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Integrable systems are usually given in terms of functions of continuous variables
�on R�, in terms of functions of discrete variables �on Z�, and recently in terms of
functions of q-variables �on Kq�. We formulate the Gel’fand-Dikii �GD� formalism
on time scales by using the delta differentiation operator and find more general
integrable nonlinear evolutionary equations. In particular they yield integrable
equations over integers �difference equations� and over q-numbers �q-difference
equations�. We formulate the GD formalism also in terms of shift operators for all
regular-discrete time scales. We give a method allowing to construct the recursion
operators for integrable systems on time scales. Finally, we give a trace formula on
time scales and then construct infinitely many conserved quantities �Casimirs� of
the integrable systems on time scales. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2116380�

. INTRODUCTION

Integrable systems are well studied and well understood in 1+1 dimensions.1–3 Here one of
he dimensions denotes the time �evolution� variable and the other one denotes the space variable
hich is usually taken as continuous. There are also important examples where this variable takes
alues in Z, i.e., integer values. In both cases the Gel’fand-Dikii �GD� approach is quite effective.
ne can generate hierarchies of integrable evolution equations, both on R and on Z �see Ref. 3 for
D applications and related references�. In addition one can construct the conserved quantities,
amilton operators, and recursion operators. Investigation of integrable systems on q-discrete

ntervals started in Refs. 4–6. They considered GD formalism on Kq and found q-integrable
ierarchies including the q-KdV equation.

In this work we extend the Gel’fand-Dikii approach to time scales where R, Z, and Kq are
pecial cases. In the next section we give a brief review of time scales calculus. See Refs. 7–13 for

more detailed review of the subject. In GD formalism, in obtaining integrable systems the
ssential tools are the differential and shift operators and their inverses. For extending the GD
ormulation to time scales we give the necessary means to construct in the sequel the algebra of
seudo-�-differential operators and the algebra of shift operators. In Sec. III we assume
-differential Lax operators and derive the �-Burgers hierarchy with its recursion operator. We
resent special cases of the Burgers equation for T=hZ and T=Kq. In Sec. IV, we consider the
egular time scales where the inverse of jump operators can be defined. Here we assume a pseudo-
-differential algebra and give the corresponding GD formulation. As an example we present a
-KdV hierarchy. We first find n=1 member of the hierarchy and write out it explicitly for T
R ,Z ,Kq and for T= �−� ,0��Kq. Then we give the n=3 member and call it as the �-KdV

ystem. We call it �-KdV equation, because the corresponding Lax operator is a second order

-differential operator. It involves two fields u and v, but the second field v can be expressed in
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erms of the first filed u. When T=R, this system reduces to the standard KdV equation. In Sec. V,
e consider the regular-discrete time scales and introduce the algebra of shift operators on them

nd give the corresponding GD formulation for all such time scales. Here several examples are
resented. We first generalize the examples of discrete systems on Z given in Ref. 3 �one field, two
elds, and four fields examples in Ref. 3� to arbitrary discrete time scales. In all these examples
hen T=Z we get the discrete evolutions given in Ref. 3. We construct the recursion operators of

hese systems on time scales. We generalize the Frenkel’s KdV system4 introduced on Kq to
rbitrary discrete time scales and we construct its recursion operator. In this section, we finally
ive an example of the KP hierarchy on discrete time scales. In Sec. VI, we extend the standard
ay of constructing the conserved quantities of integrable systems to time scales by introducing a

race form on the algebra of �-pseudo-differential operators. The trace form introduced in this
ection reduces, in particular cases, to the standard trace forms on R and Z. In the Appendix we
ive the recursion operators of two four-fields systems introduced in Sec. V. We end up with a
onclusion.

I. TIME SCALE CALCULUS

The time scale calculus is developed mainly to unify differential, difference, and q-calculus. A
ime scale �T� is an arbitrary nonempty closed subset of the real numbers. The calculus of time
cales was initiated by Aulbach and Hilger7,8 in order to create a theory that can unify and extend
iscrete and continuous analysis. The real numbers �R�, the integers �Z�, the natural numbers �N�,
he non-negative integers �N0�, the h-numbers �hZ= �hk :k�Z�, where h�0 is a fixed real num-
er�, and the q-numbers �Kq=qZ� �0���qk :k�Z�� �0�, where q�1 is a fixed real number� are
xamples of time scales, as are �0,1�� �2,3�,�0,1��N, and the Cantor set, where �0,1� and �2,3�
re real number intervals. In Refs. 7 and 8 Aulbach and Hilger introduced also dynamic equations
n time scales in order to unify and extend the theory of ordinary differential equations, difference
quations, and quantum equations9 �h-difference and q-difference equations based on h-calculus
nd q-calculus, respectively�. For a general introduction to the calculus on time scales we refer the
eader to the textbooks by Bohner and Peterson.10,11 Here we give only those notions and facts
onnected to time scales which we need for our purpose in this paper.

Any time scale T is a complete metric space with the metric �distance� d�x ,y�= �x−y� for
,y�T. Consequently, according to the well-known theory of general metric spaces, we have for

the fundamental concepts such as open balls �intervals�, neighborhood of points, open sets,
losed sets, compact sets, and so on. In particular, for a given number r�0, the r-neighborhood

r�x� of a given point x�T is the set of all points y�T such that d�x ,y��r. By a neighborhood
f a point x�T is meant an arbitrary set in T containing an r-neighborhood of the point x. Also
e have for functions f :T→R the concepts of the limit, continuity, and properties of continuous

unctions on general complete metric spaces �note that, in particular, any function f :Z→R is
ontinuous at each point of Z�. The main task is to introduce and investigate the concept of
erivative for functions f :T→R. This proves to be possible due to the special structure of the
etric space T. In the definition of derivative, the so-called forward and backward jump operators

lay special and important roles.
Definition 1: For x�T we define the forward jump operator � :T→T by

��x� = inf�y � T:y � x� , �1�

hile the backward jump operator � :T→T is defined by

��x� = sup�y � T:y � x� . �2�

In this definition we set in addition ��max T�=max T if there exists a finite max T, and
�min T�=min T if there exists a finite min T. Obviously both ��x� and ��x� are in T when x
T. This is because of our assumption that T is a closed subset of R.

Let x�T. If ��x��x, we say that x is right-scattered, while if ��x��x we say that x is

eft-scattered. Also, if x�max T and ��x�=x, then x is called right-dense, and if x�min T and
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�x�=x, then x is called left-dense. Points that are right-scattered and left-scattered at the same
ime are called isolated. Finally, the graininess functions � ,� :T→ �0, � � are defined by

��x� = ��x� − x, and ��x� = x − ��x� for all x � T . �3�

Example 1: If T=R, then ��x�=��x�=x and ��x�=��x�=0. If T=hZ, then ��x�=x+h, ��x�
x−h, and ��x�=��x�=h. On the other hand, if T=Kq then we have

��x� = qx, ��x� = q−1x, ��x� = �q − 1�x, and ��x� = �1 − q−1�x . �4�

Let T	 denote Hilger’s above truncated set consisting of T except for a possible left-scattered
aximal point. Similarly, T	 denotes the below truncated set obtained from T by deleting a

ossible right-scattered minimal point.
Definition 2: Let f :T→R be a function and x�T	. Then the delta derivative of f at the point

is defined to be the number f��x� (provided it exists) with the property that for each 
�0 there
xists a neighborhood U of x in T such that

�f���x�� − f�y� − f��x����x� − y�� � 
���x� − y� , �5�

or all y�U.
Remark 1: If x�T \T	, then f��x� is not uniquely defined, since for such a point x, small

eighborhoods U of x consist only of x and besides we have ��x�=x. Therefore �5� holds for an
rbitrary number f��x�. This is a reason why we omit a maximal left-scattered point.

We have the following: �i� If f is delta differentiable at x, then f is continuous at x. �ii� If f is
ontinuous at x and x is right-scattered, then f is delta differentiable at x with

f��x� =
f���x�� − f�x�

��x�
. �6�

�iii� If x is right-dense, then f is delta differentiable at x iff the limit

lim
y→x

f�x� − f�y�
x − y

�7�

xists as a finite number. In this case f��x� is equal to this limit. �iv� If f is delta differentiable at
, then

f���x�� = f�x� + ��x�f��x� . �8�

Definition 3: If x�T	, then we define the nabla derivative of f :T→R at x to be the number
f��x� (provided it exists) with the property that for each 
�0 there is a neighborhood U of x in T
uch that

�f���x�� − f�y� − f��x����x� − y�� � 
���x� − y� , �9�

or all y�U.
We have the following: �i� If f is nabla differentiable at x, then f is continuous at x. �ii� If f is

ontinuous at x and x is left-scattered, then f is nabla differentiable at x with

f��x� =
f�x� − f���x��

��x�
. �10�
�iii� If x is left-dense, then f is nabla differentiable at x if and only if the limit
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lim
y→x

f�x� − f�y�
x − y

�11�

xists as a finite number. In this case f��x� is equal to this limit. �iv� If f is nabla differentiable at
, then

f���x�� = f�x� − ��x�f��x� . �12�

Example 2: If T=R, then f��x�= f��x�= f��x�, the ordinary derivative of f at x. If T=hZ, then

f��x� =
f�x + h� − f�x�

h
and f��x� =

f�x� − f�x − h�
h

. �13�

f T=Kq, then

f��x� =
f�qx� − f�x�

�q − 1�x
and f��x� =

f�x� − f�q−1x�
�1 − q−1�x

, �14�

or all x�0, and

f��0� = f��0� = lim
y→0

f�y� − f�0�
y

�15�

rovided that this limit exists.
Among the important properties of the delta differentiation on T we have the Leibnitz rule, if

f ,g :T→R are delta differentiable functions at x�T	, then so is their product fg and

�fg���x� = f��x�g�x� + f���x�g��x� �16�

= f�x�g��x� + f��x�g���x�� . �17�

lso, if f ,g :T→R are nabla differentiable functions at x�T	, then so is their product fg and

�fg���x� = f��x�g�x� + f���x�g��x� , �18�

= f�x�g��x� + f��x�g���x�� . �19�

n the next proposition we give a relationship between the delta and nabla derivatives �see Ref.
2�.

Proposition 4: (i) Assume that f :T→R is delta differentiable on T	. Then f is nabla differ-
ntiable at x and

f��x� = f����x�� , �20�

or x�T	 such that ����x��=x. If, in addition, f� is continuous on T	, then f is nabla differen-
iable at x and (20) holds for any x�T	.

(ii) Assume that f :T→R is nabla differentiable on T	. Then f is delta differentiable at x and

f��x� = f����x�� , �21�

or x�T	 such that ����x��=x. If, in addition, f� is continuous on T	, then f is delta differentiable
t x and (21) holds for any x�T	.

Now we introduce the concept of integral for functions f :T→R.
Definition 5: A function F :T→R is called a �-antiderivative of f :T→R provided F��x�

	
f�x� holds for all x in T . Then we define the �-integral from a to b of f by
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a

b

f�x��x = F�b� − F�a� for all a,b � T . �22�

Definition 6: A function � :T→R is called a �-antiderivative of f :T→R provided ���x�
f�x� holds for all x in T	. Then we define the �-integral from a to b of f by

	
a

b

f�x� � x = ��b� − ��a� for all a,b � T . �23�

If a ,b�T with a�b we define the closed interval �a ,b� in T by

�a,b� = �x � T:a � x � b� . �24�

pen and half-open intervals, etc., are defined accordingly. Below all our intervals will be time
cale intervals

Example 3: Let a ,b�T with a�b. Then we have the following.
�i� If f :T=R then

	
a

b

f�x��x = 	
a

b

f�x� � x = 	
a

b

f�x�dx , �25�

here the integral on the right-hand side is the ordinary integral.
�ii� If �a ,b� consists of only isolated points, then

	
a

b

f�x��x = 

x��a,b�

��x�f�x� and 	
a

b

f�x� � x = 

x��a,b�

��x�f�x� . �26�

n particular, if T=Z, then

	
a

b

f�x��x = 

k=a

b−1

f�k� and 	
a

b

f�x� � x = 

k=a+1

b

f�k� . �27�

f T=hZ, then

	
a

b

f�x��x = h 

x��a,b�

f�x� and 	
a

b

f�x� � x = h 

x��a,b�

b

f�x� �28�

nd if T=Kq, then

	
a

b

f�x��x = �1 − q� 

x��a,b�

xf�x� and 	
a

b

f�x� � x = �1 − q−1� 

x��a,b�

xf�x� . �29�

The following relationship between the delta and nabla integrals follows from Definitions 5
nd 6 by using Proposition 4.

Proposition 7: If the function f :T→R is continuous, then for all a ,b�T with a�b we have

	
a

b

f�x��x = 	
a

b

f���x�� � x and 	
a

b

f�x� � x = 	
a

b

f���x���x . �30�

ndeed, if F :T→R is a �-antiderivative for f , then F��x�= f�x� for all x�T	, and by Proposition
we have f���x��=F����x��=F��x� for all x�T	, so that F is a �-antiderivative for f���x��.
herefore
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a

b

f���x�� � x = F�b� − F�a� = 	
a

b

f�x��x . �31�

rom �16�–�21� and �30� we have the following integration by parts formulas: If the functions
f ,g :T→R are delta and nabla differentiable with continuous derivatives, then

	
a

b

f��x�g�x��x = f�x�g�x��a
b − 	

a

b

f���x��g��x��x , �32�

	
a

b

f��x�g�x� � x = f�x�g�x��a
b − 	

a

b

f���x��g��x� � x , �33�

	
a

b

f��x�g�x��x = f�x�g�x��a
b − 	

a

b

f�x�g��x� � x , �34�

	
a

b

f��x�g�x� � x = f�x�g�x��a
b − 	

a

b

f�x�g��x��x . �35�

For more general treatment of the delta integral on time scales �Riemann and Lebesgue delta
ntegrals on time scales� see Ref. 13 and Chap. 5 of Ref. 11.

II. BURGERS EQUATION ON TIME SCALES

The Gel’fand-Dikii approach is very effective in studying the symmetries, bi-Hamiltonian
ormulation, and in constructing the recursion operators of integrable nonlinear partial differential
quations. In this approach one takes the Lax operator L in an algebra like a differential or
seudodifferential algebra, a matrix algebra, a polynomial algebra, or the Moyal algebra. In this
ection we take L in the algebra of delta-differential operators.

Let T be a time scale. We say that a function f :T→R is �-smooth if it is infinitely
-differentiable �and hence infinitely �-differentiable�. By � we denote the delta-differentiation
perator which assigns to each �-differentiable function f :T→R its delta derivative ��f� defined
y

���f���x� = f��x� for x � T	. �36�

he shift operator E is defined by the formula

�Ef��x� = f���x�� �37�

or x�T, where � :T→T is the forward jump operator. It is convenient, in the operator relations
o denote the delta-differentiation operator by 
 rather than by �. For example, 
f will denote the
omposition �product� of the delta-differentiation operator 
 and the operator of multiplication by
he function f . According to formula �16� we have


f = f� + E�f�
 . �38�

onsider the Nth order 
-differential operator given by

L = aN
N + aN−1
N−1 + ¯ + a1
 + a0, �39�

here the coefficients ai �i=0,1 , . . . ,N� are some �-smooth functions of the variable x�T. These
unctions are assumed to depend also on a continuous variable t�R, however, we will not �for
implicity� indicate explicitly the dependence on t.

n n 0
Proposition 8: Let L be given as in (39) and An= �L ��0 be the operator L missing the 
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erm. Then the Lax equation

dL

dtn
= �An,L� = AnL − LAn �40�

or n=1,2 , . . . produces a consistent hierarchy of coupled nonlinear evolutionary equations.
Example 4. Burgers equation on time scale: Let L=v
+u, where u and v are functions of x

T and t�R. Then for an appropriate operator A the Lax equation

dL

dt
= �A,L� �41�

efines a system of two differential equations for the functions u and v. We find the operator A by
sing the Gelfand-Dikii formalism. Let us start with the second power of L and assume A
�L2��0, where

L2 = vE�v�
2 + �vv� + vE�u� + uv�
 + vu� + u2. �42�

e can assume A=−�L2�0 �the part of −L2 without the 
 terms�. With this choice, �41� gives

dv
dt

= �v�vu� + u2��, �43�

du

dt
= v�vu� + u2��, �44�

here ��x�=��x�−x for x�T.
Equations �43� and �44� given above are not independent of each other. It is easy to see that

=�u+�, where � is an arbitrary real function depending only on x�T. Then these two equations
educe to a single equation, a Burgers equation on time scales,

du

dt
= ��u + ���u2 + ��u + ��u���. �45�

et us present some special cases: �i� When T=R then �=0 and 
=D, the usual differentiation.
ence we can let �=1 and �45� reduces to the standard Burgers equation on R. �ii� When T
hZ then ��m�=h and f��m�= �1/h��f�m+h�− f�m�� for any f . Then taking �=0 in �45� we find

du�m�
dt

= u�m�u�m + h��u�m + 2h� − u�m�� , �46�

here m�hZ. The evolution equation given above in �46� represents a difference version of the
urgers equation. �iii� Let T=qZ, where q�1 and q�0. Then we have ��x�= �q−1�x and f��x�
�f�qx�− f�x�� / �q−1�x and taking �=0 we get from �45�

du�x�
dt

= u�x�u�qx��u�q2x� − u�x�� . �47�

aking An=−�Ln�0 with L given as in Example 4 we get a hierarchy of evolution equations
Burgers hierarchy on time scales� from

dL

dtn
= − ��Ln�0,v
 + u� �48�

n n
or all n=1,2 ,3 , . . . . Since �L �0 is a scalar function, letting �L �0=�n we obtain
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dv
dtn

= �v��n��, �49�

du

dtn
= v��n��, �50�

here the first three �n are given by

�1 = u , �51�

�2 = vu� + u2, �52�

�3 = vE�v�u�� + �vv� + vE�u� + uv�u� + �vu� + u2�u . �53�

he above hierarchy reduces to a single evolution equation with v=�u+�,

du

dtn
= ��u + ����̃n��, n = 1,2, . . . , �54�

here �̃n is equal to �n with v=�u+�. When T is a regular-discrete time scale, the first three �̃n

re given for �=0 by

�̃1 = u , �55�

�̃2 = uE�u� , �56�

�̃3 = uE�u�E2�u� . �57�

It is possible to construct the recursion operator R by using the Lax representation.14–16 The
ierarchy satisfies a recursion relation like

dL

dtn+1
= L

dL

dtn
+ �Rn,L�, n = 1,2, . . . , �58�

here Rn is the remainder operator which has the same degree as the Lax operator L. We shall
onstruct this operator for the Burgers equation with �=0 on regular-discrete time scales. Choos-
ng Rn=�n
 we get �by choosing v�x�=��x�u�x��

R = uE + �u�E�u� − u���E − 1�−1 E

E�u�
. �59�

ne can generate the hierarchy �54� by application of the recursion operator R to the lowest order
ymmetry u1=u�E�u�−u�,

du

dtn
= Rn−1u1, n = 1,2, . . . . �60�

V. ALGEBRA OF PSEUDO-DELTA-DIFFERENTIAL OPERATORS
N REGULAR TIME SCALES

Let us define the notion of regular time scales.
Definition 9: We say that a time scale T is regular if the following two conditions are satisfied
imultaneously:
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�i� ����x�� = x for all x � T �61�

nd

�ii� ����x�� = x for all x � T , �62�

here � and � denote the forward and backward jump operators, respectively.
From �61� it follows that the operator � :T→T is “onto” while �62� implies that � is “one-

o-one.” Therefore � is invertible and �−1=�. Similarly, the operator � :T→T is invertible and
−1=� if T is regular.

Let us set x*=min T if there exists a finite min T, and set x*=−� otherwise. Also set x*

max T if there exists a finite max T, and x*=� otherwise. It is not difficult to see that the
ollowing statement holds.

Proposition 10: A time scale T is regular if and only if the following two conditions hold:

�i� The point x*=T is right-dense and the point x*=max T is left-dense.
�ii� Each point of T \ �x* ,x*� is either two-sided dense or two-sided scattered.

In particular, R, hZ, and Kq are regular time scales, as are �0,1�, �−1,0�� �1/k :k
N�� �k / �k+1� :k�N�� �1,2�, and �−� ,0�� �1/k :k�N�� �2k :k�N�, where �−1,0�, �0,1�,

1 ,2�, �−� ,0� are real line intervals.
If f :T→R is a function we define the functions f� :T→R and f� :T→R by

f��x� = f���x�� and f��x� = f���x�� for all x � T . �63�

efining the shift operator E by the formula Ef = f� we have

�Ef��x� = f��x� = f���x�� for all x � T . �64�

he inverse E−1 exists only in case of regular time scales and is defined by

�E−1f��x� = f��−1�x�� = f���x�� for all x � T . �65�

n the operator relations, for convenience, we will denote the shift operator by E rather than by E.
or example, Ef will denote the composition �product� of the shift operator E and the operator of
ultiplication by the function f . Obviously, for any integer m�Z, we have

Emf = �Emf�Em. �66�

Remember that 
 denotes the delta-differentiation operator acting in the operator relations by
f = f�+E�f�
. The following proposition is an immediate consequence of the formulas �8� and
16�.

Proposition 11: The operator formulas

E = I + �
 �67�

nd


f = f� + E�f�
 �68�

old, where the function � :T→R is defined by ��x�=��x�−x for all x�T, and I denotes the
dentity operator.

In this section we will assume that all our considered functions from T to R are �-smooth and
end to zero sufficiently rapidly together with their �-derivatives as x goes to x* or x*, where x*

min T if there exists a finite min T and x*=−� otherwise, x*=max T if there exists a finite max T
nd x*=� otherwise. The inverse operator 
−1 exists on such functions. If g :T→T is such a

unction, then
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��−1�g���x� = 	
x*

x

g�y��y . �69�

Proposition 12: Let f :T→R be a �-smooth function such that f and all its �-derivatives
anish rapidly at x* and x*. Then the operator 
−1f being the composition (product) of 
−1 and f
as the form of the formal series in powers of 
−1,


−1f = �0
−1 + �1
−2 + ¯ , �70�

here �0=E−1f , and �k= �−1�k�E−1f��k
for k=1,2 , . . . .

Proof: Multiplying �68� on the left and right by 
−1 we obtain


−1E�f� = f
−1 − 
−1f�
−1. �71�

eplacing here f by E−1f we get


−1f = �E−1f�
−1 − 
−1�E−1f��
−1. �72�

urther, applying this rule to the function �E−1f�� and taking into account that by Proposition 4�i�

E−1�E−1f�� = �E−1f��, �73�

e find


−1�E−1f�� = �E−1f��
−1 − 
−1��E−1f����
−2. �74�

ubstituting this into the second term on the right-hand side of �72� we obtain


−1f = �E−1f�
−1 − �E−1f��
−2 + 
−1��E−1f����
−2. �75�

ontinuing this procedure repeatedly we arrive at the statement of the proposition.
Definition 13: By � we denote the algebra of pseudo-delta-differential operators. Any opera-

or K�� of order k has the form

K = 

�=−�

k

a�
�, �76�

here a�’s are �-smooth functions of x�T. For K given by (76) we will use the following
otations:

K�0 = 

�=0

k

a�
� and K�0 = 

−�

−1

a�
�. �77�

As an example we let

L = aN
N + aN−1
N−1 + ¯ + a1
 + a0, �78�

here ai�i=0,1 , . . . ,N� are some �-smooth functions on T. Then we have the following.
Proposition 16: Let L be given in (78). For each fixed N the Lax equation

dL

dtn
= �An,L�, An = �Ln/N��0, �79�

or n=1,2 , . . . not divisible by N, produces a (consistent) hierarchy of evolution equations (a KdV
ierarchy on time scales).

n/N n/N n/N
Proof: Since �L ��0=L − �L ��0, we get
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dL

dtn
= ��Ln/N��0,L� = − �Ln/N��0,L � . �80�

vidently the commutator ��Ln/N��0 ,L� involves only non-negative powers of 
, while the com-
utator ��Ln/N��0 ,L� has the form 
 j=−�

N−1 bj

j. Therefore, we get by �80� that, for all n not divisible

y N, �79� produces nontrivial consistent N+1-number of evolutionary coupled �-differential
quations for ai, i=0,1 , . . . ,N. Note that aN turns out to be a fixed �i.e., time independent� function
f x.

Example 5: A KdV hierarchy on time scales. Let

L = 
2 + v
 + u , �81�

here u and v are �-smooth functions. It is straightforward to find that

L1/2 = 
 + �0 + �1
−1 + �2
−2 + ¯ , �82�

here

E��0� + �0 = v , �83�

E��1� + �1 + ��0�� + ��0�2 = u , �84�

E��2� + �2 + �1E−1��0� + ��1�� = 0. �85�

hoosing n=1,3 , . . . we get the members of the KdV hierarchy.
(1) Let n=1. Then Lax equation �79� becomes

dv
dt


 +
du

dt
= ��L1/2��0,L� �86�

nd gives coupled equations for u and v,

du

dt
= u� − v��0�� − ��0���, �87�

dv
dt

= v� + E�u� − u − v�E��0� − �0� − E��0
�� − E��0�� = ��u� − v��0�� − ��0���� . �88�

omparing the above equations we get

dv
dt

− �
du

dt
= 0, �89�

nd therefore

v = �u + � , �90�

here � is an arbitrary real function depending only on x�T. Thus, two equations �87� and �88�
educe to the following single equation:

du

dt
= u� − ��u + ����0�� − ��0���, �91�
here �0 is expressed, according to �83�, from
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E��0� + �0 = �u + � . �92�

f we take �=0, then �91� and �92� become

du

dt
= u� − �u��0�� − ��0���, �93�

E��0� + �0 = �u . �94�

e shall now give �0, for illustration, for particular cases of T.
�i� In the case T=R we have �=0 and �94� gives �0=0 and �93� becomes

du

dt
=

du

dx
, �95�

hich is a linear equation explicitly solvable,

u�x,t� = ��x + t� , �96�

here � is an arbitrary differentiable function.
�ii� In the case T=Z we have �=1 and �94� is satisfied by

�0�n� = − 

k=−�

n−1

�− 1�n+ku�k�, n � Z �97�

nd therefore the Eq. �93� becomes

du�n�
dt

= − u2�n� + 2u�n� + 2�− 1�n�2 + u�n�� 

k=−�

n−1

�− 1�ku�k� , �98�

or n�Z.
(iii) In the case T=Kq we have ��x�= �q−1�x and �94� is satisfied by �0�0�=0 and

�0�x� = − �q − 1� 

y��0,q−1x�

�− 1�logq�xy�yu�y� �99�

or x�Kq and x�0. Substituting �99� into �93� we can get an evolution equation for u.
(iv) Let T= �−� ,0��Kq= �−� ,0��qZ. In this case ��x�=0 if x� �−� ,0� and ��x�= �q

1�x if x�qZ. The equation �94� is satisfied by the function �0 given by

�0�x� = �0 x � �− � ,0� ,

− �q − 1��y��0,q−1x��− 1�logq�xy�yu�y� x � qZ.
�100�

herefore �93� will yield an evolution equation coinciding on �−� ,0� and qZ with the evolution
quations described in the examples �i� and �iii�, respectively. Now an essential complementary
oint is that the solution u must satisfy at x=0 the smoothness conditions

u�0−� = u�0+�, u��0−� = u��0+� . �101�

(2) Letting n=3, first we get

L3/2 = 
3 + p
2 + q
 + r + �terms with negative powers of 
� , �102�

here
p = �0 + E�v� , �103�
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q = v� + E�u� + �0v + �1, �104�

r = u� + �0u + �1E−1�v� + �2, �105�

nd the Lax equation

dv
dt


 +
du

dt
= ��L3/2��0,L� , �106�

ives the coupled equations for u and v,

du

dt
= u��� + pu�� + qu� − r�� − vr�, �107�

dv
dt

= v��� + E�u��� + �E�u���� + E�u��� + p�v�� + E�u�� + E�u��� + q�v� + E�u� − u� + rv − q��

− E�r�� − E�r�� − vq� − vE�r� . �108�

s in the first member of the hierarchy �n=1 case�, the above �-KdV equations reduce to a single
quation for the function u. Below in Corollary 23 we found that v=��x�u+��x�. Letting �=
onstant we get

du

dt
= u��� + pu�� + qu� − r�� − vr�. �109�

t is possible to write the above equation more explicitly in terms of u for T=R, T=Z, and for
=Kq but they are quite lengthy. For the discrete case we give a KdV hierarchy in Example 8,
ext section.

. SHIFT LAX OPERATORS ON REGULAR-DISCRETE TIME SCALES

Let T be a time scale. Let us set x*=min T if there exists a finite min T and x*=−� otherwise.
lso set x*=max T if there exists a finite max T and x*=� otherwise. We will briefly write x*

min T and x*=max T.
Definition 17: We say that a time scale T is regular-discrete if the following two conditions are

atisfied:

�i� The point x* is right-dense and the point x* is left-dense.
�ii� Each point of T \ �x* ,x*� is two-sided scattered (isolated).

The shift operator E is defined on functions f :T→R by the formula

�Ef��x� = f���x�� for x � T , �110�

here � :T→T is the forward jump operator.
In this section we deal only with regular-discrete time scales T. For such time scales T we

ave

��x� = ��x� − x � 0 for all x � T \ �x*,x*� �111�

nd, therefore, on functions given on T \ �x* ,x*� we have the operator relationship


 =
1

�
�E − 1� . �112�

ll our functions will be assumed to be defined on T \ �x* ,x*� and tends to zero sufficiently rapidly
*
s x goes to x* or x .
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This shift operator E, should be quite useful in the application of the Gel’fand-Dikii formal-
sm. The reason is that for any integer m we have the simple product rule

Emu = �Emu�Em. �113�

ence, for regular-discrete time scales, we can define an algebra of E operators.
Definition 18: An algebra, ��, of E operators satisfying the operator equation (113) is defined

s follows: Any operator K in �� with degree k is of the form

K = 

−�

k

a�E�, �114�

here a� are functions of x�T that depend also on t�R.
Hence we can form Lax operators in ��, and produce integrable equations on regular-discrete

ime scales. Following3 we obtain two classes of Lax representations.
Proposition 19: The Lax equation

dL

dt�

= ��L���k,L�, k = 0,1 �115�

roduces consistent hierarchy of equations for �=1,2 , . . . with the following suitable Lax opera-
ors:

L = E�+n + u�+n−1E�+n−1 + ¯ + u�E�, �116�

L = v�+nE�+n + v�+n−1E�+n−1 + ¯ + v�+1E�+1 + E�, �117�

or k=0 and k=1, respectively. Here ui and vi are functions defined on T and the integer � is
estricted to satisfy the inequality −n���−1.

Remark: Lax operators above and the following examples are given on any regular-discrete
ime scale T �we can take in particular T=Z or Kq�. This means that for any function u on such a
ime scale E�u�=u���x�� where � is the jump operator defined in the second section. Hence our
xamples and results should be considered as more general than those considered in Ref. 3. In the
ase of Ref. 3 time scale is just the integers �T=Z� where E�u�n��=u�n+1�.

Example 6: Two field equations. Let k=0, �=−1 and

L = u−1E−1 + u0 + E � vE−1 + u + E . �118�

hen we find

� = 1
dv
dt1

= v�u − E−1�u�� , �119�

du

dt1
= E�v� − v , �120�

� = 2
dv
dt2

= u2v + E�v�v − vE−1�v� − vE−1�u2� , �121�

du
= uE�v� + E�u�E�v� − vE−1�u� − uv , �122�
dt2
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� = 3,
dv
dt3

= uv2 + u3v − vE−1�v�E−2�u� − 2vE−1�u�E−1�v� − vE−1�u3� + 2uvE�v� − v2E−1�u�

+ vE�u�E�v� , �123�

du

dt3
= E�v��u2 + uE�u� + E�u2� + E�v� + �E2�v��� − v�E−1�v� + E−1�u2� + uE−1�u� + u2 + v� .

�124�

his is a Toda hierarchy on discrete time scales. The recursion relation between the n+1th and nth
lements of the hierarchy is given by

vn+1 = uvn + vun + vE−1�un� + v�E−1�u� − u��1 − E�−1vn

v
, �125�

un+1 = E�vn� + uun + v�1 − E�−1vn

v
− E�v��1 − E�−1E

vn

v
. �126�

rom this recursion relation the recursion operator of the hierarchy follows.
Example 7: Four-field system on time scale. We give two examples which are studied in Ref.

for the case T=Z.
(1) Let k=0 and �=−2 and

L = E2 + wE + v + uE−1 + pE−2. �127�

hen we get the four-field equations

� = 1
dp

dt1
= vp − pE−2�v� , �128�

du

dt1
= vu + wE�p� − pE−2�w� − uE−1�v� , �129�

dv
dt1

= wE�u� + E2�p� − uE−1�w� − p , �130�

dw

dt1
= E2�u� − u . �131�

(2) Let k=1 and �=−2 and

L = q̄E2 + w̄E + v̄ + ūE−1 + E−2. �132�

hen we get another four-field equations,

� = 1
dū

dt1
= w̄ − E−2�w̄� , �133�

dv̄
= w̄E�ū� + q̄ − E−2�q̄� − ūE−1�w̄� , �134�
dt1
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dw̄

dt1
= w̄E�v̄� + q̄E2�ū� − ūE−1�q̄� − v̄w̄ , �135�

dq̄

dt1
= q̄E2�v̄� − v̄q̄ . �136�

So far we considered the hierarchies coming from Proposition 19 with integer powers of the
ax operators. Now we consider the rational powers of the Lax operator.

Proposition 22: Let

L = wEN + uN−1EN−1 + ¯ + u0, �137�

here w�x� is a function of x which is not a dynamical variable dw /dt=0, ui, i=0,1 , . . . ,N−1 are
unctions of t and x�T. Then

dL

dtn
= ��Ln/N��0,L�, n = 1,2, . . . �138�

roduces hierarchies of integrable systems. Here n is a positive integer not divisible by N. Fur-
hermore the function u0 is also not dynamical, i.e., u0=u0�x�, not depending on t.

Corollary 23: When N=2 and w= �1/��E�1/�� then the �-KdV Lax operator (81) reduces to
he above form with

u0 = −
v
�

+
1

�2 + u , �139�

u1 = −
1

�
�E
 1

�
� +

1

�
� +

v
�

. �140�

ence in part (2) of Example 5 we have a single equation with v=−�u0+ �1/��+�u.
In the following example we study the N=2 case in more detail.
Example 8: KdV on discrete time scales. Let

L = wE�w�E2 + uE + v . �141�

hen

L1/2 = wE + �0 + �1E−1 + �2E−2 + ¯ , �142�

here first three �i are given as

w�E��0� + �0� = u , �143�

wE��1� + E−1�w��1 = v − ��0�2, �144�

wE��2� + E−2�w��2 = −
�1E−1�u�
E−1�w�

. �145�

hen we calculate L3/2 by

L3/2 = wE�w�E2�w�E3 + p2E2 + p1E + p0 + negative powers of E , �146�

here

2
p2 = E�w��wE ��0� + u� , �147�
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p1 = wE�w�E2��1� + uE��0� + wv , �148�

p0 = wE�w�E2��2� + uE��1� + v�0, �149�

=wE−1�w��E−1�w� + E�w�E�−1
E��1�
u

w
� + v�1 + E�−1 u

w
. �150�

hen �138� with N=2 produces a hierarchy of evolution equations. It turns out that v becomes a
onstant in the whole hierarchy. We give the first two members of the hierarchy �for n=1 and n
3�,

ut1
= u�1 − E��1 + E�−1 u

w
, �151�

ut3
= u�1 − E�p0, �152�

here p0 is given above. The next members of the hierarchy can be found by taking n=5 in �138�
r by applying the recursion operator R to ut3

. For T=Kq and w=1 the above hierarchy and its
amilton formulation were given by Frenkel.4 The recursion operator of this hierarchy with w
1 can be found by using �58� with Rn=�nE+�n. We find that

�E2 − 1��n = E2�un� , �153�

�E2 − 1��n = uE�un� + E�u��n − uE��n� �154�

nd the equation which determines the recursion operator is

un+1 = vun − u�E − 1��n, n = 0,1,2, . . . . �155�

e find that

R = v − u�E + 1�−1�− u + E�u�E��E2 − 1�−1E . �156�

When the Lax operator is of degree one and has an infinite power series in operator E−1 the
orresponding system is called the KP hierarchy.

Proposition 24: Let

L = E + u0 + u1E−1 + u2E−2 + ¯ . �157�

hen

dL

dtn
= ��Ln��0,L�, n = 1,2, . . . , �158�

roduces the following hierarchy:

n = 1
du0

dt1
= �E − 1�u1, �159�

du1

dt1
= �E − 1�u2 + u1�u0 − E−1�u0�� , �160�

duk = �E − 1�uk+1 + uk�u0 − E−k�u0��, k = 0,1, . . . . �161�

dt1
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n = 2
du0

dt2
= �E2 − 1�u2 − u1E−1�E + 1�u0 + E�u1��E�u0� + u0� , �162�

du1

dt2
= �E2 − 1�u3 + �1E�u2� − u2E−2��1� + �0u1 − u1E−1��0� , �163�

duk

dt2
= �E2 − 1�uk+2 + �1E�uk+1� − uk+1E−k−1��1� + �0uk − ukE

−k��0�, k = 0,1, . . . , �164�

here �0= �E+1�u1+ �u0�2 and �1= �E+1�u0. The case T=Z of this hierarchy is discussed in Ref.
�see also the references therein� and the case T=Kq is discussed in Refs. 4 and 5.

I. TRACE FUNCTIONAL AND CONSERVATION LAWS

Let T be a regular time scale and � be the algebra of pseudo-delta-differential operators. Any
perator F�� of order k has the form

F = ak

k + ak−1
k−1 + ¯ + a1
 + a0 + a−1
−1 + a−2
−2 + ¯ , �165�

here a�’s are �-smooth functions of x�T �they are also functions of t�R�. The coefficients a0

nd a−1 we call, respectively, the free term �zero order term� and the residue of F associated with
ts “
-expansion” �165� and write

Free
 F = a0�x� and Res
 F = a−1�x� . �166�

n case of regular-discrete time scales T we have


 =
1

�
�E − I� =

1

�
E −

1

�
�167�

nd therefore the same operator F can be expanded in series with respect to the powers of E of the
orm

F = bkEk + bk−1Ek−1 + ¯ + b1E + b0 + b−1E−1 + b−2E−2 + ¯ . �168�

e write

FreeE F = b0�x� and ResE F = b−1�x� . �169�

ubstituting �167� and


−1 = �E − I�−1� = �E−1 + E−2 + ¯ �� = E−1���E−1 + E−2���E−2 + ¯ , �170�

nto �165� and taking into account that

E−1��� = ����x�� = ����x�� − ��x� = x − ��x� = ��x� , �171�

e find that

ResE F = � Res
 F . �172�

Definition 25: The trace of an operator F�� is defined by

Tr�F� = 	
T

Res
�F�I + �
�−1� � x , �173�

here the nabla integral is defined according to Sec. II.

Proposition 26: Let F be given as in (165). In case of regular-discrete time scales we have
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Res
�F�I + �
�−1� =
1

��x�
FreeE F �174�

or x�T \ �x* ,x*�, where x*=min T and x*=max T. Therefore in this case

Tr�F� = 	
T

�FreeE F�
�x

��x�
= 


x�T
b0�x� . �175�

Proof: Since I+�
=E we have, by using �172� and �168�,

� Res
�F�I + �
�−1� = ResE�F�I + �
�−1� = ResE�FE−1� = ResE�bkEk−1 + ¯ + b1 + b0E−1 + ¯ �

= b0 = FreeE�F� . �176�

Proposition 27: For all F1 ,F2��,

Tr��F1,F2�� = Tr�F1F2 − F2F1� = 0, �177�

n other words the pairing �F1 ,F2�=Tr�F1F2� is symmetric.
We prove �177� only for particular cases of time scales T. They indicate a way to the proof in

he general case of regular time scales.
(i) If T=R, then 
=�= �d /dx�· and ��x�=0,

F = ak�
k + ¯ + a1 � + a0 + a−1�

−1 + ¯ �178�

nd

Tr�F� = 	
R

Res�F�dx = 	
R

a−1�x�dx . �179�

t is well known that �for example, see Ref. 3� for such functional Tr�F� the statement �177� holds.
(ii) Let T be a regular-discrete time scale. Then by Proposition 26 we have

Tr��F1,F2�� = 	
T

Res
��F1,F2��I + �
�−1� � x = 	
T

�FreeE�F1,F2��
�x

��x�
= 0. �180�

t is enough to check �180� for monomials F1=AEk and F2=BE�. By the use of the property �113�
f E we have

F1F2 = A�EkB�Ek+� and F2F1 = B�E�A� . �181�

herefore FreeE�F1 ,F2� is either zero or

FreeE�F1,F2� = A�EkB� − B�E−kA� = �Ek − I��E−kA�B

=�I − E−1��Ek + Ek−1 + ¯ + E��E−kA�B = ��x����A,B���,

here ��A ,B�= �Ek+Ek−1+ ¯ +E��E−kA�B. Hence

	
T

FreeE�F1,F2�
�x

��x�
= 	

T
���A,B��� � x = ��A,B��x*

x*
= 0 �182�

o that �177� is proved for regular-discrete time scales.
(iii) Let T be a mixed time scale, say, of the form T= �−� ,0��Kq, where �−� ,0� denotes the
eal line interval. Then for any F1 ,F2�� we have, taking into account Proposition 26, that
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Tr��F1,F2�� = 	
T

Res
��F1,F2��I + �
�−1� � x = 	
−�

0 
Res���F1,F2��dx + 	
Kq

�FreeE�F1,F2��
�x

��x�
.

�183�

ake for instance F1=A
 and F2=B
−1. Then

Res��F1,F2� = Res��A � ,B�−1� = AB� + A�B = �AB��,FreeE�F1,F2� = FreeE�A

�
�E − I�,B�E − I�−1��

= AE�B� − BE−1�A� . �184�

herefore

	
−�

0

�Res��F1,F2��dx = 	
−�

0

�AB�� dx = A�0−�B�0−� , �185�

	
Kq

FreeE�F1,F2�
�x

��x�
= 	

Kq

�AE�B� − BE−1�A��
�x

��x�

= 

x�Kq

�A�x�B�qx� − A�q−1x�B�x�� = − A�0+�B�0+� . �186�

ence

Tr��F1,F2�� = A�0−�B�0−� − A�0+�B�0+� = 0, �187�

here A and B are �-smooth functions on T and hence they are continuous at x=0.
Proposition 28: Equation (79) implies that

d

dtn
Lk = �An,Lk�, An = �Ln/N��0, �188�

or all k= � /N, where � is any positive integer.
Propositions 27 and 28 imply the next proposition.
Proposition 29: For all �=0,1 , . . . the functionals

H� = Tr�L�/N� , �189�

re common constants of motion for the hierarchy (79) and (115).
Note that in proof of Proposition 29 it is, in particular, used the fact that the flows �vector

elds� defined by the different members of the hierarchy all commute with each other �see Refs.
and 17�.

II. CONCLUSION

We have developed the Gel’fand-Dikii approach to time scales. So far the integrable systems
ere studied on R ,Z or on Kq. Here we gave a unified and extended approach. In particular cases
hen T=R ,Z ,Kq we find several examples of the integrable systems. We developed the algebra of
-pseudo differential and E-shift operators. We established the GD formalism on these algebras
nd introduced several Lax representations on these algebras. All these Lax representations are
traightforward generalizations of the Lax representations on pseudodifferential algebras of inte-
rable systems on R and the Lax representations of the algebra of shift operators on Z. The
urgers and KdV hierarchies on time scales that we found are the special cases of these Lax
epresentations. We also generalized the Frenkel KdV hierarchy introduced on Kq to arbitrary

011 to 139.179.14.104. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



d
p
f

i
a

A

T

A

e

e

w

�

h

113510-21 Integrable equations on time scales J. Math. Phys. 46, 113510 �2005�

Downloaded 17 May 2
iscrete time scales. We constructed the recursion operators of each example considered in this
aper and gave a way of constructing the constants of motions by introducing an appropriate trace
orm on time scales.

In this work we did not consider the r-matrix construction and the Hamiltonian formulation of
ntegrable systems on time scales. The trace form on a general time scale needs a little care. Such
work is in progress and will be communicated in a separate paper.
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PPENDIX: RECURSION OPERATORS OF FOUR-FIELD SYSTEMS

We give the recursion operator of the four-field systems on time scale which are studied in
xample 7.

(1) For the case k=0, �=−2, we obtain the recursion relation between the n+1th and nth
lements of the hierarchy as follows:

wn+1 = w�E + 1�−1E�vn� + E�v��E2 − 1�−1E2�wn� − v�E2 − 1�−1wn

+ w�E + 1�−1�1 − E�w�E2 − 1�−1E�wn� + E2�un� + �1 − E2��n, �A1�

vn+1 = wE�un� + vvn − u�E2 − 1�−1E−1�wn� + E�u��E2 − 1�−1E2�wn�

+ �1 − E2�p�1 − E2�−1 pn

p
+ E2�pn� + �E−1�w� − wE��n, �A2�

un+1 = wE�pn� + u�E + 1�−1�E + 1 + E−1�vn − p�E2 − 1�−1E−2�wn�

+ u�E + 1�−1�E − 1�E−1�w��E2 − 1�−1wn + E�p��E2 − 1�−1E2�wn�

+ �E−2�w� − wE�p�1 − E2�−1 pn

p
+ vun + �E−1�v� − v��n, �A3�

pn+1 = uE−1�un� + p�1 + E−2�vn + p�E−1 − E−2�w�E2 − 1�−1E�wn�

+ �E−2�v� − v�p�1 − E2�−1 pn

p
+ vpn + �E−1�u� − uE−1��n, �A4�

here

n = �E2�p� − E�p�E2�−1�E2�u�E�pn� + E2�p�un + �uE2�p� − E2�u�E�p�E−1��1 − E2�−1E2
 pn

p
�� .

(2) For the case k=1, �=−2, the recursion relation between the n+1th and nth elements of the
ierarchy is given by

ūn+1 = E−2�w̄n� + ū�1 + E�−1�E − 1�ū�1 − E2�−1E�ūn� + v̄ūn + ū�1 + E�−1v̄n

+ �E−1�v̄� − v̄��1 − E2�−1ūn + �1 − E−2��̄n, �A5�

w̄n+1 = ūE−1�q̄n� + w̄�1 + E�−1�E2 + E + 1�v̄n + �E−1�q̄� − q̄E4��1 − E2�−1ūn + w̄�1 + E�−1�1 − E�E�ū�

��1 − E2�−1E2�ūn� + v̄w̄n + �E�v̄� − v̄��̄n + �E2�ū� − ūE−1�q̄�E2 − 1�−1E2
 q̄n

¯
� , �A6�
q
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q̄n+1 = v̄q̄n + w̄E�w̄n� + q̄�1 + E2�v̄n + �E2�v̄� − v̄�q̄�E2 − 1�−1E2
 q̄n

q̄
�

+ q̄�1 + E�−1�1 − E2�E�ū��1 − E2�−1E2�ūn� + �E�w̄� − w̄E��̄n, �A7�

v̄n+1 = E−2�q̄n� + ūE−1�w̄n� + �E−1�w̄� − w̄E3��1 − E2�−1ūn + v̄v̄n + �E�ū� − ūE−1��̄n

+ �1 − E−2�q̄�E2 − 1�−1E2
 q̄n

q̄
� , �A8�

here

�̄n = �q̄E2 − E�q̄��−1�q̄E2�w̄n� + �E2�w̄�q̄E − w̄E�q̄���E2 − 1�−1E
 q̄n

q̄
�� . �A9�

rom the recursion relations obtained in both cases, we can construct the recursion operators of the
ierarchies.
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