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A general framework for integrable discrete systems on R, in particular, containing
lattice soliton systems and their q-deformed analogs, is presented. The concept of
regular grain structures on R, generated by discrete one-parameter groups of dif-
feomorphisms, in terms of which one can define algebra of shift operators is intro-
duced. Two integrable hierarchies of discrete chains together with bi-Hamiltonian
structures and their continuous limits are constructed. The inverse problem based
on the deformation quantization scheme is considered. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2948962�

I. INTRODUCTION

Recently, the so-called integrable q-analogs of KP- and Toda-type hierarchies together with
related Hamiltonian structures, W-algebras, and �-functions have become of increasing interest
�see Refs. 1–9 and references therein�. The q-deformed KP hierarchy �q-KP� with the reductions
of q-KdV soliton-type systems are obtained by means of pseudodifferential operators defined in
terms of the q-derivative �q instead of the usual derivative � used for ordinary KP and KdV
hierarchies

�u�x� =
�u�x�

�x
→ �qu�x� =

u�qx� − u�x�
�q − 1�x

.

Analogously, the q-deformed Toda hierarchies can be constructed by means of the q-shift opera-
tors

Eu�x� = u�x + 1� → Equ�x� = u�qx� .

The scheme of the construction of integrable q-deformed systems is based on the classical
R-matrix formalism that proved very fruitful for the systematic construction of field and lattice
soliton systems10–15 as well as dispersionless integrable field systems.16–19 Moreover, the R-matrix
approach allows a construction of Hamiltonian structures and conserved quantities. By an inte-
grable system, we mean such a system which has infinite hierarchy of symmetries and conserved
quantities.

Having all the above classes of integrable systems, with parallel schemes of construction, it is
interesting how to embed them into a more general unifying framework. One of the possible
approaches is to construct integrable systems on time scales.20,21 A time scale T is an arbitrary
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nonempty closed subset of real numbers. It was introduced to unify all possible intervals on the
real line R, such as continuous �whole� R, discrete Z, and q-discrete Kq intervals. On a given time
scale it is possible to construct �-derivative �being simultaneously a generalization of the ordinary
derivative and the q-derivative� by forward ��x� and backward ��x� jump operators, where x
�T �for all precise definitions see Refs. 20 and 21�. Assuming the regularity property of T, i.e.,
����x��=x, one can define an algebra of the Laurent series of �-operators

�u�x� =
u���x�� − u�x�

��x�
, ��x� � ��x� − x, x � T

or shift operators as Eu�x�=u���x��, leading to the construction of integrable systems on time
scales.21,22 Defining suitable inner products in this algebra, additionally one can construct conser-
vation laws. In such a formulation, dynamical fields u :T→R are the mappings from a time scale
to real numbers.

The main goal of this work is the formulation of a general unifying framework of integrable
discrete systems, in such a way that the domain of dynamical fields u is always R. We also
consider the continuous limit and the inverse procedure. In Sec. II we introduce the concept of a
regular grain structure on R defined by discrete one-parameter groups of diffeomorphisms �m��x�.
Then, the shift operator can be constructed in terms of formal jump operator ��x�=���x�. In this
section, elements of geometric scheme are defined as appropriate functionals, duality maps, ad-
joint operators, etc. A class of discrete systems is chosen in such a way that the limit �→0 is
dispersionless. In Sec. III, using the formalism of classical R-matrices, we construct two integrable
hierarchies of discrete chains being counterparts of the original infinite-field Toda and modified
Toda chains. Additionally bi-Hamiltonian structures are constructed. In Sec. IV the concept of the
continuous limit, which in our case becomes the dispersionless limit, is explained. Further, in Sec.
V, the theory of dispersionless chains, being dispersionless limits of discrete chains together with
bi-Hamiltonian structures, is presented. In Sec. VI the inverse problem to the dispersionless limit
is considered. It is based on the scheme of the deformation quantization formalism introduced in
Ref. 15. As a result, we show that there is a class of gauge equivalent integrable discrete systems,
being dispersive counterparts of dispersionless systems considered earlier. We end the paper with
some final comments.

II. ONE-PARAMETER REGULAR GRAIN STRUCTURES ON R

The main aim of this article is to present a general theory of integrable discrete systems on R
that contains lattice soliton systems as well as q-discrete systems as particular cases. This theory
is illustrated by integrable discrete chains that are infinite-field systems.

The maps � :R→R and � :R→R are called the forward and backward jump operators, re-
spectively. In n�Z+ forward steps, a point x�R is mapped to a point �n�x�, where �n is the
n-times composition of forward jump operator �. In n backward steps, x is mapped to a point
�n�x�. Then, the range of possible points to which we can map x by forward and backward steps
�including x� is introduced by

Gx ª ��n�x�:n � Z+� � �x� � ��n�x�:n � Z+� . �2.1�

Hence, to each point x of R a set Gx is associated. The union of all Gx is given by G : =�x�RGx.
Definition 2.1: We say that G defines the grain structure on R. G is called as the regular grain

structure, if there exist inverse maps �−1 and �−1, such that ��x�=�−1�x� and ��x�=�−1�x� for all
x�R.

So, in order to define the regular grain structure on R, it is enough to use the forward jump
operator �, being bijection, since the backward jump operator can be written in terms of �, i.e.,
�=�−1. Then, Definition 2.1 turns out to be Gx= ��n�x� :n�Z�, where we assume that �0� idR.
Besides, bijective � defines a discrete one-parameter group of bijections on R: Z�m� ��m :R
→R�, such that �mª�m, and vice versa each one-parameter group of bijections on R defines the
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regular grain structure on R with the forward jump operator defined by �ª�1. Note that the
regular grain structure introduces equivalence classes between points of R, such that x�y if Gx

=Gy �x ,y�R�, i.e., there exists k�Z such that y=�k�x�.
Further, we introduce a regular grain structure G on R by one-parameter group of diffeomor-

phisms instead of bijections, which is necessary as we deal with differential geometry of infinite-
dimensional systems with smooth dynamical fields. Let Z�m��m� be a discrete one-parameter
group of diffeomorphisms on R: �m� :R→R, i.e.,

�0�x� = x and �m���n��x�� = ��m+n���x�, m,n � Z ,

where ��0 is some deformation parameter. It follows that ��n��−1�x�=�−n��x�. The continuous
one-parameter group of diffeomorphisms �R� t��t� can be completely determined by its infini-
tesimal generator X�x��x being a vector field on R. We assume that the component X�x� is defined
on R except at most at a finite number of points. Then,

X�x� = 	d�t�x�
dt

	
t=0

⇔
d�t�x�

dt
= X��t�x�� , �2.2�

where t�R. Arbitrary X�x generates a continuous one-parameter group of diffeomorphisms only
when it is a complete vector field, for which maximal integrals are defined on the whole R, i.e., R
is a domain of the mapping t��t. In such a case the above discrete one-parameter group is well
defined as it is enough to consider subgroup Z of R. Incomplete X�x might still well define a
discrete group of diffeomorphisms, if � is properly chosen.

Lemma 2.2: Let �t�x� be a one-parameter group of diffeomorphisms generated by X�x��x.
Then, the following relation is valid:

X�x�
d�t�x�

dx
= X��t�x�� . �2.3�

Proof: From �2.2� one observes that X��s+t�x��=d�s+t�x� /ds. By acting �s on both sides of
�2.3�, we have the following relation:

X��s�x��
d�s+t�x�
d�s�x�

= X��s+t�x�� ,

which completes the proof. �

Now, we establish a phase space related to discrete systems. Let

u ª �u0�x�,u1�x�,u2�x�, . . .�T

be an infinite tuple of smooth functions ui :R→K, x�ui�x� with values in K=R or C. Addition-
ally we assume that ui’s depend on an appropriate set of evolution parameters, i.e., ui’s are
dynamical fields. Let U be a linear topological space, with local independent coordinates
u��m��x�� for all m�Z, which defines infinite-dimensional phase space. We use the following
notation:

Emu�x� ª �Emu��x� = u��m��x��, m � Z ,

where u�x� is some field. Let C be the algebra over K of functions on U of the form

f�u� ª 

m�0



i1,. . .,im�0



s1,. . .,sm�Z

as1s2. . .sm

i1i2. . .im �Es1ui1
��Es2ui2

� ¯ �Esmuim
� �2.4�

that are polynomials in u��m��x�� of finite order, with coefficients as1s2. . .sm

i1i2. . .im �K. This algebra can
be extended into operator algebra C�E ,E−1� �C�x ,y , . . .� stands for the linear space of polynomials
in x ,y , . . . with coefficients from C�, where the shift operator E is compatible with the grain
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structure defined by ���x�. Since ���x� is an element of one-parameter group of diffeomorphisms,
the equivalence

���x� = e�X�x��xx ⇔ e�X�x��xu�x� = u�e�X�x��xx� , �2.5�

where u�x� is a smooth function. Formula �2.5� is valid on the whole real line if X�x��x is complete
or where a discrete one-parameter group of diffeomorphisms is well defined. Thus, the shift
operator E can be identified with e�X�x��x, i.e.,

Em � em�X�x��x. �2.6�

Example 2.3: Consider vector fields of the form X�x��x=x1−n�x on R, for n�Z. For n=0,
integrating �2.2� one finds that

�t�x� = etx ⇒ �m��x� = em�x = qmx q � e�,

which is defined for all t�R and so X�x=x�x is a complete vector field. When n=0, we deal with
systems of “q-discrete” type. When n�0, in general, �t�x� is of the following implicit form:

��t�x��n = xn + nt .

For n=1, we have

�t�x� = x + t ⇒ �m��x� = x + m� ,

and X�x=�x is obviously complete. In this case we deal with systems of “lattice” type. For
n=−1 the related vector field X�x=x2�x is incomplete as t� 1

x ,

�t�x� =
x

1 − tx
⇒ �m��x� =

x

1 − m�x
.

However, if x�1 /m�, the related discrete one-parameter group of diffeomorphisms is well de-
fined. When n is odd, we can always define a discrete one-parameter group of diffeomorphisms
generated by X�x=x1−n�x.

A space F= �F :U→K� of functions on U is defined through linear functionals

� �·�d�x:C → K, f�u� � F�u� ª� f�u�d�x , �2.7�

such that the following property is fulfilled:

� Ef�u�d�x =� f�u�d�x . �2.8�

Here �d�x is a formal integration symbol. Property �2.8� entails the form of adjoint with respect to
the duality map that will be defined in a moment.

Definition 2.4: The explicit form of appropriate functionals can be introduced in two ways.

�i� A discrete representation is defined as

F�u� =� f�u�d�x ª � 

n�Z

f�u��n��x��� . �2.9�

�ii� A continuous representation is given as

F�u� =� f�u�d�x ª �
−	

	

f�u�x��
dx

X�x�
, �2.10�

where we assume that ui�x� vanishes as 
x
→	 [if X�x�→0 for 
x
→	, then ui�x� must
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vanish faster than X�x� does]. The above integral is in general improper, so additionally we
assume that ui�x� behave properly as x tends to critical points xc of X�x� �X�xc�=0�. Then,
evaluating the integral we take its principal value.

When it is not necessary to differentiate between the above representations, we use only the
formal integration symbol �d�x. We have explicitly defined the functionals in two ways reflecting
two different approaches developed for the lattice soliton systems. The first one is with the domain
of dynamical fields Z,12,13 and the second one with R.15,23 So, functionals �2.9� and �2.10� are
appropriate generalizations of these two approaches.

Proposition 2.5: Both functionals from Definition 2.4 are well defined and satisfy �2.8�.
Proof: Both functionals are trivially linear. The discrete functional satisfies �2.8� since one can

freely change the boundaries of the sum over the whole Z. For the continuous functional we have

� Ef�u�d�x = �
−	

	

f�u����x���
dx

X�x�
= �

−	

	

f�u�x��
d�−��x�

dx

dx

X��−��x��

= �
−	

	

f�u�x��
dx

X�x�
=� f�u�d�x ,

where the second equality is obtained by the change of variables x����x�, while the next one
follows from Lemma 2.2. �

A vector field on U is given by a system of differential-difference equations. Here the differ-
ence calculus is performed with respect to the grain structure defined by �� and the first order
differential calculus is with respect to the evolution parameter t,

ut = K�u� , �2.11�

where utª�u /�t and K�u�ª �1 /���K1�u� ,K2�u� , . . .�T with Ki�u��C. The class of the discrete
systems is chosen in such a way that in the continuous limit �→0, we obtain systems of hydro-
dynamic type �see Sec. IV�. This assumption explains the appearance of the factor � in K.

Let V be a linear space over K, of all such vector fields on U. Then the dual space V� is a space
of all linear maps 
 :V→K. The action of 
�V� on K�V can be defined through a duality map
�bilinear functional� �· , ·� :V��V→K given by functional �2.7� as

�
,K� =� 

i=0

	


iKid�x =� 
T · Kd�x , �2.12�

where the components of 
ª �
1 ,
2 , . . .�T belong to C. With respect to the duality map �2.12� one
finds that the adjoint of Em is equal to E−m, i.e., �Em�†=E−m.

Proposition 2.6: The differential

dF�u� = � �F

�u0
,

�F

�u1
, . . .�T

� V�

of a functional F�u�=�f�u�d�x, such that its pairing with K�V assumes the usual Euclidean form

F��K� = �dF,K� =� 

i=0

	
�F

�ui
�ui�td�x , �2.13�

where F��K� is the directional derivative, is defined by variational derivatives of the form

�F

�ui
ª 


m�Z

E−m � f�u�
�ui��m��x��

.

Proof: Let ut=K�u�, then
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F��u��ut� �
dF�u�

dt
=� 


i=0

	



m�Z

� f�u�
�ui��m��x��

dui��m��x��
dt

d�x =� 

i=0

	
�F

�ui
�ui�td�x ,

where the last equality follows from �2.8�. �

Furthermore, we are interested in bivector fields on U defined through linear operators

 :V�→V, which are matrices with coefficients from C�E ,E−1� multiplied by 1 /� in a local
representation. An operator 
 is a Poisson operator �tensor� if the bilinear bracket

�H,F�
 = �dF,
dH�, F,H � F

is a Poisson bracket.
Remark 2.7: It is important to mention that the particular choice of the algebra C, and

consequently the algebra C�E ,E−1�, determines the class of discrete systems considered, which
tends to differential systems of first order, i.e., dispersionless ones, as �→0. Alternative approach
for the construction of discrete systems on R with the grain structure G is based on the use of
�-derivative, instead of the shift operator, given by

�u�x� ª
�E − 1�u�x�

�E − 1�x
=

u����x�� − u�x�
���x�

, ���x� � ���x� − x .

In this case, the algebra C is composed of polynomials in �mu �m=0,1 , . . .� and the operator
algebra is given by C���. Consequently the restriction �2.8� on the functional is replaced by

��
�f�u�d�x = 0, �2.14�

which entails that �†=−�E−1 with respect to the duality map generated by this functional. Prime
in �� is used to differentiate the functional satisfying property �2.14� from the functional satisfying
property �2.8�. Nevertheless, both functionals are interrelated by the relation

��
�·�d�x =� �·����x�d�x ,

which is a consequence of the restrictions imposed on them. Contrary to the previous case, the
continuous limit of discrete systems from the alternative approach with �-operator gives dynami-
cal field systems with dispersion and is not considered in this article.

III. R-MATRIX APPROACH TO INTEGRABLE DISCRETE SYSTEMS ON R

The construction of integrable discrete systems following from the scheme of classical
R-matrix formalism is parallel to the one used in the case of lattice soliton systems.12,14,15

On R with the grain structure G defined by some diffeomorphism ��, we introduce the algebra
of shift operators with finite highest order,

g = g�k−1 � g�k−1 = � 

i�k−1

N

ui�x�Ei� � � 

i�k−1

ui�x�Ei� , �3.1�

where

Emu�x� = �Emu��x�Em � u��m��x��Em, �m� ª ��
m, m � Z , �3.2�

and ui�x� are smooth dynamical fields.
Proposition 3.1: The multiplication operation on g defined by �3.2� is noncommutative and

associative.
Proof: Noncommutativity is obvious. Associativity follows from straightforward calculation

and from the fact that �m� is a one-parameter group of diffeomorphisms. �
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The Lie structure on g is introduced by the commutator

�A,B� =
1

�
�AB − BA�, A,B � g .

Subsets g�k−1 and g�k−1 of g are Lie subalgebras only if k=1 and k=2. As a result, we define the
classical R-matrices R= P�k−1− 1

2 , by appropriate projections, and related Lax hierarchies,

Ltn
= ��Ln��k−1,L� = 
0dHn = 
1dHn−1, n � Z+, k = 1,2, �3.3�

of infinitely many mutually commuting systems. The evolution equations from �3.3� are generated
by powers of appropriate Lax operators L�g of the form

k = 1: L = E + u0 + u1E−1 + u2E−2 + ¯ = E + 

i�0

uiE−i, �3.4�

k = 2: L = u0E + u1 + u2E−1 + u3E−2 + ¯ = 

i�0

uiE1−i. �3.5�

Then, the first chains from �3.3� are

�ui�t1
=

1

�
��E − 1�ui+1 + ui�1 − E−i�u0� , �3.6�

�ui�t2
=

1

�
��E2 − 1�ui+2 + Eui+1�E + 1�u0 − ui+1�E−i + E−i−1�u0 + ui�1 − E−i�u0

2

+ ui�E + 1��1 − E−i�u1�

]

for k=1, and

�ui�t1
=

1

�
�u0Eui+1 − ui+1E−iu0� ,

�ui�t2
=

1

�
�u0Eu0E2ui+2 − ui+2E−i−1u0E−iu0 + u0�E + 1�u1Eui+1 − ui+1E−iu0�E1−i + E−i�u1�

]

for k=2. Throughout this work, the shift operators Em in the evolution equations and conserved
quantities act only on the nearest field to the right and in Poisson operators act on everything to the
right of the symbol Em.

Example 3.2: The lattice case: X=1. Let �=1. The first chains of the evolution equations
from �3.3� have the forms

k = 1: ui�x�t1
= ui+1�x + 1� − ui+1�x� + ui�x��u0�x� − u0�x − i�� ,

k = 2: ui�x�t1
= u0�x�ui+1�x + 1� − u0�x − i�ui+1�x� .

These are Toda and modified Toda chains, respectively.
Example 3.3: The q-discrete case: X=x �q�e��. In this case the same evolution equations

are
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k = 1: ui�x�t1
= ui+1�qx� − ui+1�x� + ui�x��u0�x� − u0�q−ix�� ,

k = 2: ui�x�t1
= u0�x�ui+1�qx� − u0�q−ix�ui+1�x� ,

where the constant factor � is absorbed into the evolution parameter t1 through simple rescaling.
These are q-deformed analogs of the chains from the previous example.

In this work we do not consider finite-field reductions of �3.3� as the procedure immediately
follows from Refs. 12 and 15. To construct Hamiltonian structures for �3.3�, one has to define an
appropriate inner product on g.

Definition 3.4: Let Tr:g→K be a trace form, being a linear map, such that

Tr�A� ª� res�AE−1�d�x ,

where res�AE−1�ªa0 for A=
iaiEi. Then, the bilinear map �· , ·� :g�g→K defined as

�A,B� ª Tr�AB� �3.7�

is an inner product on g.
Proposition 3.5: The inner product �3.7� is nondegenerate, symmetric, and ad-invariant, i.e.,

��A,B�,C� = �A,�B,C��, A,B,C � g .

Proof: The nondegeneracy of �3.7� is obvious. The symmetricity follows from �2.8�. The
ad-invariance is a consequence of the associativity of multiplication operation in g. �

Next, the differentials dH�L� of functionals H�L��F�g� for �3.4� and �3.5� have the forms

k = 1: dH = 

i�0

Ei�H

�ui
,

k = 2: dH = 

i�0

Ei−1�H

�ui
,

which follow from the assumption that the inner product on g is compatible with �2.13�, i.e.,

�dH,Lt� =� 

i=0

	
�H

�ui
�ui�td�x .

Then, the bi-Hamiltonian structure of the Lax hierarchies �3.3� is defined by the compatible �for
fixed k� Poisson tensors given by

k = 1,2: 
0:dH � �L,�dH��k−1� + ��dH,L���2−k

and

k = 1: 
1:dH �
1

2
��L,�LdH + dHL��0� + L��dH,L���1 + ��dH,L���1L�

+ ���E + 1��E − 1�−1 res��dH,L�E−1�,L� ,

k = 2: 
1:dH �
1

2
��L,�LdH + dHL��1� + L��dH,L���0 + ��dH,L���0L� ,

where the operation �E−1�−1 is the formal inverse of �E−1� and one can show that �E+1��E
−1�−1=
i=1

	 �E−i−Ei�. The appropriate Hamiltonians �conserved quantities� are
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Hn�L� =
1

n + 1
Tr�Ln+1�, dHn�L� = Ln,

and the explicit bi-Hamiltonian structure of �3.3� is given by

�ui�tn
= 


j�0

0

ij �Hn

�uj
= 


j�0

1

ij �Hn−1

�uj
, i � 0.

The Poisson tensors for k=1 are


0
ij =

1

�
�Ejui+j − ui+jE

−i� ,


1
ij =

1

�
�


k=0

i

�ukE
j−kui+j−k − ui+j−kE

k−iuk + ui�Ej−k − E−k�uj�

+ ui�1 − Ej−i�uj + Ej+1ui+j+1 − ui+j+1E−i−1� ,

together with the hierarchy of Hamiltonians in the forms

H0 =� u0d�x ,

H1 =� �u1 +
1

2
u0

2�d�x ,

H2 =� �u2 + u0�E + 1�u1 +
1

3
u0

3�d�x ,

] .

For k=2 the first Poisson tensor has the following form:


0
10 =

1

�
�1 − E−1�u0, 
0

01 =
1

�
u0�E − 1� ,


0
ij =

1

�
�Ej−1ui+j−1 − ui+j−1E1−i�, i, j � 2,

with all remaining 
0
ij equal to zero, the second one is


1
ij =

1

�
�


k=0

i−1

�ukE
j−kui+j−k − ui+j−kE

k−iuk� +
1

2
ui�E1−i − 1��Ej−1 + 1�uj� ,

and the first Hamiltonians are

H0 =� u1d�x ,

H1 =� �1

2
u1

2 + u0Eu2�d�x ,
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H2 =� �1

3
u1

3 + u0Eu0E2u3 + u0u1Eu2 + u0Eu1Eu2�d�x ,

] .

IV. THE CONTINUOUS LIMIT

The aim of this section is to consider the limit of discrete systems �2.11� as � tends to 0. The
class of discrete systems is determined by the choice of the algebra C. Assume that the dynamical
fields from C depend on � in such a way that the expansion, with respect to � near zero, is of the
form

ui�x� = ui
�0��x� + ui

�1��x�� + O��2� ,

i.e., ui tends to ui
�0� as �→0. In further considerations we use ui instead of ui

�0�. In the continuous
limit C turns out to be the algebra of polynomial functions in ui�x�, denoted by C0,

C0 � f�u� ª 

m�0



i1,. . .,im�0

ai1i2. . .imui1
�x�ui2

�x� ¯ uim
�x� .

In general, the limit of discrete systems �2.11� does not have to exist. For the limit procedure, one
should first expand the coefficients of K�u� into a Taylor series with respect to � near 0, i.e.,

Emu = em�X�xu = u + m�Xux +
m2

2
�2�XXxux + X2u2x� + O��3� .

Thus, the continuous limit of �2.11� exists only if zero order terms in � will mutually cancel in the
above expansion. In this case, as �→0, the discrete systems �2.11� tend to the systems of hydro-
dynamic type given in the following form:

ut = XA�u�ux, �4.1�

where A�u� is the matrix with coefficients from C0, and the continuous limit is indeed the disper-
sionless limit.

Proposition 4.1: Assume that the fields ui�x� vanish as 
x
→	 in the continuous limit. Then
the functionals from Definition 2.4 are given by

� �·�d0x:C0 → K, f�u� � F�u� =� f�u�d0x = �
−	

	

f�u�x��
dx

X�x�
. �4.2�

Proof: For the continuous case �2.10� the proof is straightforward. In the case of discrete
functionals �2.9�, by the concept of Riemann integral construction, we have

� f�u�d0x � lim
�→0

� f�u�d�x = lim
�→0



n�Z

�f�u��n��x���

= lim
�→0



n�Z

f�u��n��x�������x�
�

�−1

���x� = �
−	

	

f�u�x��
dx

X�x�
.

�

Thus, bivectors 
 are matrices with coefficients of the operator form aX�xb, where a ,b
�C0. With respect to the duality map defined by the “dispersionless” functional �4.2�, the adjoint
of the operator �x is given as
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��x�† =
Xx

X
− �x. �4.3�

Consequently, the variational derivatives of functionals F=�fd0x=�−	
	 f�dx /X� are given by the

derivatives of densities f with respect to the fields ui, i.e.,

�F

�ui
=

� f

�ui
.

Example 4.2: The dispersionless limit of the system �3.6� together with its Hamiltonian structure
with respect to the first Poisson tensor is given by

�ui�t1
= X��ui+1�x + iui�u0�x� = 
0

ij �H1

�uj
, �4.4�

where


0
ij = jX�xui+j + iui+jX�x and H1 =� �u1 +

1

2
u0

2�d0x .

The Hamiltonian representation of the systems �4.1� with the functional �4.2� follows directly
from the continuous limit and leads to the nonstandard form with the adjoint operator of the
differential operator given by �4.3�. A more natural representation is the one with the components
X�x� included in the densities of functionals given in the standard form

F�u� = �
−	

	

X�x�−1f�u�x��dx � �
−	

	

��u�x��dx ,

for which the variational derivatives preserve the form �F /�ui=�� /�ui. As a consequence, bivec-
tors 
 from the previous representation must be multiplied on the right-hand side by X. Now, the
adjoint of the operator �x takes the standard form ��x�†=−�x. Therefore, in what follows we use
only the natural Hamiltonian representation of dispersionless systems �4.1�.

Example 4.3: The natural Hamiltonian structure of �4.4� is given by


0
ij = jX�xXui+j + iui+jX�xX and H1 = �

−	

	

X−1�u1 +
1

2
u0

2�dx .

In the next section we consider the R-matrix formalism of the dispersionless systems �4.1� that
can be considered as the continuous limit of the formalism presented in Sec. III.

V. R-MATRIX APPROACH TO INTEGRABLE DISPERSIONLESS SYSTEMS ON R

The theory of classical R-matrices on commutative algebras, with the multi-Hamiltonian
formalism, was given in Ref. 17. Here we follow the particular scheme of R-matrix parallel to the
one developed in Refs. 18 and 19.

Let us consider the algebra of polynomials in p with the finite highest order,

A = A�k−1 � A�k−1 = � 

i�k−1

N

ui�x�pi� � � 

i�k−1

ui�x�pi� , �5.1�

equipped with the Lie structure induced by the Poisson bracket in the form
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�f ,g� ª pX�x�� � f

�p

�g

�x
−

� f

�x

�g

�p
�, f ,g � A . �5.2�

Subsets A�k−1 and A�k−1 of A are Lie subalgebras only if k=1 and k=2. Thus, the classical
R-matrices R= P�k−1− 1

2 determine the Lax hierarchies,

Ltn
= ��Ln��k−1,L� = 
0dHn = 
1dHn−1, n � Z+, k = 1,2, �5.3�

that are generated by powers of the Lax functions L�A given in the forms

k = 1: L = p + u0 + u1p−1 + u2p−2 + ¯ = p + 

i�0

uip
−i, �5.4�

k = 2: L = u0p + u1 + u2p−1 + u3p−2 + ¯ = 

i�0

uip
1−i. �5.5�

The first dispersionless chains from �5.3� take the following form for k=1:

�ui�t1
= X��ui+1�x + iui�u0�x� ,

�ui�t2
= 2X��ui+2�x + u0�ui+1�x + �i + 1�ui+1�u0�x + iuiu0�u0�x + iui�u1�x� ,

] �5.6�

and for k=2,

�ui�t1
= X�u0�ui+1�x + iui+1�u0�x� ,

�ui�t2
= 2X�u0

2�ui+2�x + �i + 1�u0ui+2�u0�x + u0u1�ui+1�x + iui+1�u0u1�x� ,

] . �5.7�

Example 5.1: For X=1 chains (5.6) and (5.7) are dispersionless Toda and modified Toda
chains, respectively, while for X=x chains (5.6) and (5.7) are dispersionless limits of the
q-analogs of Toda and modified Toda.

The appropriate trace form is defined as

Tr�A� ª �
−	

	

X−1res�Ap−1�dx ,

where res�A�ªa−1 for A=
iaip
i, and the inner product on A is given by

�A,B� ª Tr�AB� .

Proposition 5.2: The above inner product is nondegenerate, symmetric, and ad-invariant with
respect to the Poisson bracket, i.e.,

��A,B�,C� = �A,�B,C��, A,B,C � A .

Proof: The nondegeneracy and symmetricity is obvious. The ad-invariance is a consequence
of the following equality: Tr�A ,B�=0, which is valid for arbitrary A ,B�A. �

Then, the differentials dH�L� of functionals H�L��F�A� related to the Lax functions �5.4�
and �5.5� have the forms
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k = 1: dH = X

i�0

�H

�ui
pi,

k = 2: dH = X

i�0

�H

�ui
pi−1.

The bi-Hamiltonian structure of the Lax hierarchies �3.3� is defined through the compatible �for
fixed k� Poisson tensors

k = 1,2: 
0:dH � �L,�dH��k−1� + ��dH,L���2−k,

and

k = 1: 
1:dH � �L,�dHL��0� + L��dH,L���1 + ��x
−1res�X−1p−1�dH,L��,L� ,

k = 2: 
1:dH � �L,�dHL��1� + L��dH,L���0.

Then, for Hamiltonians

Hn�L� =
1

n + 1
Tr�Ln+1�, dHn�L� = Ln,

the explicit bi-Hamiltonian structure of �3.3� is given by

�ui�tn
= 


j�0

0

ij �Hn

�uj
= 


j�0

1

ij �Hn−1

�uj
, i � 0.

So, the Poisson tensors for k=1 are given by


0
ij = X�j�xui+j + iui+j�x�X ,


1
ij = X�


k=0

i

��j − k�uk�xui+j−k + �i − k�ui+j−k�xuk� + i�j + 1�ui�xuj

+ �j + 1��xui+j+1 + �i + 1�ui+j+1�x�X ,

where the related Hamiltonians are

H0 = �
−	

	

X−1u0dx ,

H1 = �
−	

	

X−1�u1 +
1

2
u0

2�dx ,

H2 = �
−	

	

X−1�u2 + 2u0u1 +
1

3
u0

3�dx ,

] .

For k=2 we have the first Poisson tensor
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0
10 = X�xXu0, 
0

01 = u0X�xX ,


0
ij = X��j − 1��xui+j−1 + �i − 1�ui+j−1�x�X, i, j � 2,

where all remaining 
0
ij are equal to zero, and the second one is as follows:


1
ij = X�


k=0

i−1

��j − k�uk�xui+j−k + �i − k�ui+j−k�xuk� + �1 − i�ui�xuj�X .

Finally the related Hamiltonians are

H0 = �
−	

	

X−1u1dx ,

H1 = �
−	

	

X−1�1

2
u1

2 + u0u2�dx ,

H2 = �
−	

	

X−1�1

3
u1

3 + u0
2u3 + 2u0u1u2�dx ,

] .

One can observe that the chains, together with the bi-Hamiltonian structures, constructed in
this section are dispersionless limits of the discrete chains considered in Sec. III.

VI. DEFORMATION QUANTIZATION PROCEDURE

The aim of this section is to formulate the inverse procedure of the dispersionless limit
considered earlier. The quantization deformation formalism �for the references see Ref. 15� which
is the unified approach to the lattice and field soliton systems was presented in Ref. 15. Here we
follow the scheme from that article.

The Poisson bracket �5.2� can be written in the form

�f ,g� ª f�p�p ∧ X�x��x�g f ,g � A ,

where the derivations p�p and X�x��x commute. Hence, it can be quantized in infinitely many ways
via �-products being deformed multiplications

f��g = f exp��

2
��� + 1�p�p � X�x��x + �� − 1�X�x��x � p�p��g . �6.1�

This �-product for �=0 and �=1 is the generalization of the Moyal and Kuperschmidt–Manin
products, respectively. Expanding �6.1� one finds that

f��g = 

k=0

	
�k

2kk!
j=0

k

�� + 1�k−j�� − 1� j��p�p�k−j�X�x� j f� · ��X�x�k−j�p�p� jg� . �6.2�

Algebra A �5.1� with the multiplication defined by �6.1�, with a fixed �, is an associative, but
not commutative, algebra with the following Lie bracket, being a deformed Poisson bracket:

�f ,g��� =
1

�
�f��g − g��f� . �6.3�

Then, as �→0, we have
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lim
�→0

f��g = fg ,

lim
�→0

�f ,g��� = �f ,g� .

Algebra A with ��-product will be denoted as A�.
The associativity property of ��-products is a purely algebraic consequence of the construc-

tion. For the simple proof, see Ref. 15. Moreover, we could treat these products only formally not
requiring a convergence of the sum in �6.2�. In order to make the ��-products consistent with the
introduced formalism of grain structures, we assume that vector fields X�x are such that formula
�2.5� is valid, i.e., X�x is complete or it generates well defined discrete one-parameter group of
diffeomorphisms. From the simple observation

�p�p�kpm = mkpm,

one finds that

pm��u�x� = 

k=0

	
�k

2kk!
�� + 1�kmk�X�x�ku�x�pm = em��+1���/2�X�xu�x�pm = Em���+1�/2�u�x�pm,

u�x���pm = 

k=0

	
�k

2kk!
�� − 1�kmk�X�x�ku�x�pm = em��−1���/2�X�xu�x�pm = Em���−1�/2�u�x�pm,

where the last equalities follow from �2.6�.
Note that the decomposition of �5.1� into Lie subalgebras is still preserved after deformation

quantization and they are Lie subalgebras with respect to the Lie bracket �6.3�. Hence, we have
Lax hierarchies

Ltn
= ��Ln��k−1,L���, n � Z+, k = 1,2, �6.4�

which are well defined for Lax functions in the form of �5.4� and �5.5�. Notice that the Lax
hierarchies are generated by powers with respect to ��-products, i.e., Ln=L��

¯��L. The first
chains from Lax hierarchies �6.4� are

k = 1: �ui�t1
=

1

�
��E − 1�E��−1�/2ui+1 + ui�1 − E−i�Ei��1−��/2�u0� ,

k = 2: �ui�t1
=

1

�
�Ei��1−��/2�u0E��+1�/2ui+1 − E��−1�/2ui+1E−i���+1�/2�u0� .

One can observe that they coincide with the respective discrete systems for �=1.
Nevertheless, all algebras A� are gauge equivalent under the isomorphism

D��−�:A� → A��, D��−� = exp��� − ���
�

2
X�x��xp�p� ,

such that

f���g = D��−��D�−��f��D�−��g� ,
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�f ,g���� = D��−��D�−��f ,D�−��g���.

It is also straightforward to prove that under the above isomorphism, the Lax hierarchy structure
is preserved. Let L�=
iuip

i�A� and L��=
iui�pi�A��. Then, the transformation between fields
is as follows:

L�� = D��−�L� ⇒ ui� = Ei�−��/2ui.

On the other hand, �6.1� implies the following commutation rules:

u � v = uv ,

pm � pn = pm+n,

pm � u = �em�X�xu� � pm = Emu � pm,

u � pm = pm � �e−m�X�xu� = pm � E−mu ,

which are independent of the choice of ��-product. Therefore, we skip the related index. Hence,
we can quantize algebra A to the following algebra separately:24

a = �

i

ui � pi� ,

which is obviously associative under the above commutation rules. Notice that algebra a differs
from algebras g� as in a we also deform the polynomial functions, i.e., we are not using the
standard multiplication anymore. Notice that algebra a is trivially equivalent to algebra A1 as
u�1pm=upm and pm�1u=Emupm. Also, it is straightforward to see that a is isomorphic to the
algebra of shift operators g �3.1� defined on the grain structure by some discrete one-parameter
group of diffeomorphisms on R. Hence, it is clear that algebra �5.1� with Poisson bracket �5.2� is
the limit of algebra �3.1� of shift operators with the Lie structure defined by the commutator as
�→0.

VII. CONCLUSIONS

In the present article, we have introduced a general framework of integrable discrete systems
on R. This formalism is based on the construction of shift operators by means of discrete one-
parameter groups of diffeomorphisms on R, which are determined by infinitesimal generators X�x.
Particularly, if X=1 or X=x the related discrete systems are of lattice Toda or q-deformed Toda
type, respectively. All integrable discrete systems defined by different vector fields X�x��x are not
equivalent in the sense that these vector fields are not globally equivalent. Nevertheless, one can
find a local transformation relating respective vector fields.

Consider the vector fields from Example 2.3. Let X�x�=x1−n for odd n�0 and X��x��=1 �the
lattice case�. Then one finds that x�= �1 /n�xn is a bijection on R \ �0�. Hence, all discrete systems
generated by X�x=x1−n�x, with odd n, can be reduced to the original lattice Toda-type systems,
excluding the point x=0. For n=0, X�x�=x �the q-discrete case� and let X��x��=1. Then we have
x=ex�, which is not a bijection. However, if the domain of dynamical fields of q-discrete systems
is restricted to x�R+, then the above map is a bijection and q-discrete systems on R+ became
equivalent to the lattice systems on R.
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