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The concept of integrable boundary value problems for soliton equations on R and
R+ is extended to regions enclosed by smooth curves. Classes of integrable bound-
ary conditions in a disk for the Toda lattice and its reductions are found. © 2007
American Institute of Physics. �DOI: 10.1063/1.2799256�

I. INTRODUCTION

The inverse scattering transform method �ISM� discovered in 1967 has proved to be a pow-
erful tool to construct exact solutions and to solve the Cauchy problem for a large variety of
nonlinear integrable models of mathematical physics. However, real physical applications are
usually related to mathematical models with boundary conditions. For this reason, the problem of
adopting the ISM to a boundary value problem as well as to an initial boundary value �mixed�
problem is very important. During the last two decades, this field of research has been intensively
studied. It becomes clear that only special kinds of boundary conditions preserve the integrability
property of the equation given. Different approaches were worked out to look for such classes of
boundary conditions based on Hamiltonian structures,1 on higher symmetries,2–4 and the Lax
representation.5,6 Integrable initial boundary value problems on a half-line �in 1+1 case� or a
half-plane �in 1+2 case� for soliton equations nowadays is a rather studied subject. Analytical
aspects have been developed in Refs. 7–11 where large classes of solutions were constructed.
However, boundary value problem for the elliptic soliton equations or initial boundary value
problem for regions with more complicated boundary is still much less investigated �see, Refs.
12–14�.

If the boundary conditions are not consistent with the integrability property of the equation,
then the standard version of the inverse scattering transform method cannot be applied to the
corresponding boundary value problem. The method requires a very essential modification. Vari-
ous ideas to extend the ISM to the initial boundary value problems are suggested in Refs. 12,
15–17 and 20,21.

In Refs. 5 and 6, an effective tool to search integrable boundary conditions has been proposed
based on some special involutions of the auxiliary linear problem. This method �below for the sake
of convenience, we refer it as the method of involutions� can be applied to integrable equations in
both �1+1�- and �1+2�-dimensional cases. Some examples of application of the inverse scattering
transform method for such kind of boundary value problems were considered in Ref. 18.
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In this article, we show that the method of involutions allows one to extend the concept of
integrability to boundary value problems on bounded �unbounded� regions enclosed by any closed
smooth curve.

Let us explain briefly the approach we use. We call boundary value problem integrable if it
admits a Lax pair. Because of this reason, we look for a boundary condition simultaneously with
its Lax representation. The starting point is to make a correct assumption about the possible form
of the Lax pair of the boundary value problem. Actually, this Lax pair is made up from several
different Lax pairs of the original equation itself by gluing the eigenfunctions along the boundary
by properly chosen additional boundary conditions. As examples, we take the Liouville equation
and the two-dimensional Toda lattice equation. To generate new Lax pairs, we use point symme-
tries �involutions� which leave invariant the nonlinear equation under consideration but change its
Lax pair.

In Sec. II, as a trial example, we consider the Liouville equation. We remind the definition of
integrable boundary conditions and find an example of integrable boundary conditions on a circle
with its Lax representation �see the list at the end of the second section�.

In Sec. III, we study the two-dimensional Toda lattice equation on a circular cylinder: r
�a ,0���2� ,−��n��. Several types of integrable boundary value problems for this lattice
and Lax representations of the boundary value problems are found by using the method of invo-
lutions �see the list at the end of the third section�.

In Sec. IV, we consider periodicity closure constraints reducing the Toda lattice to the sinh-
Gordon and Tzitzeica equations.

In Sec. V, we give a class of exact solutions of the Toda lattice on a circle with a nonhomo-
geneous Neumann-type boundary condition in a disk.

II. LIOUVILLE EQUATION

In this section, we concentrate on boundary value problems for elliptic equations. Suppose
that the boundary � of a domain D is parametrized by the equation x�= f�t�� that introduces a local
system of coordinates by taking the t axis along the tangent direction and the x axis along the
normal direction to the curve �.

Suppose that the differential equation under consideration,

E�u� = 0, �1�

admits two different Lax representations. For the sake of simplicity, we take them rewritten in
terms of the new coordinates

Yx = U��,u,ux, . . . �Y��� ,

Yt = V��,u,ux, . . . �Y��� �2�

and

Ỹx = Ũ��̃,u,ux, . . . �Ỹ��̃� ,

Ỹt = Ṽ��̃,u,ux, . . . �Ỹ��̃� , �3�

where � , �̃ are spectral parameters. Now, the equation of the boundary is of the form x=0. We are
looking for conditions that allow to relate the equations for t evolution along the boundary since
x is fixed. More precisely, we have the following definition.

Definition 1: A boundary condition

��t,u,ut,ux, . . . � = 0 �4�

is integrable if there exists a matrix F�� , t ,u , . . . � and function h��� such that on the boundary
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x=0, the function Y =F�� , t ,u , . . . �Ỹ��̃� is a solution of the equation Yt=VY for any solution Ỹ of

the equation Yt
˜ = ṼỸ with �̃=h���, provided that the boundary condition holds.

If a boundary condition is integrable in the sense of the definition above, this means that the
corresponding boundary value problem admits the Lax representation consisting of the two Lax

pairs �2� and �3� defined on the domain D such that the eigenfunctions Y and Ỹ satisfy along the

boundary an additional boundary condition ��Y −FỸ���=0.
To consider a circle as a boundary, we use polar coordinates �r ,��. So, the boundary is r=a.

In polar coordinates, the Liouville equation is

urr +
1

r
ur +

1

r2u�� = 8eu. �5�

It admits the Lax pair

Yr = LY, Y� = AY , �6�

where x=r, t=�, U=L, V=A, and

L =�
eu+i�

2�
+ �e−i� −

eu+i�

2�
+

1

4
ur +

i

4r
u�

eu+i�

2�
+

1

4
ur +

i

4r
u� −

eu+i�

2�
− �e−i� � , �7�

A = ir�
eu+i�

2�
− �e−i� −

eu+i�

2�
−

1

4
ur −

i

4r
u�

eu+i�

2�
−

1

4
ur −

i

4r
u� −

eu+i�

2�
+ �e−i� � . �8�

To obtain a second Lax representation, we use the Kelvin transformation.
Equation �5� is invariant under the Kelvin transformation

r̄ =
a2

r
, ū = u + 4 ln

a

r
. �9�

Under such transformation, the Lax pair �6� takes the form

Ȳr = L̄Ȳ, Ȳ� = ĀȲ , �10�

where

L̄ =�
r4eu+i�

2a4�̃
+ �̃e−i� −

r4eu+i�

2a4�
−

r2ur

4a2 −
r

a2 +
ir

4a2u�

r4eu+i�

2a2�̃
−

r2ur

4a2 −
r

a2 +
ir

4a2u� −
r4eu+i�

2a4�̃
− �̃e−i� � , �11�
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Ā =
ia2

r �
r4eu+i�

2a4�̃
− �̃e−i� −

r4eu+i�

2a4�̃
+

r2ur

4a2 +
r

a2 −
iru�

4a2

r4eu+i�

2a4�̃
+

r2ur

4a2 +
r

a2 −
iru�

4a2 −
r4eu+i�

2a4�̃
+ �̃e−i� � . �12�

We will look for a boundary condition under which there exists a transformation �̃=h��� and

a nondegenerate matrix F�� ,� ,u� such that Y���=FỸ�h���� will solve the �Y����=A�r=aY��� for

every solution Ỹ��̃� of the equation �Ỹ���̃�= Ã�r=aỸ��̃�.
Lemma 1: The integrable boundary condition is given by

�ur�r=a =
− 2

a
, �13�

and there are two choices for the matrix F and the function h,

(i)

h��� = �, F = �1 0

0 1
	 , �14�

(ii)

h��� = − �, F = � 0 − 1

− 1 0
	 . �15�

Proof: Let Ȳ��� satisfy the equation Ȳ�= ĀȲ. On the boundary r=a, Y =FȲ�h���� has to satisfy

Y�=AY. Substituting Y =FȲ�h���� into Y�=AY and using Ȳ�= ĀȲ for Ȳ��h����, we obtain

� d

d�
F − A���F + FĀ�h����	Ȳ�h���� = 0. �16�

The above equality holds if

d

d�
F = A���F − FĀ�h���� . �17�

We have an equation for the unknown matrix F and function h���. To solve the boundary condi-
tion �4� with respect to ur, we let ur=G�� ,u ,u��. Assuming that F does not depend on u� and
differentiating �17� twice with respect to u�, we obtain �2ur /�u�

2=0. That is, ur=g1�u ,��u�

+g2�u ,��. We substitute the above expression for ur into �17� and let

F = � f11�u,�,�� f12�u,�,��
f21�u,�,�� f22�u,�,��

	 . �18�

Separating terms with u� and without u� in �17�, we obtain two sets of equations. We write the first
set of equations, terms with u�, as

�

�u
f = Pf , �19�

where f = �f11, f12, f21, f22�T and P is a matrix

102702-4 Gürses, Habibullin, and Zheltukhin J. Math. Phys. 48, 102702 �2007�

Downloaded 07 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



ia�
0 − �g1

4
−

i

4a
	 �−

g1

4
−

i

4a
	 0

− �g1

4
−

i

4a
	 0 0 �−

g1

4
−

i

4a
	

�−
g1

4
−

i

4a
	 0 0 − �g1

4
−

i

4a
	

0 �−
g1

4
−

i

4a
	 − �g1

4
−

i

4a
	 0

� . �20�

We write the second set of equations, terms without u�, as

�

��
f = Qf , �21�

where Q is a matrix

ia�
	 − 
 − �� +

eu+i�

2h���	 �−
g2

4
−

eu+i�

2�
	 0

− �� −
eu+i�

2h���	 	 + 
 0 �−
g2

4
−

eu+i�

2�
	

� eu+i�

2�
−

g2

4
	 0 − 	 − 
 �� +

eu+i�

2h���	
0 � eu+i�

2�
−

g2

4
	 − �� −

eu+i�

2h���	 − 	 + 


� , �22�

with 	=eu+i� /2�−�e−i�, 
=eu+i� /2h���−h���e−i�, and �=g2 /4+1/a.
Equations �19� and �21� must be compatible. This leads to the following compatibility condi-

tion:

�P� − Qu + �P,Q��f = 0, �23�

where �P ,Q� is a commutator of P and Q. The matrix �P�−Qu+ �P ,Q�� is nonzero. To have a
nonzero solution f , the determinant of �P�−Qu+ �P ,Q�� must be zero. It gives the following
equality:

a6e−4i�

16
�h2����ag1�u,�� − i�2 − �ag1�u,�� + i�2�2�2 = 0. �24�

The above equality holds if either

�1� h���=�� and g1= i�1+�� /a�1−��, where ��R \ 
−1,1� or
�2� h���=� and g1=0 or
�3� h���=−� and g1=0.

One can show that in case �1�, there is no vector f to satisfy Eqs. �19� and �21�. In case �2�, one
has the only solution f =q����1,0 ,0 ,1�T if g2=−2/a. This gives the boundary condition �13�,
function h, and matrix F given by �14�.

Case �3� is similar to Case �2� and gives the same boundary condition �13�, function h, and
matrix F given by �15�. �

From the above lemma, we have the following integrable boundary value problem with
corresponding Lax pairs �we have two Lax pairs for the problem�:
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�1�

r � a , urr +
1

r
ur +

1

r2u�� = 8eu,

Yr��� = L���Y���, Ȳr��� = L̄���Ȳ��� ,

Y���� = A���Y���, Ȳ���� = Ā���Ȳ��� ,

r = a, �ur�r=a = −
2

a
,

Y = FȲ ,

where F is given by �14�, L is given by �7�, A is given by �8�, L̄ is given by �11�, and Ā is
given by �12�.

�2�

r � a, urr +
1

r
ur +

1

r2u�� = 8eu,

Yr��� = L���Y���, Ȳr�− �� = L̄�− ��Ȳ�− �� ,

Y���� = A���Y���, Ȳ��− �� = Ā�− ��Ȳ�− �� ,

r = a, �ur�r=a = −
2

a
,

Y��� = FȲ�− �� ,

where F is given by �15�, L is given by �7�, A is given by �8�, L̄ is given by �11�, and Ā is
given by �12�.

Remark 1: The above boundary value problem admits infinitely many explicit solutions of the
form

u = ln� n2�
2 + �2�
4r2�
�cos n� + � sin n��2�	 , �25�

for any 
, �, n and of the form

u = − 2 ln�k�r2 + a2� + r�
 cos � + � sin ��� , �26�

where 
2+�2=4+4k2a2. We note that all these solutions have a singularity inside the region r
�a. Unfortunately, we failed to find regular solutions to the above boundary value problem.

III. TWO-DIMENSIONAL TODA LATTICE

We make the same assumption, as in the case of the Liouville equation, for the coordinates.
Hence, boundary is given by x=0. Again, we suppose that the differential equation under consid-
eration admits two different Lax representations,
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Yx = UY, Ỹx = ŨỸ ,

Yt = VY, Ỹt = ṼỸ . �27�

For the two-dimensional Toda lattice equation, U, V, Ũ, and Ṽ in �27� are linear operators.
Definition 2: A boundary condition

��u� = 0 �28�

is integrable if there exists a linear differential operator A such that on the boundary x=0, we

have that Ỹ =AY is a solution of Ỹt= ṼỸ for any solution Y of Yt=VY, provided that the boundary
condition holds.

To consider a circle as a boundary, we use polar coordinates �r ,��. So, the boundary is r=a.
The two-dimensional Toda lattice equation in polar coordinates becomes

urr +
1

r
ur +

1

r2u�� = ��n − 1� − ��n� , �29�

where ��n�=exp�u�n�−u�n+1��. The above equation admits a Lax pair

�1,r�n� =
ei�

2
�1�n + 1� −

1

2
�ur�n� −

i

r
u��n�	�1�n� −

e−i�

2
��n − 1��1�n − 1� , �30�

�1,��n� =
irei�

2
�1�n + 1� −

ir

2
�ur�n� −

i

r
u��n�	�1�n� +

ire−i�

2
��n − 1��1�n − 1� . �31�

To obtain other Lax representations, we use symmetries of Eq. �29�.

�1� Reflection on �,

�̃ = − � . �32�

�2� The Kelvin transformation,

r̃ =
a

r
, ũ = u + 4n ln

a

r
. �33�

�3� Reflection on n,

ũ = − u�− n� . �34�

Using the transformation �32�, we obtain the following Lax representation:

�2,r�n� =
e−i�

2
�2�n + 1� −

1

2
�ur�n� +

i

r
u��n�	�2�n� −

ei�

2
��n − 1��2�n − 1� , �35�

�2,��n� =
ire−i�

2
�2�n + 1� −

ir

2
�ur�n� +

i

r
u��n�	�2�n� +

irei�

2
��n − 1��2�n − 1� . �36�

Using the Kelvin transformation �33�, we obtain the following Lax representation:

�3,r�n� =
ei�

2
�3�n + 1� −

1

2
�− r2

a2 ur�n� + 4n
r

a2 −
ir

a2u�	�4�n� −
r4e−i�

2a4 ��n − 1��3�n − 1� ,

�37�
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�3,��n� =
ia2ei�

2r
�3�n + 1� −

ia2

2r
�− r2

a2 ur�n� + 4n
r

a2 −
ir

a2u�	�3�n� +
ir3e−i�

2a2 ��n − 1��3�n − 1� .

�38�

Using the transformations �34�, we obtain the following Lax representation:

�4,r�n� =
ei�

2
�4�n − 1� −

1

2
�− ur�n� +

i

r
u��n�	�4�n� −

e−i�

2
��n��4�n + 1� , �39�

�4,��n� =
irei�

2
�4�n − 1� −

ir

2
�− ur�n� +

i

r
u��n�	�4�n� +

ire−i�

2
��n��4�n + 1� . �40�

According to Definition 2, to obtain the integrable boundary conditions, we relate the equations for
� evolution of the above Lax representations, on the boundary r=a. We consider the case when the
eigenfunctions are related by the multiplication operator �i=A�� ,n ,u , . . . � ·� j.

It turns out �see Lemma �7�� that Lax pairs corresponding to the Kelvin transformation �33�
and the symmetry �34� are gauge equivalent. A solution of �38� transforms to a solution of �40�
without any boundary conditions. So, some boundary value problems have two possible Lax pairs.

In Lemma 2, we derive the first boundary value problem in the list at the end of this section.
Lemma 2: Let �1�n� be a solution of Eq. (31), then on the boundary r=a, a function �2�n�

=A ·�1�n�, where

A = e2in+g���, g��� is an arbitrary function of � , �41�

is a solution of Eq. (36), provided, that the following boundary condition:

u�n� = 2in� + g��� + k�n�, k�n� is an arbitrary function of n , �42�

holds for all n.
Proof: On the boundary r=a, we substitute �2�n�=A�n ,� ,u , . . . � ·�1�n� into Eq. �36� and use

�31� for �1,��n�. The resulting equation holds if the coefficients of �1�n+1�, �1�n�, and �1�n
−1� are zero. Thus, we obtain

iaei�

2
A�n� =

iae−i�

2
A�n + 1� , �43�

A��n� −
ia

2
�ur�n� −

iu��n�
a

	A�n� = −
ia

2
�ur�n� +

iu��n�
a

	A�n� , �44�

iae−i�

2
��n − 1�A�n� =

iaei�

2
��n − 1�A�n − 1� . �45�

From Eqs. �43� and �45�, we have that A�n�=e2i�A�n−1�. Hence, A�n�=e2i�nb���, where b��� is a
function of � only. Substituting A�n�=e2i�nb��� into Eq. �44�, we obtain

b� + �2in − u��n��b = 0. �46�

Since the function b does not depend on n, we have that the coefficient of b in the above equation
does not depend on n, so u��n�=2in+h���. Integrating with respect to �, we obtain the boundary
condition �42�, where k is an arbitrary function of n and g���=�h���d�. Then, solving Eq. �44�,
assuming that the found boundary condition holds, we obtain A=e2in+�g���d�, the expression �41�
for A. �

In a similar way, from the next lemmas, we derive other boundary value problems in the list.
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In Lemma 3 and Lemma 4, we derive the Lax pair for the second boundary value problem in
the list.

Lemma 3: Let �1�n� be a solution of Eq. (31), then on the boundary r=a, a function �3�n�
=A ·�1�n�, where

A = eia�g���d�, g��� is an arbitrary function of � , �47�

is a solution of Eq. (38), provided that the following boundary condition:

ur�n� =
2n

a
+ g��� , �48�

holds for all n.
Proof: On the boundary r=a, we substitute �3�n�=A�n� ·�1�n� into Eq. �38� and use �31� for

�1,��n�. The resulting equation holds if the coefficients of �1�n+1�, �1�n�, and �1�n−1� are zero.
Thus, we obtain

iaei�

2
A�n� =

iaei�

2
A�n + 1� , �49�

A��n� −
ia

2
�ur�n� −

iu��n�
a

	A�n� =
ia

2
�ur�n� −

4n

a
+

iu��n�
a

	A�n� , �50�

iae−i�

2
��n − 1�A�n� =

iae−i�

2
��n − 1�A�n − 1� . �51�

From Eqs. �49� and �51�, we have that A does not depend on n. Hence, the coefficient of A in
�50� must be a function of � only. This gives the boundary condition �48�. Then, solving Eq. �50�,
assuming that �48� holds, we obtain the expression �47� for A. �

Lemma 4: Let �1�n� be a solution of Eq. (31), then on the boundary r=a, a function �4�n�
=A ·�1�n�, where

A = e2i�n+u�n�+ia�g���d�,g��� is an arbitrary function of � , �52�

is a solution of Eq. (38), provided that the following boundary condition:

ur�n� =
2n

a
+ g��� , �53�

holds for all n.
Proof: On the boundary r=a, we substitute �4�n�=A�n ,� ,u , . . . � ·�1�n� into Eq. �40� and �38�

and use �38� for �1,��n�. The resulting equation holds if the coefficients of �2�n+1�, �2�n�, and
�2�n−1� are zero. Thus, we obtain

iaei�

2
A�n� =

iae−i�

2
��n�A�n + 1� , �54�

A��n� −
ia

2
�ur�n� −

iu��n�
a

	A�n� = −
ia

2
�− ur�n� +

iu��n�
a

	A�n� , �55�
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iae−i�

2
��n − 1�A�n� =

iaei�

2
A�n − 1� . �56�

From Eqs. �54� and �56�, we have that A�n�=e−2i���n�A�n+1�. Hence, A�n�=e2i�n+u�n�b���, where
F��� is a function of � only. Substituting A�n�=e−2i�nb��� into Eq. �55�, we obtain

b� − �2in − iaur�n��b = 0. �57�

Since the function b does not depend on n, we have that the coefficient of b in the above equation
does not depend on n. This gives the boundary condition �53�. Then, solving Eq. �55�, assuming
that the found boundary condition holds, we obtain the expression �52� for A. �

In Lemma 5 and Lemma 6, we derive the Lax pair for the third boundary value problem in the
list.

Lemma 5: Let �2�n� be a solution of Eq. (36), then on the boundary r=a, a function �3�n�
=A ·�2�n�, where

A = e−2i�n+ia�g���d�, g��� is an arbitrary function of � , �58�

is a solution of Eq. (38), provided that the following boundary condition:

ur�n� = −
i

a
u��n� + g��� , �59�

holds for all n.
Proof: On the boundary r=a, we substitute �3�n�=A�n ,� ,u , . . . � ·�2�n� into Eq. �38� and use

�36� for �2,��n�. The resulting equation holds if the coefficients of �2�n+1�, �2�n�, and �2�n
−1� are zero. Thus, we obtain

iae−i�

2
A�n� =

iaei�

2
A�n + 1� , �60�

A��n� −
ia

2
�ur�n� +

iu��n�
a

	A�n� = −
ia

2
�− ur�n� +

4n

r
−

iu��n�
a

	A�n� , �61�

iaei�

2
A�n� =

iae−i�

2
A�n − 1� . �62�

From Eqs. �60� and �62�, we have that A�n�=e−2i�A�n−1�. Hence, A�n�=e−2i�nb���, where b��� is
a function of � only. Substituting A�n�=e−2i�nb��� into Eq. �61�, we obtain

b� − ia�ur�n� +
i

a
u��n�	b = 0. �63�

Since the function b does not depend on n, we have that the coefficient of b in the above equation
does not depend on n. This gives the boundary condition �59�. Then, solving Eq. �61�, assuming
that the found boundary condition holds, we obtain the expression �58� for A. �

Lemma 6: Let �2�n� be a solution of Eq. (36), then on the boundary r=a, a function �4�n�
=A ·�2�n�, where

A = e2u�n�+�g���d�, g��� is an arbitrary function of � , �64�

is a solution of Eq. (40), provided that the following boundary condition:

ur�n� = −
i

a
u��n� + g��� , �65�
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holds for all n.
Proof: On the boundary r=a, we substitute �4�n�=A�n ,� ,u , . . . � ·�2�n� into Eq. �40� and use

�36� for �2,��n�. The resulting equation holds if the coefficients of �2�n+1�, �2�n�, and �2�n
−1� are zero. Thus, we obtain

iae−i�

2
A�n� =

iae−i�

2
��n�A�n + 1� , �66�

A��n� −
ia

2
�ur�n� +

iu��n�
a

	A�n� = −
ia

2
�− ur�n� +

iu��n�
a

	A�n� , �67�

iaei�

2
��n − 1�A�n� =

iaei�

2
A�n − 1� . �68�

From Eqs. �66� and �68�, we have that A�n�=��n�A�n+1�. Hence, A�n�=eu�n�F���, where F��� is
a function of � only. Substituting A�n�=eu�n�b��� into Eq. �67�, we obtain

b� + �− iaur�n� + u��n��b = 0. �69�

Since the function b does not depend on n, we have that the coefficient of b in the above equation
does not depend on n. We obtain the boundary condition �65�. Solving Eq. �67� and assuming that
the found boundary condition holds, we obtain the expression �64� for A. �

In Lemma 7, we show that the Lax representations corresponding to the Kelvin transformation
�33� and the symmetry �34� are equivalent.

Lemma 7: Let �3�n� be a solution of Eq. (38), then on the boundary r=a, a function �4�n�
=A ·�2�n�, where

A = e2i�n+u�n� �70�

is a solution of Eq. (40).
Proof: On the boundary r=a, we substitute �4�n�=A�n ,� ,u , . . . � ·�3�n� into Eq. �40� and use

�36� for �3,��n�. The resulting equation holds if the coefficients of �3�n+1�, �3�n�, and �3�n
−1� are zero. Thus, we obtain

iaei�

2
A�n� =

iae−i�

2
��n�A�n + 1� , �71�

A��n� −
ia

2
�− ur�n� +

4n

a
−

iu��n�
a

	A�n� = −
ia

2
�− ur�n� +

iu��n�
a

	A�n� , �72�

iae−i�

2
��n − 1�A�n� =

iaei�

2
A�n − 1� . �73�

From Eqs. �66� and �68�, we have that A�n�=e−2i���n�A�n+1�. Hence, A�n�=e2i�n+u�n�b���, where
b��� is a function of � only. Substituting A�n�=e2i�n+u�n�b��� into Eq. �67�, we obtain

b� = 0. �74�

Hence, the function b is a constant. This gives us the expression �64� for A. �

From the above lemmas, we have the following list of integrable boundary value problems
with corresponding Lax pairs. Some of the integrable boundary value problems admit two differ-
ent Lax pairs. We give both Lax pairs in the list.

The list of integrable boundary value problems for the two-dimensional Toda lattice and
corresponding Lax pairs is as follows.
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�1�

r � a, urr +
1

r
ur +

1

r2u�� = ��n − 1� − ��n� ,

�1,r�n� = U1�1�n�, �2,r�n� = U2�2�n� ,

�1,��n� = V1�1�n�, �2,��n� = V2�2�n� ,

r = a, u�n� = 2in� + g��� + k�n� ,

�2 = e2in+g����1,

where the action of operator U1 is given by �30�, V1 is given by �31�, Ũ2 is given by �35�, and

Ṽ2 is given by �36�.
�2�

r � a, urr +
1

r
ur +

1

r2u�� = ��n − 1� − ��n� ,

�1,r�n� = U1�1�n�, �3,r�n� = U3�3�n� ,

�1,��n� = V1�1�n�, �3,��n� = V3�3�n� ,

r = a, ur�n� =
2n

a
+ g��� ,

�3 = eia�g���d��1,

where the action of operator U1 is given by �30�, V1 is given by �31�, U3 is given by �37�, and
V3 is given by �38�.

�3�

r � a, urr +
1

r
ur +

1

r2u�� = ��n − 1� − ��n� ,

�1,r�n� = U1�1�n�, �4,r�n� = U4�4�n� ,

�1,��n� = V1�1�n�, �4,��n� = V4�4�n� ,

r = a, ur�n� =
2n

a
+ g��� ,

�4 = e2i�n+u�n�+ia�g���d��1,

where the action of operator U1 is given by �30�, V1 is given by �31�, U4 is given by �39�, and
V4 is given by �40�.
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�4�

r � a, urr +
1

r
ur +

1

r2u�� = ��n − 1� − ��n� ,

�2,r�n� = U2�2�n�, �3,r�n� = U3�3�n� ,

�2,��n� = V2�2�n�, �3,��n� = V3�3�n� ,

r = a, ur�n� = −
i

a
u��n� + g��� ,

�3 = e−2i�n+ia�g���d��2,

where the action of operator U2 is given by �35�, V2 is given by �36�, U3 is given by �37�, and
V3 is given by �38�.

�5�

r � a, urr +
1

r
ur +

1

r2u�� = ��n − 1� − ��n� ,

�2,r�n� = U2�2�n�, �4,r�n� = U4�4�n� ,

�2,��n� = V2�2�n�, �4,��n� = V4�4�n� ,

r = a, ur�n� = −
i

a
u��n� + g��� ,

�4 = eu�n�+�g���d��2,

where the action of operator U2 is given by �35�, V2 is given by �36�, U4 is given by �39�, and V4
is given by �40�.

Remark 2: The above boundary value problems admit infinitely many solutions. To have a
unique solution, one can put additional conditions u�x , t ,0�= f�x , t� and u�x , t ,1�=g�x , t�, where
f�x , t� is a smooth function compatible with the boundary condition when n=0 and g�x , t� is a
smooth function compatible with the boundary condition when n=1.

IV. REDUCTIONS OF TWO-DIMENSIONAL TODA LATTICE EQUATION

In this section, we obtain integrable boundary conditions for the sinh-Gordon and Tzitzeica
equations as reductions of integrable boundary conditions of the two-dimensional Toda lattice
equation.

To reduce the two-dimensional Toda lattice equation to the sinh-Gordon equation, we put
periodicity condition u�n�=u�n+2� for all n, where u satisfies �29�. Then, for p=u�0�−u�1�, we
have

prr +
1

r
pr +

1

r2 p�� = 4 sinh p , �75�

the sinh-Gordon equation in the polar coordinates. Only the boundary condition of the problem
ur�n�=−�i /a�u��n�+g��� is consistent with the periodicity constraint u�n+2�=u�n�. It gives
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pr +
i

a
p� = 0, �76�

on the boundary r=a. Evidently by changing p= iv, we get vrr+ �1/r�vr+ �1/r2�v��=4 sin v and
vr+ �i /a�v�=0.

To reduce the two-dimensional Toda lattice equation to the Tzitzeica equation, we put u�n�
=u�n+3� and u�n�=−u�2−n�. Then, for q=u�0�, we have

qrr +
1

r
qr +

1

r2q�� = e2q − e−q, �77�

the Tzitzeica equation in polar coordinates. Again, only the boundary condition of the problem
ur�n�=−�i /a�u��n�+g��� is consistent with periodicity constraints u�n�=u�n+3� and u�n�=−u�2
−n�. It gives

qr +
i

a
q� = 0, �78�

on the boundary r=a.

V. SOME SOLUTIONS OF THE BOUNDARY VALUE PROBLEM

In this section, we give an example of solutions for the special case of the boundary value
problem

urr +
1

r2u�� +
1

r
ur = ��n − 1� − ��n�, �ur�n��r=a =

2n

a
+ g��� , �79�

where ��n�=exp�u�n�−u�n+1��. We assume that g���=0 and look for a spherically symmetric
solution. That is, u is a function of r only. The boundary value problem �79� reduces to

urr +
1

r
ur = ��n − 1� − ��n�, �ur�n��r=a =

2n

a
. �80�

Let us introduce new variables t=ln�r /a� and v�n , t�=u�n ,r�−2n ln r. Then, the boundary value
problem �80� becomes

vtt = �̄�n − 1� − �̄�n�, �vt�n��t=0 = 0, �81�

where �̄�n�=exp
v�n�−v�n+1��. As solutions of the above boundary value problem, we can take
even solitons of the Toda lattice equation in one dimension. Following Ref. 19 �see pp. 494–498�,
the general N-soliton solution is given in terms of the data 
c ,zj ,� j� such that

�I� the quantities zj lie in the interval −1�zj �1 and are pairwise disjoint;
�II� e−c=
 j=1

N zj
2;

�III� the quantities mj�0�=� j / ȧ�zj�, where a�z�=
 j=1
N sgn zj�z−zj� / �zzj −1� and dot means deriva-

tive with respect to z, are positive.

The N-soliton solution is given by

v�n,t� = c + ln
det M�n,t�

det M�n − 1,t�
, �82�

where M�n , t� is a matrix with entries Mij�n , t�=�ij +�mi�t�mj�t��zizj�n+1 / �1−zizj� and mj�t�
=e−�zj−zj

−1�t� j / ȧ�zj�, i , j=1, . . . ,N.
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The even solitons are described by the following lemma.
Lemma 8: Let N=2k and the data zj, � j, j=1, . . . ,N satisfy zi=−zN−i+1, �i=−�N−i+1, i

=1, . . . ,k. Then, the N-soliton solution (82) is an even function of t.
Proof: With our choice of the initial data, the elements of matrix M�n , t�, which are symmetric

with respect to the “center” of the matrix, are equal. If t is changed to −t, then every element of
M�n , t� is replaced by the element symmetric to it with respect the center of the matrix. Hence, the
determinant of M�n , t� is equal to the determinant of M�n ,−t� and v�n , t�=v�n ,−t�. From v�n , t�
=v�n ,−t�, it follows that �v��t��t=0=0. �

We give an example of the solutions described in the above lemma. For N=2, we put z1

=z0, z2=−z0, c=−4 ln z0, and �1=−�0, �2=�0, where 0�z0�1 and �0�0. Then, the data satisfy
conditions �I�, �II�, and �III� and the conditions of the lemma. With such data, one has the
following solution of �81�:

v�n,t� = c + ln
1 + �0�1 + z0

2�z0
2n+1 cosh��z0 − z0

−1�t� + �0
2z0

4n+4

1 + �0�1 + z0
2�z0

2n−1 cosh��z0 − z0
−1�t� + �0

2z0
4n . �83�

Hence, the boundary value problem �80� has the following solution:

u�n,r� = c + ln
1 + 1

2�0�1 + z0
2�z0

2n+1�r�z0−z0
−1� + r−�z0−z0

−1�� + �0
2z0

4n+4

1 + 1
2�0�1 + z0

2�z0
2n−1�r�z0−z0

−1� + r−�z0−z0
−1�� + �0

2z0
4n

. �84�

VI. CONCLUSION

In the present paper, we apply the method of involutions to boundary value problems for
soliton equations on bounded regions. As illustrative models, we consider the Neumann-type
boundary value problem on a circle for the Liouville equation and initial boundary value problem
for the two-dimensional Toda lattice equation. The Lax representations for the boundary value
problems are represented. In the case of Liouville equation in a disk, we failed to find any
effective approach to look for a regular solution satisfying the corresponding integrable boundary
condition. For the Toda lattice in a cylinder, we have actually a mixed-type problem �time evolu-
tion is given by the variable n�. In our opinion, this mixed problem is well posed and can be solved
by applying the inverse scattering transformation method. As it was shown in Ref. 18 for the
Kadomtsev-Petviashvili �KP� equation on a strip, the Marchenko kernels of two equations con-
nected by an involution are connected by a very simple transformation. In this article, we consid-
ered some reductions of the integrable boundary value problems in the case of the two-
dimensional Toda lattice equation. We also constructed a class of solutions satisfying one of the
found boundary conditions.

ACKNOWLEDGMENTS

The authors thank Scientific and Technological Research Council of Turkey and Turkish
Academy of Science for Partial financial support.

1 E. K. Sklyanin, Funkc. Anal. Priloz. 21, 86 �1987�.
2 B. Gürel, M. Gürses, and I. Habibullin, J. Math. Phys. 36, 6809 �1995�.
3 B. Gürel, M. Gürses, and I. Habibullin, Phys. Lett. A 190, 231 �1994�.
4 V. Adler, B. Gürel, M. Gürses, and I. Habibullin, J. Phys. A 30, 3505 �1997�.
5 I. T. Habibullin and A. N. Vil’danov, in Proceedings of the International Conference “Modern Group Analysis 2000,”
edited by V. A. Baikov, Ufa, 2001, pp. 80–81.

6 I. T. Khabibullin and E. V. Gudkova, Funct. Anal. Appl. 38, 138 �2004�.
7 P. N. Bibikov and V. O. Tarasov, Theor. Math. Phys. 79, 570 �1989�.
8 R. F. Bikbaev and V. O. Tarasov, Algebra Anal. 3, 78 �1991�.
9 I. T. Khabibullin, Teor. Mat. Fiz. 86, 43 �1991� �Theor. Math. Phys. 86, 28 �1991��.

10 V. E. Adler, I. T. Khabibullin, and A. B. Shabat, Teor. Mat. Fiz. 110, 98 �1997� �Theor. Math. Phys. 110, 78 �1997��.
11 R. F. Bikbaev and A. R. Its, Math. Notes 52, 1005 �1992�.
12 A. B. Borisov and V. V. Kiseliev, Nonlinear World �World Scientific, River Edge, NJ, 1990�, Vol. 1, pp. 73–83.

102702-15 Integrable boundary value problems J. Math. Phys. 48, 102702 �2007�

Downloaded 07 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



13 M. Jaworski and D. Kaup, Inverse Probl. 6, 543 �1990�.
14 A. S. Fokas and D. A. Pinotsis, J. Appl. Math. 17, 323 �2006�.
15 A. S. Fokas, Proc. R. Soc. London, Ser. A 453 1411 �1997�.
16 A. B. de Monvel and V. Kotlyarov, Commun. Math. Phys. 253, 51 �2005�.
17 A. Degasperis, S. V. Manakov, and P. M. Santini, Teor. Mat. Fiz. 133, 184 �2002� �Theor. Math. Phys. 133, 1475

�2002��.
18 E. V. Gudkova and I. T. Khabibullin, Teor. Mat. Fiz. 140, 230 �2004� Theor. Math. Phys. 140, 1086 �2004�.
19 L. D. Fadeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons �Spinger-Verlag, Berlin, 1987�.
20 A. S. Fokas, J. Math. Phys. 44 3226 �2003�.
21 A. B. de Monvel, A. S. Fokas, and D. Shepelsky, Commun. Math. Phys. 263, 133 �2006�.

102702-16 Gürses, Habibullin, and Zheltukhin J. Math. Phys. 48, 102702 �2007�

Downloaded 07 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions


