘‘continuum’’ space, perhaps th
Hilbert space formed from the space of square-integrable functions on a differentiable ma
We might think of each spaceLn as a ‘‘discrete’’ space, perhaps a Hilbert space with a coordin
system such that the coefficients of a vector may be interpreted as sample-point value
function on the manifold. In the case where the manifold isR, Digernes–Varadara´jan–Varadhan8

established a continuum-discrete correspondence—characterized in terms of limits—by e
ding eachLn in L` . Our approach is more concerned with preservation of algebraic stru
~linearity, inner products, composition, tensor products!. We interfaceL` with the spacesLn by
realizing the sequence (Ln)n as an inductive resolution ofL` . The definition of an inductive
resolution~recalled in Sec. II! is entirely algebraic, and, by this virtue, it relieves us of any ne
to assign any abstract meaning to the jargon ‘‘continuum’’ and ‘‘discrete.’’~As every physicist
knows, these two terms often refer to different sides of the same coin.!

The preservation of algebraic structure will be crucial in Ref. 4, where we shall be consid
some Lie groups with several degrees of freedom. In subsequent work, we shall present
systematic study of a way in which ‘‘continuum’’~usually infinite-dimensional! representations o
Lie groups may be realized as limits of ‘‘discrete’’~usually finite-dimensional! representations
~Part of the motive for this is to seek criteria for a system of numerically calculated transfor
respect ‘‘continuum’’ composition laws.! The results we give later, in Sec. III, and the applicatio
we note in Sec. IV, all concern the special case of one-parameter groups. This special
helpful as a stepping-stone because some of the concerns that arise in the general case r
trivialities here.

However, one-parameter systems are of interest in their own right, and can natura
regarded as quantum dynamical systems, or, to use the language of Parthasarathy,9 quantum
stochastic processes.~Let us not quibble about the flexible definitions of these terms.! Thus, we are
led back to a question addressed by Digernes–Varadara´jan–Varadhan.8 To what extent are spectr
in the ‘‘continuum’’ scenario related to spectra in the ‘‘discrete’’ scenario? This question is
plored in Sec. V. The author would like to thank the referee for some useful suggestions co
ing Sec. V. Although the material there is still only an initial foray into the matter, it was ab
from the previous version of this article.

General motives for a continuum-discrete correspondence—characterized in terms of
and preserving algebraic structure—are noted in the prequels, Refs. 6 and 7. Some more e
references for applications may be found in those two papers. TheGedankenexperimentin Ref. 7,
Sec. 2, gives a heuristic introduction to our line of approach.

II. INDUCTION OF BOUNDED OPERATORS

By an operator on a Hilbert spaceL, we mean a linear mapD→L, where the domainD is
a dense subspace ofL. Every bounded operator onL extends uniquely to a bounded operator
L with domainL. Henceforth, all our bounded operators on a Hilbert spaceL shall be deemed to
have domainL. We writeU(L) for the group of unitary operators onL.

We must briefly review some of the definitions and results of Ref. 6. Consider a Hilbert s
L` , a dense subspaceS of L` , an infinite set of positive integersN, Hilbert spacesLn for each
nPN, and linear maps resn :S→Ln . ~The results below may easily be extended to the case w
N is any directed set, as in Ref. 6.!

The linear maps resn , called therestriction maps, are required to satisfy the reciprocit
condition

^fux&5 lim
nPN

^resn~f!uresn~x!&
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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for all f,xPS. The sequence (Ln)n , equipped with the sequence (resn)n , is called aninductive
resolution of L` .

Given a vectorcPL` , and vectorscnPLn for sufficiently largenPN ~not necessarily for all
nPN!, we say that the sequence (cn)n convergesto c` provided the normsicni are bounded
and

^fuc`&5 lim
nPN

^resn~f!ucn&

for all fPS. The Riesz representation theorem guarantees that (cn)n converges to at most on
vector in L` . When (cn)n converges toc` , we call c` the limit of (cn)n , and we writec`

5 limnPN cn . Note thatf5 limnPN resn(f) for all fPS.
Let us recall some results that we shall need from Ref. 6.
Theorem 2.1:~Ref. 6, Theorem 2.4! Any vectorc`PL` is the limit of some sequence(cn)n ,

and, furthermore, the vectorscnPLn may be chosen such thatic`i5icni for all n.
Let B`5$b j ,` : j PJ`% be any enumerated orthonormal basis forL` . Here,J`5N if L` is

infinite-dimensional, whileJ`5$0,1,. . . ,d21% if L` has finite dimensiond. By Ref. 6, Theorem
3.1, there existBn , indexed bynPN, where eachBn is an enumerated orthonormal setBn

5$b j ,n : j PJn% in Ln , and

b j ,`5 lim
nPN

b j ,n

for all j PJ` . Note that, for each basis vectorb j ,` in L` , a corresponding basis vectorb j ,n in Ln

need not exist for alln, but theb j ,n must exist for sufficiently largen.
As explained in Ref. 6, Sec. 3, theBn cannot always be chosen such that eachBn is a basis.

~In all our applications in Sec. IV, each of our chosenBn is a basis. We also mention that, in a
these applications,L` is infinite-dimensional,N is a set of positive integers, and eachLn has finite
dimensionn.! We let L n

' denote the subspace ofLn orthogonally complementary to the span
Bn . Given a vectorc`PL` , we write

c`5(
j 50

`

cj ,`b j ,`

with the understanding thatcj ,n50 for all j PN2J` . GivencnPLn , we write

cn5cn
'1(

j 50

`

cj ,nb j ,n

wherecn
'PL n

' , andcj ,n50 for all j PN2Jn . ~Of course, ifBn is a basis, thencn
'50.! For later

convenience, we defineb j ,`ª0 when j PN2J` , and b j ,nª0 when j PN2Jn . Thus cj ,`

5^b j ,`uc`& andcj ,n5^b j ,nucn& for all j PN.
Theorem 2.2: ~Ref. 6, Theorem 3.4! Using the notation above, c`5 limnPN cn if and only if

the normsicni are bounded, and cj ,`5 limnPN cj ,n for all j PJ` .
We can now turn to convergence of operators. LetK̂` be a bounded operator onL` , and for

sufficiently largenPN, let K̂n be a bounded operatorLn . We say that the sequence (K̂n)n

convergesto K̂` provided the normsiK̂ni are bounded, and for allc`PL` , and all sequences
(cn)n with cnPLn andc`5 limnPN (cn), we have

K̂`c`5 lim
nPN

~K̂ncn!.

Theorem 2.1 ensures that the sequence (K̂n)n converges to at most one bounded operator onL` .
When (K̂n)n converges toK̂` , we call K̂` the limit of (K̂n)n , and we writeK̂`5 limnPN K̂n .
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Remark 2.3: Given bounded operators Kˆ
`5 limnPN K̂n and K̂8̀ 5 limnPN K̂n8 , and given

l,l8PC, thenlK̂`1l8K̂ 8̀ 5 limnPN (lK̂n1l8K̂n8) and K̂`K̂ 8̀ 5 limnPN K̂nK̂n8 .
Proof: This is obvious. h

Theorem 2.4:Given any bounded Kˆ
` on L` , then there exist bounded operators Kˆ

n on each

Ln such that K̂̀ 5 limnPN K̂n and iK̂ni5iK̂`i for all nPN.
Proof: Let B` andBn be as above. We define

K j ,k5^b j ,`uK̂`bk,`&

for all j ,kPN. ~Note thatK j ,k50 unlessj andk both belong toJ` .! On each spaceLn , we define
an operatorK̂n8 annihilatingL n

' and such that

K j ,k5^b j ,nuK̂n8bk,n&

for all j ,kPJn . Consider vectorsc`PL` andcnPLn such thatc`5 limn cn . Let the coefficients
cj ,` andcj ,n be as above. Then

iK̂n8cni25(
j 50

` U(
k50

`

K j ,kck,nU2

<iK̂`i2icni2.

So the normsiK̂n8i are bounded byiK̂`i . Givene.0, then there exists a positive integerN and
complex numbersc0 , . . . ,cN21 such that

(
j 50

N21 U (
k50

N21

K j ,kckU2

>~ iK̂`i2e!2 (
j 50

N21

ucj u2.

For sufficiently largenPN, we have $0, . . . ,N21%ùJ`#Jn , whereuponiK̂n8i>iK̂`i2e.
Therefore,iK̂`i5 limnPN iK̂n8i .

We claim thatK̂`5 limn K̂n8 . Let fPS. For eachn, let fnªresn(f). To prove the claim, it
suffices to show that

^fuK̂`c`&5 lim
n

^fnuK̂n8cn&.

For eachj PN, let aj ,`ª^b j ,`uf& andaj ,nª^b j ,nufn&. Thus

f5(
j 50

`

aj ,`b j ,` and fn5fn
'1(

j 50

`

aj ,nb j ,n ,

wherecn
'PL n

' . We have

^fnuK̂n8cn&5 (
j ,k50

`

ā j ,nK j ,kck,n

and a similar equation holds for^fuK̂`cn&. ~By absolute convergence properties, all the sums
consider can be rearranged.! We have

u^fuK̂`c`&2^fnuK̂n8cn&u<U (
j ,k50

`

ā j ,`K j ,k~ck,`2ck,n!U1U (
j ,k50

`

~ ā j ,`2ā j ,n!K j ,kck,nU.
~Using the boundedness ofK̂` , it is easy to check that these sums are absolutely converg!
Letting C be an upper bound for the normsicni , then
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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(
j 50

` U(
k50

`

K j ,kck,nU2

<C2iK̂`i2

for sufficiently largen. Part of Ref. 6, Lemma 3.3, says that( j 50
` uaj ,`2aj ,nu2<e2 for sufficiently

largen. Hence

U (
j ,k50

`

~ ā j ,`2ā j ,n!K̂ j ,kck,nU<eCiK̂`i .

We may insist thatC>ic`i . Thereupon,

(
j 50

` U(
k50

`

K j ,k~ck,`2ck,n!U2

<4C2iK̂`i2

for sufficiently largen. The series( j 50
` uaj ,`u2 converges~to ifi2), so there exists a positive

integerM such that( j 5M
` uaj ,`u2<e2. We have

U (
j 5M

`

(
k50

`

ā j ,`K j ,k~ck,`2ck,n!U<2eCiK̂`i

for largen. To prove the claim, it now suffices to show that

U (
j 50

M21

(
k50

`

ā j ,`K j ,k~ck,`2ck,n!U5O~e!.

Let j PN. Suppose there exists somed.0 such that, for every positive integerL, there exist
complex numberscL ,cL11 , . . . satisfying

(
k5L

`

ucku2<1 and U(
k5L

`

K j ,kckU.d.

Then there exist complex numbersc0 ,c1 , . . . andintegers 05L0,L1,¯ such that eachK j ,kck

is a non-negative real, and

(
k5Lr 21

Lr21

ucku2<
1

n2 and (
k5Lr 21

Lr21

K j ,kck.
d

2n

for all positive integersr . The series(k50
` ucku2 converges while the series(k50

` K j ,kck diverges.
This contradicts the boundedness ofK̂` . We deduce that, for any positive realB, there exists a
positive integerL such that, for all complex numberscL ,cL11 , . . . satisfying(k5L

` ucku2<B, we
haveu(k5L

` K j ,kcku<e/M . For largen, we have(k50
` uck,`2ck,nu2<4C2. So there exists a posi

tive integerL such that, for largen, and for all j ,M , we have

U(
k5L

`

K j ,k~ck,`2ck,n!U<e/M .

Eachuaj ,`u<ifi , so

U (
j 50

M21

(
k5L

`

ā j ,`K j ,k~ck,`2ck,n!U<eifi

for largen. The claim will follow when we have shown that
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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U (
j 50

M21

(
k50

L21

ā j ,`K j ,k~ck,`2ck,n!U5O~e!

for largen. By Theorem 2.2,ck,`5 limnPN ck,n . The claim is established.
To finish the argument, we must replace the operatorsK̂n8 with operatorsK̂n on Ln such that

iK̂ni5iK̂`i for all nPN. We may assume thatiK̂`i51. From the first paragraph of the argu
ment,iK̂n8i converges to 1. SoK̂nÞ0 for largen. WhenK̂n8Þ0, we putK̂n5K̂n8/iK̂n8i , otherwise
we put K̂n51̂. Then eachiK̂ni51, and iK̂n2K̂n8i→0. Since the normsicni are bounded,
iK̂ncn2K̂n8cni→0. It was shown in Ref. 6, Remark 2.3, that, foru`PL` andun ,xnPLn satis-
fying u`5 limnPN un and limnPN iun2xni50, we have u`5 limnPN xn . Therefore, K̂`c`

5 limnPN K̂ncn . h

Corollary 2.5: Given any bounded Hermitian operator Hˆ
` on L` , then there exist bounde

Hermitian operators Hˆ n on eachLn such that Ĥ̀ 5 limnPN Ĥn and iĤni5iĤ`i for each n
PN.

Proof: In the proof of Theorem 2.4, ifK̂` is Hermitian, then so is eachK̂n . h

In order to accommodate the possibility of working with a compound of several qua
stochastic processes~for example, a quantum system with several particles!, we must discuss
tensor products of inductive resolutions, and we must show how the limits of vectors and ope
are compatible with the tensor product. LetL8̀ be a Hilbert space, and letS8 be a dense subspac
of L8̀ . For eachnPN, let Ln8 be a Hilbert space, and let resn8 :S8→Ln be restriction maps. Then
L` ^ L8̀ has an inductive resolution with restriction maps resn^ resn8 :S^ S8→Ln^ Ln8 . Given
limits of vectorsc`5 limn cn andc 8̀ 5 limn cn8 in L` andL8̀ , respectively, it is clear that we hav
a limit of vectorsc` ^ c 8̀ 5 limn cn^ cn8 . By considering orthonormal coordinates and apply
Ref. 6, Theorem 3.4, it is easy to check that limits of bounded operators preserve tensor pr
in the same way.~Warning: we are not invoking Ref. 6, Theorem 3.4, gratuitously. Not ev
sequence inLn^ Ln8 converging toc` ^ c 8̀ has terms of the formcn^ cn8 .! These~rather trivial!
remarks show that the limits behave well in the~rather banal! case of a fixed finite number o
noninteracting processes. Presumably, they also behave well with respect to symmetric an
symmetric tensor products, and with respect to the construction of free, symmetric, and an
metric Fock spaces~see Ref. 9, Chap. II!. We leave that matter for further research.

III. CONVERGENCE OF QUANTUM SYSTEMS

Recall that a family$K̂(t):tPR% of operators on a Hilbert spaceL is said to bestrongly
continuous provided eachK̂(t) has domainL and, for allcPL, the functionR→L given by
t°K̂(t)c is continuous. If, furthermore,K̂(0)51̂ and eachK̂(t) is bounded, then we cal

$K̂(t):tPR% a quantum systemon L. In that case, we sometimes consider a family of vect
$c(t):tPR% such that

c~ t !5K̂~ t !c~0!.

A quantum systemU5$Û(t):tPR% on L is said to beunitary provided each operatorÛ(t) is
unitary. If, furthermore,

Û~ t !Û~ t8!5Û~ t1t8!

for all t,t8PR, then we say thatU is conservative.
The boundedness condition in our general definition of a quantum system is somewha

ficial, but convenient for our purposes. Our main concern is with conservative systems, and
have been thoroughly studied in various contexts and from various perspectives. For a d
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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introduction to conservative systems as quantum stochastic systems, see Ref. 9, Chap. 1
recall some well-known properties of conservative systems~introducing some notation that will be
convenient in the proof of Theorem 3.5!.

Suppose thatU is conservative. Stone’s theorem asserts that there exists a unique Her
operatorĤ on L such that

U~ t !5exp~2 iĤ t !.

We call Ĥ theHamiltonian for U. Conversely, every Hermitian operator onL is the Hamiltonian
of a conservative quantum system. The bijective correspondenceĤ↔U allows us to characterize
conservative quantum systems by the Schro¨dinger equation

i
d

dt
c~ t !5Ĥc~ t !.

For the sake of rigor, we must mention that, as a definition,

exp~2 iĤ t !ªE
2`

`

e2 i tsdE~s!,

whereE is the spectral family forĤ. The notation on the right-hand side is as in Ref. 10, Ch
7. It may be worth explaining what this equation tells us. Introducing some notation that will
use in the proof of Theorem 3.5, let us consider an integerm, and writeÊm for the orthogonal
projection onL associated withE and the half-open interval@m,m11). @Intuitively, we might
think of Êm as the projection to the subspaceÊmL of L spanned by those ‘‘eigenvectors’’ whos
‘‘eigenvalues’’ are at leastm and less thanm11. The operatorĤ restricts to an operator on eac
subspaceÊmL. Vaguely, we might think ofÊm as a kind of ‘‘eigenspace,’’ whose associat
‘‘eigenvalue’’ is spread across the interval@m,m11).# Any vector in L is a sum of vectors
belonging to the spacesÊmL, so the unitary operator exp(2iĤt) is determined by the condition
that it restricts to an operator onÊmL given by

exp~2 iĤ t !c5(
l 50

`
~2 iĤ t ! l

l !
c

for all cPÊmL. ~The series converges becauseĤ restricts to a bounded operator onÊmL.!
Stone’s theorem may be found in Ref. 10, Theorem 7.38. The bijectivity of the corres

denceĤ↔U is given in Ref. 15, Theorem 7.37. See also Ref. 9, Theorem 13.1.
Given a quantum systemK`5$K̂`(t):tPR% on L` , and quantum systemsKn5$K̂n(t):t

PR% on Ln for sufficiently largenPN, we say that (Kn)n convergesto K` provided

K̂`~ t !5 lim
nPN

K̂n~ t !

for all tPR. Obviously, (Kn)n converges to at most one quantum system onL` . When (Kn)n

converges toK` , we callK` the limit of (Kn)n , and we writeK`5 limnPN Kn .
Remark 3.1: LetK`5$K̂`(t):tPR% andKn5$K̂n(t):tPR%, respectively, be quantum system

on L` and on eachLn . Write c`(t)5K̂`(t)c`(0) andcn(t)5K̂n(t)cn(0). Then we have a limit
of quantum systemsK`5 limnPN Kn if and only if, given any initial state vectorsc`(0) in L` and

cn(0) in each Ln with c`(0)5 limnPN (cn(0)), and writing c`(t)5K̂`(t)c`(0) and cn(t)
5K̂n(t)cn(0), we havec`(t)5 limnPN cn(t) for all t PR.

Proof: This is obvious. h
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



r the
nter-

the

y

e

4660 J. Math. Phys., Vol. 42, No. 10, October 2001 Laurence Barker

Downloaded 08 May
In particular, Remark 3.1 tells us that if the limit holds for the quantum systems and fo
initial vectors, then the limit holds for all the time-evolved vectors. In case this seems cou
intuitive, we point out that, ifcn(t) is to be a ‘‘good approximation’’ toc`(t), one should first fix
t, and then choosen.

Theorem 3.2:Any quantum system onL` is the limit of a sequence of quantum systems on
spacesLn .

Proof: Let K`5$K̂`(t):tPR% be a quantum system onL` . For eachtPR, and j ,kPN, we
define

K j ,k~ t !ª^b j ,`uK̂`~ t !bk,`&.

Let K̂n(t) be the operator inLn constructed from the matrix entriesK j ,k(t) as in the proof of
Theorem 2.4. LetKn5$K̂n(t):tPR%. Using the condition thatK` is strongly continuous, it is eas
to check that eachKn is strongly continuous. h

Proposition 3.3: Let Ĥ` and each Hˆ n be bounded Hermitian operators onL` and Ln ,
respectively, and suppose that the normsiĤni are bounded. LetU` and eachUn be the conser-

vative systems with Hamiltonians Hˆ
` and Ĥn , respectively. ThenU`5 limnPN Un if and only if

Ĥ`5 limnPN Ĥn .
Proof: Write U`5$Û`(t):tPR% andUn5$Ûn(t):tPR%. For mPN, let

K̂m,`~ t !ª(
k50

m
~2 iĤ `t !k

k!
and K̂m,n~ t !ª(

k50

m
~2 iĤ nt !k

k!
.

Then Û`(t)5 limm→` K̂m,`(t) and Ûn(t)5 limm→` K̂m,n(t).
Let e.0. Consider vectorsfPS and c`PL` and cnPLn such thatc`5 limn cn . Write

fn5resn(f). Let A be an upper bound forifi andifni . Let B be an upper bound foriĤ`i and
iĤni . Let C be an upper bound foric`i and icni . Choosem such that

2AC(
k5m

`

uBtuk/k!<e.

Then iÛ`(t)2Km,`(t)i<e/2AC>iÛn(t)2Km,n(t)i for sufficiently largen. Hence

u^fuÛ`~ t !2K̂m,`~ t !uc`&2^fnuÛn2K̂m,n~ t !ucn&u<e.

If Ĥ`5 limn Ĥn , then, by Remark 2.3,K̂m,`5 limn K̂m,n , henceÛ`(t)c`5 limnPN Ûn(t)cn .
Conversely, suppose thatÛ`(t)c`5 limnPN Ûn(t)cn . Given t, we can pute5t2/2 ~and then

choosem!, where

u^fuK̂m,`~ t !c`&2^fnuK̂m,n~ t !cn&u5O~ t2!

for sufficiently largen. Equating coefficients oft ~the sums(k50
m uĤntuk/k! and the similar sum for

Ĥ` are bounded byeButu!, we obtainĤ`c`5 limn Ĥncn . h

Corollary 3.4: LetU` be a conservative system onL` with bounded Hamiltonian Hˆ
` . Then

there exist conservative systemsUn on Ln with bounded Hamiltonians Hˆ
n such that U`

5 limnPN Un and Ĥ`5 limnPN Ĥn .
Proof: This is immediate from Corollary 2.5 and Proposition 3.3. h

Theorem 3.5: Any conservative system onL` is the limit of a sequence of conservativ
systems on the spacesLn .
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Proof: Let U`5$Û`(t):tPR% be a conservative system onL` , let Ĥ` be the Hamiltonian for
U` , and letE be the spectral family forĤ` . For eachmPZ, let Êm be the orthogonal projection
as above, and letLm,`5ÊmL` . The Hermitian operatorĤ` restricts to a Hermitian operatorĤm,`

onLm,` . Let Um,`5$Ûm,`(t):tPR% be the conservative system onLm,` with HamiltonianĤm,` .
Any vectorc`PL` has a unique decomposition as a sum

c`5 (
mPZ

cm,`

where eachcm,`PLm,` . We haveĤ`cm,`5Ĥm,`cm,` and

Û`~ t !c`5 (
mPZ

Ûm,`~ t !cm,` .

It is easy to see that there exists an enumerated orthonormal basisB`5$b j ,` : j PJ`% such that
eachb j ,` belongs to one of the subspacesLm,` . The enumerated orthonormal setsBn , as in Sec.
II, may be chosen such that eachJn#J` . For eachmPZ, let

J`~m!ª$ j PJ` :b j ,`PLm,`% and Jn~m!ªJnùJ`~m!.

Let Lm,n be the subspace ofLn spanned by the vectorsb j ,n such thatj PJn(m). Any vectorxn

PLn has a unique decomposition as a sum

xn5xn
'1 (

mPZ
xm,n ,

wherexn
'PL n

' , and eachxm,nPLm,n . For j ,kPJ` , let

H j ,k5^b j ,`uĤ`bk,`&.

Note thatH j ,k5Hk, j , andH j ,k50 unlessj ,kPJ`(m) for somemPZ. Let Ĥm,n be the Hermitian
operator onLm,n such that

H j ,k5^b j ,nuĤm,nbk,n&

for j ,kPJn(m). Let Um,n5$Ûm,n(t):tPR% be the conservative system onLm,n with Hamiltonian
Ĥm,n . Let Ĥn be the Hermitian operator onLn such thatĤnxn

'50 andĤnxm,n5Ĥm,nxm,n . Let
Un5$Ûn(t):tPR% be the conservative system onLn with HamiltonianĤn . Then

Ûn~ t !xn5xn
'1 (

mPZ
Ûm,n~ t !xm,n .

We are to show thatÛ`(t)5 limnPN Ûn(t) for all tPR.
For eachnPN, let cnPLn , and suppose thatc`5 limnPN cn . Write

c`5(
j 50

`

cj ,`b j ,` and cn5cn
'1(

j 50

`

cj ,nb j ,n

as in Sec. II. Fix tPR, and let u`5Û`(t)c` and un5Ûncn . We are to show thatu`

5 limn un . Write
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u`5(
j 50

`

dj ,`b j ,` and un5un
'1(

j 50

`

dj ,nb j ,n

as we did forc` and cn . The normsiuni5icni are bounded. So, by Theorem 2.2, we are
show thatdj ,`5 limn dj ,n for all j PJ` . Fix j PJ` , and letm be such thatj PJ`(m). We have

dj ,`5 (
kPJ`(m)

^b j ,`uÛm,`~ t !bk,`&ck,` .

The equation still holds with the symboln instead of the symbol̀ . ReplacingĤ` with the
Hermitian operatorÊmĤ`5Ĥ`Êm does not changeĤm,` or Ĥm,n , so it does not changeÛm,` or
Ûn,m . So it does not changedj ,` or dj ,n . Therefore, we may assume thatĤm8,`50 for all integers
m8Þm. HenceĤm8,n50 for all m8Þm and all nPN. But now Ĥ` is bounded, indeediĤ`i
<umu11. Furthermore, the operatorsĤn are constructed fromĤ` just as the operatorsK̂n8 were
constructed fromK̂` in the proof of Theorem 2.4. SoĤ`5 limnPN Ĥn . Thanks to Proposition 3.3
the argument is now complete. h

Corollary 3.6: Any unitary operator onL` is the limit of a sequence of unitary operators o
the spacesLn .

Proof: Given a unitary operatorÛ` on L` , then by Ref. 10 Exercise 7.50, there exists
conservative system$Û`(t):tPR% such thatÛ`5Û`(1). Theorem 3.5 now gives the assertion.h

A more direct way to demonstrate Corollary 3.6 is to adapt the proof of Theorem 2.4,
the Gram–Schmidt process to modify the columns of the matrices (K j ,k) j ,kPJn

. The argument is
fairly routine, although it is complicated by the need to make some arbitrary choices whe
Gram–Schmidt process terminates prematurely.

The existence results above can be interpreted as saying that, in principle, any ‘‘contin
system~of a particular kind! is the limit of a sequence of ‘‘discrete’’ systems~of the same kind!.
The next result provides one way of actually recognizing that a given ‘‘continuum’’ system i
limit of a given sequence of ‘‘discrete’’ systems.

Proposition 3.7: LetU`5$Û`(t):tPR% be a conservative system onL` , and for each n

PN, let Un5$Ûn(t):tPR% be a conservative system onLn . Let Ĥ` and Ĥn , respectively, be the
Hamiltonians. LetB` and Bn be as in Sec. II. Suppose that, for each jPJ` , there exists a real
l j ,` such that

Ĥ`b j ,`5l j ,`b j ,` .

Suppose also that, for sufficiently large n, there exist realsl j ,n such that

Ĥnb j ,n5l j ,nb j ,n .

ThenU`5 limnPN Un if and only if l j ,`5 limnPN l j ,n for all j PJ` .
Proof: This follows quickly from Theorem 2.2. h

Proposition 3.7 yields an alternative~and very easy! proof of Theorem 3.5 in the special cas
of a conservative system onL` with a diagonalizable Hamiltonian.

IV. SOME EXAMPLES OF CONTINUUM LIMITS OF DISCRETE SYSTEMS

In all the examples to follow, we shall apply Proposition 3.7 to show that the given ‘‘c
tinuum’’ system is the limit of the given sequence of ‘‘discrete’’ systems. Each of the indu
resolutions is a sample-point inductive resolution, as in Ref. 6, Examples 2.A–2.F. Sample
inductive resolutions are examined also in Ref. 7.

Example 4.A: The circular rotor. The rotor, in one dimension, is a model for a particle mov
freely on a circle. Classically, the energy is proportional to the square of the angular mome
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Let S be the space of smooth functionsf:R→C such thatf has period unity andf is square-
integrable on a bounded domain. The inner product onS is given by integration over an interva
of length unity. Making a suitable choice of units, the HamiltonianĤ` of the rotor has domainS
and satisfies

Ĥ`f~x!52d2f~x!/dx2

for fPS andxPR. The completionL` of S has an orthonormal basisB`5$b j ,` : j PN% given by

b j ,`~x!5H& cos~p jx ! if j is even,

& sin~p~ j 11!x! if j is odd.

It is easy to check thatB` diagonalizesH` , indeed,Ĥ`b j ,`5l j ,`b j ,` , where

l j ,`5H p2 j 2 if j is even,

p2~ j 11!2 if j is odd.

Let N be the set of positive odd integers. For eachnPN, let Ln be then-dimensional inner
product space consisting of the functionsZ→C with periodn. The inner product onLn is given by
summation overn consecutive integers. We replace the differential operator2d2/dx2 with a
difference operatorĤn where

Ĥnc~X!5n2~2c~X21!12c~X!2c~X11!!

for cPLn andXPZ. Given an integerj with 0< j <n21, we put

b j ,n~X!5HA2/n cos~p jX/n! if j is even,

A2/n sin~p~ j 11!X/n! if j is odd.

It is easy to check that$b j ,n :0< j <n21% is an orthonormal basis forLn diagonalizingĤn .
Writing Ĥnb j ,n5l j ,nb j ,n , then

l j ,n5H 2n2~12cos~2p jX/n!! if j is even,

2n2~12cos~2p~ j 11!X/n!! if j is odd.

Let U` be the conservative system onL` with HamiltonianĤ` . For eachnPN, let Un be the
conservative system onLn with HamiltonianĤn . Of course, it is heuristically ‘‘obvious’’ thatU`

is some kind of ‘‘limit’’ of Un , but in order to formulate this observation mathematically, we m
realize (Ln)n as an inductive resolution ofL` . We define resn :S→Ln such that

resn~f!~X!5f~X/n!/An

for fPS andXPZ with 2n/2,X,n/2. It is easy to check that the sequence (Ln)n , equipped
with the sequence (resn)n , is indeed an inductive resolution ofL` . ~In fact, this is the precisely
the one-dimensional case of Ref. 6, Example 2.F.! Given j PN, then, for alln. j , we haveb j ,n

5resn(b j ,`). Therefore,b j ,`5 limnPN b j ,n . Since ln,`5 limnPN l j ,n , Proposition 3.7 tells us
that

U`5 lim
nPN

Un .

Example 4.B: The one-dimensional box. For eachj PN andxP@2 1
2,

1
2#, we write
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b j ,`~x!5H& cos~p~ j 11!x! if j is even,

& sin~p~ j 11!x! if j is odd.

Let L` be the Hilbert space with orthonormal basis$b j ,` : j PN%. Let S be the dense subspace
L` consisting of the smooth functions@2 1

2,
1
2#→C. The box, in one dimension, is the conservati

systemU` whose HamiltonianĤ` has domainS and is given by

Ĥ`f~x!52d2f~x!/dx2

for fPS. Evidently Ĥ`b j ,`5l j ,`b j ,` wherel j ,`5p2( j 11)2.
Again, let N be the set of positive odd integers. LetLn be then-dimensional inner produc

space consisting of the complex-valued functions on the integersX lying in the interval2n/2
,X,n/2. As in the previous example, we replace the differential operator2d2/dx2 with a
difference operatorĤn , but this time the sample-points indexed by (12n)/2 and (n21)/2 are to
be interpreted as end-points~they are no longer interpreted as being adjacent!. Writing n52l
11, we put

Ĥnc~X!5H n2~2c~2 l !2c~12 l !! if X52 l ,

n2~2c~X21!12c~X!2c~X11!! if 2 l ,X, l ,

n2~2c~ l 21!12c~ l !! if X5 l .

The operatorĤn is diagonalized by the orthonormal basisBn5$b j ,n :0< j <n21% of Ln , where

b j ,n~X!55A
2

n21
cosS p~ j 11!X

n11 D if j is even,

A 2

n11
sinS p~ j 11!X

n11 D if j is odd.

In fact, Ĥnb j ,n5l j ,nb j ,n wherel j ,n52(12cos(p(j11)/(n11))).
We realize (Ln)n as an inductive resolution ofL` by defining resn :S→Ln by the same

formula as in Example 4.A. A straightforward calculation yields, for allj PN, all xP@2 1
2,

1
2# and

all sequences (Xn)n of integers such thatx5 limnPN Xn /An, the point-wise convergence conditio

b j ,`~x!5 lim
nPN

Anb j ,n~Xn /n!.

The normsib j ,ni are all unity, and, in particular, they are bounded. In Ref. 7, Theorem 3.1, it
proved that point-wise convergence of vectors with bounded norms implies convergence;
ticular,

b j ,`5 lim
nPN

b j ,n .

Observing that eachl j ,`5 limnPN l j ,n , we again conclude from Proposition 3.7 that

U`5 lim
nPN

Un .

Example 4.C: The Harper function harmonic oscillator. In this example and the next, w
review some results from Refs. 11 and 12, and we show how that material can be strea
using Proposition 3.7. Recall thatL2(R) has an orthonormal basis$hj ,` : j PN% consisting of the
functionshj ,` :R→C, called theHermite–Gaussians, which are given by
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hj ,`~x!5Cje
2x2/2H j~x!,

whereH j is the Hermite polynomial of degreej , andCj is a positive real normalization constan
The continuum harmonic oscillator is defined to be the conservative systemU`5$Û`(t):t
PR% whose HamiltonianĤ` is given by Ĥ`c(x)5(2d2/dx21x2)c(x), or equivalently,
Ĥ`hj ,`5(2k11)hj ,` . Thus

Û`~ t !hj ,`5e2(2 j 11)i thj ,` .

Let N be an infinite set of positive integers such thatAn2 /n1PZ for all n1 ,n2PN with n1

<n2 . ~At one point in the discussion, we shall make use of this peculiar hypothesis onN, but the
assertions probably hold for any infinite setN of positive integers.! Given an elementnPN, let
Ln be then-dimensional inner product space consisting of the functionsZ→C with periodn. We
realize (Ln)n as an inductive resolution ofL2(R) by defining restriction maps resn :S(R)→Ln

such that

resn~f!~X!5~n/2p!21/4f~~n/2p!21/2X!

for fPS(R) and XPZ. After Harper,13 Namias,1 Pei–Yeh3 and others, we define theHarper
function harmonic oscillator to be the conservative systemUn on Ln with HamiltonianĤn such
that

Ĥnc~X!5
n

2p
~2c~X21!1~422 cos~2p iX/n!!c~X!2c~X11!!

for cPLn andXPZ. The definition and enumeration of the Harper functionsb0,n ,b1,n , . . . may
be found in Ref. 3; see also Refs. 11 and 12. The Harper functions comprise an orthonorma
for Ln , they are eigenvectors ofĤn , and by Ref. 12, Theorem 2.5,

hj ,`5 lim
nPN

b j ,n

for all j PN. ~It is here that the peculiar hypothesis onN is used.! Combining this result with Ref.
12, Lemmas 3.1 and 3.9, it is easy to show that the eigenvaluel j ,n of Ĥn associated withb j ,n

satisfies

2 j 115 lim
nPN

l j ,n .

Proposition 3.7 now yields

U`5 lim
nPN

Un .

As suggested in Ref. 7, Sec. 3, the peculiar hypothesis onN can perhaps be relaxed using resu
that were not available when Ref. 12 was written.

Example 4.D: The Harper function fractional Fourier transform. We continue to use the
notation from Example 4.C. After Namias, thecontinuum FRFT is defined to be the conservativ
systemF`5$F̂`

t :tPR% such that

F̂`
t hj ,`5e2p i j t hj ,` .

As Namias observed, the continuum FRFT and the continuum harmonic oscillator are rela
the equality
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Û`~ t !5e2 i t F̂`
2t/p .

Note thatF̂1/4 is the usual Fourier transform. TheHarper function FRFT comes in two versions
the import versionIn5$ Î n

t :tPR% and thedomesticversionDn5$D̂n
t :tPR%. The import version,

defined by

Î n
t b j ,n5e2p i j t b j ,n ,

is perhaps rather artificial~its eigenvalues being ‘‘imported’’ from the continuum FRFT!, but it has
the virtue thatF̂n

1/4 is the usual discrete Fourier transform. The domestic version, defined by

Ûn~ t !5e2 i t D̂n
2t/p ,

has the virtue that it has an explicit Hamiltonian, namely (Ĥn21)/2. By Proposition 3.7,

F`5 lim
nPN

In5 lim
nPN

Dn .

Example 4.E: The Kravchuk function harmonic oscillator. We retain the notation from Ex
amples 4.C and 4.D, except that we now letN be any set of positive integers. GivennPN, let us
write n52l 11, and letXn be the set consisting of theX such thatl 1X andl 2X are both natural
numbers. We writeL(Xn) to denote then-dimensional inner product space consisting of t
complex-valued functions onXn . As in Ref. 7, Secs. 4 and 5, we realize (L(Xn))n as an inductive
resolution ofL2(R) by defining resn :S(R)→L(Xn) such that

resn~f!~X!5 l 21/4f~ l 21/2X!

for fPS(R) andXPXn . Recall~or see Ref. 7, Sec. 5! that the Kravchuk functionshj ,n comprise
an orthonormal basis$hj ,n :0< j <n21% for L(Xn). The Kravchuk functions are discrete analo
of the Hermite–Gaussians, and arise from a binomial weight function in place of a Gau
weight function. By Ref. 7, Theorem 5.1,

hj ,`5 lim
nPN

hj ,n

for all j PN. After Ref. 14, theKravchuk function harmonic oscillator is defined to be the
conservative systemK̂n5$K̂n(t):tPR% on Ln such that

Ĥn~ t !hj ,n5e2(2 j 11)i thj ,n .

By Proposition 3.7,

U`5 lim
nPN

Kn .

Example 4.F: The Kravchuk function fractional Fourier transform. We retain the notation
from the previous three examples,N being any infinite set of positive integers. After Ref. 2, t
Kravchuk function FRFT is defined to be the conservative systemFn5$F̂n

t :tPR% such that

F̂n
t hj ,n5e2p i j t hj ,n .

Equivalently,Fn may be defined by

K̂n~ t !5e2 i t F̂n
2t/p .
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



T
hose
e
e

plicit
FRFT

ie
a

asso-
s

an

m
ec-
them-
only
re
an

ng
and the
Con-
. It is to
.
s, the
ther

e

eveloped

nce
,

4667J. Math. Phys., Vol. 42, No. 10, October 2001 Continuum quantum systems as limits

Downloaded 08 May
By Proposition 3.7,

F`5 lim
nPN

Fn .

Comment: Advantages of the Kravchuk function FRFT over the Harper function FRF. In
applications of the Harper function FRFT, one must select either the import version, w
eigenvalues are integer powers ofe2p i t , but whose Hamiltonian is not known explicitly, or els
one must select the domestic version, whose Hamiltonian is (Ĥn21)/2, but whose eigenvalues ar
not known explicitly. Either way, the eigenvectors—the Harper functions—lack a known ex
formula, and have to be calculated numerically. The eigenvectors of the Kravchuk function
Fn are integer powers ofe2p i t . As can be gleaned from Refs. 2 and 5, the Hamiltonian forFn has
a very simple description in terms of then-dimensional irreducible representation of the L
algebra su(2)~see also Ref. 4!. The eigenvectors ofFn—the Kravchuk functions—are given by
complicated but explicit formula.

V. SOME QUESTIONS AND REMARKS ON CONVERGENCE OF SPECTRA

An alternative description of a conservative system is provided by the spectral measure
ciated with the Hamiltonian. Throughout this section, we consider conservative systemU`

5$Û`(t):tPR% on L` andUn5$Ûn(t):tPR% on eachLn . Let Ĥ` andĤn be the Hamiltonians
for U` and Ûn , respectively. IfU`5 limnPN Un , how is the spectral measure for the Hermiti
operatorH` related to the spectral measure for the operatorsHn? Or, more simply, how is the
spectrums(Ĥ`) ~or the essential or residual spectrum! related to the spectras(Ĥn)?

On the one hand, it would be desirable to have techniques for investigating the spectru~or
spectral measure! of an infinite-dimensional system by examining limiting properties of the sp
tra of finite-dimensional approximations. On the other hand, finite-dimensional systems are
selves of interest.~As a vague principle, any closed system of finite extent in space can have
finitely many independent nondecaying states.! Finite-dimensional systems are not always mo
amenable than infinite-dimensional systems~difference equations often have richer solutions th
their analogous differential equations.! In connection with example 4.E, it is worth rememberi
that De Moivre, having established the correspondence between the Gaussian distribution
binomial distribution, then employed the Gaussian as an approximation to the binomial.
tinuum approximation to discrete phenomena has pervaded statistical techniques ever since
be expected that results relatings(Ĥ`) ands(Ĥn) could be usefully applied in either direction

As regards practical methods for relating the spectra of discrete and continuum system
results in this article are simply not in competition with those in Ref. 8. We do not know whe
or not their results can be extended to our more general context.~It should be mentioned that th
examples considered in Sec. 4 are all, essentially, in the situation they considered.! The following
result indictates that the questions above do have answers, and that our approach can be d
to yield alternative and more general methods.

Proposition 5.1: Suppose thatU`5 limn Un . Suppose also that Hˆ
` and each Hˆ n are bounded,

and that the normsiĤni are bounded. Then every pointlPs(Ĥn) is the limit l5 limn ln of

pointslnPs(Ĥn).
Proof: The conditionlPs(Ĥ`) is equivalent to the condition that there exists a seque

(fm)m of vectors inL` such thatifmi51 and i(Ĥ`2l)fmi→0 asm→` ~see, for instance
Ref. 15, Theorem 5.10!. SinceS is dense inL` , we may insist that eachfmPS. Let e.0, and fix
m such thati(Ĥ`2l)fmi<e/2. By Proposition 3.3, the convergence hypothesis onU` is equiva-
lent to the condition thatĤ`5 limn Ĥn . Noting that limn iresn(fm)i51, and putting cn

5resn(fm)/iresn(fm)i , we havei(Ĥn2l)cni<e for sufficiently largen. By a well-known
criterion for existence of spectral points in an interval~see Ref. 12, Theorem 5.9!, s(Ĥn)ù@l
2e,l1e#ÞB. h
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Corollary 5.2: In the situation of Proposition 5.1, suppose that the limitslimn mn of points

mnPs(Ĥn) comprise a discrete subset ofR. Then Ĥn is diagonalizable. h

It seems probable that the boundedness condition in Proposition 5.1 can be removed b
a refinement of the argument~and the rider to Stone’s theorem as recorded in Ref. 9, Theo
13.1!. A more systematic option would be to wait for that to become a corollary of a re
expressing the conditionU`5 limn Un in terms of the spectral measures. We end with a f
comments in this direction. Consider an intervalI in R. Write Ī and I ° for the closure and the
interior. LetEI ,` andEI ,n be the corresponding projections toL` andLn associated withĤ` and
Hn . To see that convergence of the sequence (Ĥn)n does not imply convergence of the sequen
(EI ,n)n , let a be an end-point ofI , and letĤn5(a1(22)n)1̂.

Question 5.A: Are the following conditions equivalent?

~1! U`5 limn Un .
~2! If c`5 limn cn with cnPEI ,nLn , thenc`PEĪ ,nL` .
~3! If c`5 limn cn with c`PEI °,nL` and ic`i5 limn icni , then limn i(1̂2ÊI ,n)cni50.
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