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In x-ray photoemission measurements, differential charging causes the measured binding energy
difference between the Spaf the oxide and the silicon substrate to vary nonlinearly as a function

of the applied external dc voltage stress, which controls the low-energy electrons going into and out
of the sample. This nonlinear variation is similar to the system where a gold metal strip is connected
to the same voltage stress through an external 10 Mohm series resistor and determined again by
x-ray photoelectron spectroscop¥PS). We utilize this functional resemblance to determine the
resistance of the 4 nm SjQayer on a silicon substrate as 8 Mohm. In addition, by performing
time-dependent XPS measureme(@ishieved by pulsing the voltage stresse determine the time
constant for charging/discharging of the same system as 2.0 s. Using an equivalent circuit,
consisting of a gold metal strip connected through a 10 Mohm series resistor and a 56 nF parallel
capacitor, and performing time-dependent XPS measurements, we also determine the time constant
as 0.50 s in agreement with the expected v&luB6 9. Using this time constant and the resistance

(8.0 Mohm), we can determined the capacitance of the 4 nm, $@er as 250 nF in excellent
agreement with the calculated value. Hence, by application of external dc and pulsed voltage
stresses, an x-ray photoelectron spectrometer is turned into a tool for extracting electrical parameters
of surface structures in a noncontact fashion.ZD05 American Institute of Physics

[DOI: 10.1063/1.1919396

X-ray photoelectron spectroscogXPS) is a powerful reported recentl§7.2'1‘°’ln this contribution, we extend our ap-
analytical technique for deriving chemical and physical in-plication and report simple and noncontact electrical mea-
formation about 0—20 nm surface structures. Its power stemsurements derived form XPS data.
mostly from its ability in resolving the chemical identity of SiO, layers were grown thermally on HF-cleaned Si
the atoms from the measured binding energigkhough the  (100) substrates at 500 °C in air. Thickness of the overlayers
photoelectron emission is a weak process, a finite, measuwas estimated from their angular depende]ﬁc& Kratos
able, and more or less steady curréhfi—20 nA flows from  ES300 electron spectrometer with Mgv rays (nonmono-
the sample, which usually causes unwanted positive charginghromati¢ was used for XPS measurements. In the standard
in poorly conducting samples or parts of surfacegeometry, the sample accepts x rays at 45° and photoelec-
heterostructure$ The positive charging is usually compen- trons at 90° with respect to its surface plane are analyzed.
sated for by a directed flow of low-energy electrdqosions Samples were electrically connected both from the (top
from an external unitflood-gur) to the sample, which under ide laye) and the bottom(silicon substrateto the sample
certain circumstances, overneutralizes it and can even caubelder, which was grounded or biased with a dc power sup-
negative charging. This negative charging, dubbed as corply externally. For electrical measurements, a gold metal
trolled surface charging, has been utilized for deriving somestrip was also connected to the sample, and a series resistor
chemical/physical parameters of surface structtirfé®ther- (0.1-20 Mohm and/or a parallel capacitai0.1-1000 nf
wise, the emphasis, until now, has mostly been on recordingrere connected externally. Resolution of our spectrometer is
the line positions in XPS, and except for very few casés, slightly better than 0.80 eV as measured in the Algp@aks
no attempts for electrical measurements have been madand we use standard curve fitting routines with 0.60 eV spin-
The total current is the sum of two opposing currents, resulterbit parameter for the Si2 Since we extract binding en-
ing from photoelectrons, and secondary electrons going ourgy differences by fitting the entire silicon substrate and the
of the sample, and stray electrons or electrons from the floodxide peak, we estimate our error in measuring the binding
gun, going into the sample, which can easily be controlled byenergy differences to be better than 0.05 eV. For time re-
application of a smal(0-10 V) external bias, as we have solved measurements, the bias was stepped and pulsed. Dur-

ing each pulse 200 measurements with 5(ordarge) reso-
author to whom correspondence should be addressed, electronic mailution were recorded, the voltage was stepped and pulsed for
suzer@fen.bilkent.edu.tr the next 200 measurements until a region was completed.
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FIG. 1. (Color online XPS spectra of the Si2and Au 4 regions of a 106 F=g 97 89 1= 0.5 80
silicon substrate having-4 nm oxide layer, and in electrical contact with a Bindirg B (eW

gold metal strip, under +10 V and -10 V external bias, and also without and
with a 10 Mohm series external resistor. The voltage bias affects the mea=|G. 3. 200 time-dependent XPS spectra of the [Sir2gion for the
sured binding energy difference between the silicon oxide and the silicorsjo,(4 nm)/Si system(a’), and the Au 4 region of a gold metal strip con-
substrate peaks and introduction of an external resistor induces an increagected to an external 10 Mohm series resistor and a 56 nF parallel capacitor
in the kinetic energy of all peaks under positive bias and decreases undep’). The schematics of the two systems are also shown in the upper parts
negative one. [(@) and(b)]. First-order exponential fits give time constants of 2.0 and 0.50

s for the SiQ/Si and the Agm) with the external RC circuit, respectively.

Several scans were implemented for signal averaljing.

When an external voltage stress is applied to the samplpig_ 1. In this case, an additional potenti#R) develops as
rod, while recording the XPS spectrum, the binding energiegneasured from the difference between the Adevels with
shift in a very nonlinear fashion due to variation of the elec-3nq without the external resistor which also exhibits an S
tron current passing through the sample. Figure 1 shows thgne of a curve, also plotted in Fig. 2. With the help of these
Si 2p and Au 4 peaks of a~4 nm thick SiQ/Si system tied  gata, we can determine the magnitude of the various currents
together with a gold metal strip undgfig. @] +10 and  sperative. The current due to the photoelectrons and second-
[Fig. 1(b)] =10 V bias, where approximately a 0.3 eV differ- 5ry electrons is 18 n40.18 V/10 Mohm as obtained from
ence develops between the"Sand SF peaks with no mea- e plateau reached in the negative side of the curve since all
surable difference between the’$ind Au 4 peaks. When low-energy stray electrons are repelled. Around +1 V ap-
this difference is plotted against the external voltage, an %Iied potential, the null point is reached such that no differ-
type of a curve is obtained as shown in Fig. 2. _ence can be measured between the Aas i3 and Au 4
In order to quantify the current, and establish an equiva; g Mohm corresponding to cancellation of the currents go-
lent circuit, we have incorporated an external 10 Mohm ring into and out of the sample. On the positive side, the
sistor into the system which shifts all the peaks toward &)j5teay is not as clear but an approximate value of 42 nA can
higher kinetic energyblueshify at positive bias and a lower po optained.
kinetic energy(redshif) at negative bias as also shown in The more important point revealed by our measurements
is the striking resemblance of the functional dependence of
Iph. el. the curve of Agm) with 10 Mohm external resistor to that of
dists the SiG(4 nm-Si(m) without the resistofi.e., under these
I (oh. el) An(m) circumstances the Siayer behaves like a simple resistive
S0, (4nm) [I° Rox element. Using this resemblance and the current values de-
Sigm) termined by Au and the external resistor, we can now derive
an estimated resistance of 8.0+1.0 Mohm to the 4 nm, SiO
layer indicated a®,, in the same figure.
Roxt As we have recently reported, it is also possible to pulse
v Si**2p -si%p 10 M ohm the voltage stress and obtain time-resolved data in the milli-
T second rangés. Figure 3a) gives a set of 200 XPS spectra
gl oy @ recorded with 10 ms steps of the $i 2egion of the same
o H 8 B & = silicon sample containing the 4 nm oxide layer initially bi-
External Blas (V) ased at —10 V but pulsed to +10 V to record the spectra. As
can be seen from the figure, thé Beak is stable but the Bi
g'_(;- 2. (Cl:"orfotft‘]””e T(;‘e Imeasureddtﬁmdi_?g energby:iifiere?cttte ZEtwe_e”ttTﬁpeak shifts in time to lower binding energies. A first-order
B e 1, 2921 "Exponential decay it ives a time constant o 2.0£0.2 5. Fol-
reference. The measured binding energy difference between thé peaks ~ 10WiNg our strategy of establishing an equivalent circuit to
with and without 10 Mohm external resistance is also shown in the saméhe SiGQ/Si system, we have carried out a similar measure-
graph(green. The measured binding energy difference between th@8f2 ment on the gold metal connected externally through a
e ey, Do e Sy TESSIaNCE-CapacitanceRC) _cireut  (R=10 Mohm, C
can determine the magn);tude (?fthe two opposing currents due) ®ho- ;lgicneg 'I?f?eaelf(c[))esrtlnavevrr]]tfl;l]l;r:jeerll:\llzémRVCVITQ g%gicg geievr\?fjlich

toelectrons and secondary electrons going out of the sample(iiarahd
stray electrons going into the sample. matches very closely the expected RC value of 0.56 s
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10 MohmX 56 nF. With the help of these data, we can now Irrespective of the ways the XPS-derived electrical pa-
assign an XPS-derived capacitance value of 250+25 nF farameters relate to properties of the materials, we have dem-
the 4 nm SiQ layer using the XPS-derived resistance of onstrated that XPS data, recorded under external dc together
~8.0 Mohm and the time constant derived from the time-with pulsed voltage stimuli, can yield valuable information
resolved measuremefi2.0 s=8.0 Mohnx 250 nH. Hence, related to dielectric properties of the Si3i system. The
using simple voltage biasing in the dc and pulsing modes w@pproach is simple, versatile, and most importantly a non-
turn the x-ray photoemission spectrometer into a honcontadontact measurement technique, which we expect to be most

tool for extracting electrical parameters of the surface structseful for investigation of fragile organic layers, where con-
tures. ventional electrical measurements are difficult.
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