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We study a differential-difference equation of the form tx�n+1�= f�t�n� , t�n+1� ,
tx�n�� with unknown t= t�n ,x� depending on x and n. The equation is called a
Darboux integrable if there exist functions F �called an x-integral� and I �called an
n-integral�, both of a finite number of variables x , t�n� , t�n�1� , t�n�2� , . . . ,
tx�n� , txx�n� , . . ., such that DxF=0 and DI= I, where Dx is the operator of total
differentiation with respect to x and D is the shift operator: Dp�n�= p�n+1�. The
Darboux integrability property is reformulated in terms of characteristic Lie alge-
bras that give an effective tool for classification of integrable equations. The com-
plete list of equations of the form above admitting nontrivial x-integrals is given in
the case when the function f is of the special form f�x ,y ,z�=z+d�x ,y�. © 2008
American Institute of Physics. �DOI: 10.1063/1.2992950�

I. INTRODUCTION

In this paper we study integrable semidiscrete chains of the following form:

tx�n + 1� = f�t�n�,t�n + 1�,tx�n�� , �1�

where the unknown t= t�n ,x� is a function of two independent variables: discrete n and continuous
x. Chain �1� can also be interpreted as an infinite system of ordinary differential equations for the
sequence of the variables �t�n��n=−�

� . Here f = f�t , t1 , tx� is assumed to be a locally analytical func-
tion of three variables satisfying at least locally the condition

� f

�tx
� 0. �2�

For the sake of convenience we introduce subindex denoting shifts tk= t�n+k ,x� �keep t0= t� and
derivatives tx= �� /�x�t�n ,x�, txx= ��2 /�x2�t�n ,x�, and so on. We denote through D and Dx the shift
operator and, correspondingly, the operator of total derivative with respect to x. For instance,
Dh�n ,x�=h�n+1,x� and Dxh�n ,x�= �� /�x�h�n ,x�. Set of all the variables �tk�k=−�

� ; �Dx
mt�m=1

� con-
stitutes the set of dynamical variables. Below we consider the dynamical variables as independent
ones. Since in the literature the term “integrable” has various meanings let us specify the meaning
used in the article. Introduce first notions of n- and x-integrals.1

Functions I and F, both depending on x and a finite number of dynamical variables, are called,
respectively, n- and x-integrals of �1� if DI= I and DxF=0.

Definition: Chain �1� is called integrable �Darboux integrable� if it admits a nontrivial
n-integral and a nontrivial x-integral.

Darboux integrability implies the so-called C-integrability. Knowing both integrals F and I a
Cole–Hopf-type differential substitution w=F+ I reduces Eq. �1� to the discrete version of the
D’Alembert wave equation, w1x−wx=0. Indeed, �D−1�Dx�w�= �D−1�DxF+Dx�D−1�I=0.
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It is remarkable that an integrable chain is reduced to a pair consisting of an ordinary differ-
ential equation and an ordinary difference equation. To illustrate it, note first that any n-integral
might depend only on x- and x-derivatives of the variable t, I= I�x , t , tx , txx , . . .�, and similarly any
x-integral depends only on x and the shifts, F=F�x , t , t�1 , t�2 , . . .�. Therefore each solution of
integrable chain �1� satisfies two equations:

I�x,t,tx,txx, . . .� = p�x�, F�x,t,t�1,t�2, . . .� = q�n� ,

with properly chosen functions p�x� and q�n�.
Nowadays the discrete phenomena are studied intensively due to their various applications in

physics. For the discussions and references we refer to the articles in Refs. 1–5.
Chain �1� is very close to a well studied object—the partial differential equation of the

hyperbolic type

uxy = f�x,y,u,ux,uy� . �3�

The definition of integrability for Eq. �3� was introduced by Darboux. The famous Liouville
equation uxy =eu provides an illustrative example of the Darboux integrable equation. An effective
criterion of integrability of �3� was discovered by Darboux himself: Eq. �3� is integrable if and
only if the Laplace sequence of the linearized equation terminates at both ends �see Refs. 6–8�.
This criterion of integrability was used in Ref. 8 where the complete list of all Darboux integrable
equations of form �3� is given.

An alternative approach to the classification problem based on the notion of the characteristic
Lie algebra of hyperbolic-type systems was introduced years ago in Refs. 9 and 10. In these
articles an algebraic criterion of Darboux integrability property has been formulated. An important
classification result was obtained in Ref. 9 for the exponential system

uxy
i = exp�ai1u1 + ai2u2 + ¯ + ainun�, i = 1,2, . . . ,n . �4�

It was proved that system �4� is a Darboux integrable if and only if the matrix A= �aij� is the
Cartan matrix of a semisimple Lie algebra. Properties of the characteristic Lie algebras of the
hyperbolic systems

uxy
i = cjk

i ujuk, i, j,k = 1,2, . . . ,n , �5�

have been studied in Refs. 11 and 12. Hyperbolic systems of general form admitting integrals are
studied in Ref. 13. A promising idea of adopting the characteristic Lie algebras to the problem of
classification of the hyperbolic systems which are integrated by means of the inverse scattering
transforms method is discussed in Ref. 14.

The method of characteristic Lie algebras is closely connected with the symmetry approach15

which is proved to be a very effective tool to classify integrable nonlinear equations of evolution-
ary type16–20 �see also the survey in Ref. 3 and references therein�. However, the symmetry
approach meets very serious difficulties when applied to hyperbolic-type models. After the papers
in Refs. 21 and 22 it became clear that this case needs alternative methods.

In this article an algorithm of classification of integrable discrete chains of form �1� is sug-
gested based on the notion of the characteristic Lie algebra �see also Refs. 23–25�.

To introduce the characteristic Lie algebra Ln of �1� in the direction of n, note that

D−j �

�t1
DjI = 0 �6�

for any n-integral I and j�1. Indeed, the equation DI= I can be rewritten in an enlarged form as

I�x,n + 1,t1, f , fx, fxx, . . .� = I�x,n,t,tx,txx, . . .� . �7�

The left hand side DI of equality �7� contains the variable t1, while the right hand side does not.
Hence, �� /�t1��DI�=0, which implies
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D−1 �

�t1
DI = 0.

Proceeding this way one can easily prove �6� from the equality DjI= I, j�1.
Define vector fields

Y j = D−j �

�t1
Dj, j � 1, �8�

and

Xj =
�

�t−j
, j � 1. �9�

We have Y jI=0 and XjI=0 for any n-integral I of �1� and j�1. The following theorem �see Ref.
24� defines the characteristic Lie algebra Ln of �1�.

Theorem 1: Equation (1) admits a nontrivial n -integral if and only if the following two
conditions hold:

�1� Linear space spanned by the operators �Y j�1
� is of finite dimension. We denote this dimension

by N .
�2� Lie algebra Ln generated by the operators Y1 ,Y2 , . . . ,YN ,X1 ,X2 , . . . ,XN is of finite dimen-

sion. We call Ln the characteristic Lie algebra of (1) in the direction of n .

To introduce the characteristic Lie algebra Lx of �1� in the direction of x, note that Eq. �1� due
to �2� can be rewritten as tx�n−1�=g�t�n� , t�n−1� , tx�n��. An x-integral F�x , t , t�1 , t�2 , . . .� solves
the equation DxF=0, i.e., K0F=0, where

K0 =
�

�x
+ tx

�

�t
+ f

�

�t1
+ g

�

�t−1
+ f1

�

�t2
+ g−1

�

�t−2
+ ¯ . �10�

Since F does not depend on the variable tx one gets XF=0, where

X =
�

�tx
. �11�

Therefore, any vector field from the Lie algebra generated by K0 and X annulates F. This algebra
is called the characteristic Lie algebra Lx of chain �1� in the x-direction.

The following result is essential. Its proof is a simple consequence of the famous Jacobi
theorem �the Jacobi theorem is discussed, for instance, in Ref. 10�.

Theorem 2: Equation (1) admits a nontrivial x -integral if and only if its Lie algebra Lx is of
finite dimension.

In the present paper we restrict ourselves to consideration of the existence of x-integrals for a
particular kind of chain �1�, namely, we study chains of the form

t1x = tx + d�t,t1� �12�

admitting nontrivial x-integrals. The main result of the paper, Theorem 3 below, is the complete
list of chains �12� admitting nontrivial x-integrals.

Theorem 3: Chain (12) admits a nontrivial x -integral if and only if d�t , t1� is one of the
following kinds:

�1� d�t , t1�=A�t− t1� ,
�2� d�t , t1�=c0t�t− t1�+c2�t− t1�2+c3t−c3t1 ,
�3� d�t , t1�=A�t− t1�e�t ,
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�4� d�t , t1�=c4�e�t1 −e�t�+c5�e−�t1 −e−�t� ,
where A=A�t− t1� is a function of �= t− t1 and c0 -c5 are some constants with c0�0, c4�0,
and c5�0, and � is a nonzero constant. Moreover, x-integrals in each of the cases are

�i� F=x+��du /A�u� if A�u��0 and F= t1− t if A�u��0 ,
�ii� F= �1 / �−c2−c0��ln	�−c2−c0��1 /�2+c2	+1 /c2ln	c2�1 /�−c2−c0	 for c2�c2+c0��0 , F=ln �1

−ln �2+�1 /� for c2=0 , and F=�1 /�2−ln �+ln �1 for c2=−c0 ,
�iii� F=��e−�udu /A�u�−��1du /A�u� , and
�iv� F= ��e�t−e�t2��e�t1 −e�t3�� / ��e�t−e�t3��e�t1 −e�t2�� .

The n-integrals of chain �12� can be studied in a similar way by using Theorem 1, but this
problem is out of the frame of the present article.

The article is organized as follows. In Sec. II, by using the properly chosen sequence of
multiple commutators, a very rough classification result is obtained: function d�t , t1� for chain �12�
admitting x-integrals is a quasipolynomial on t with coefficients depending on �= t− t1. Then it is
observed that the exponents �0=0 ,�1 , . . . ,�s in expansion �26� cannot be arbitrary. For example,
if the coefficient before e�0t=1 is not identically zero, then the quasipolynomial d�t , t1� is really a
polynomial on t with coefficients depending on �. In Sec. III we prove that the degree of this
polynomial is at most 1. If d contains a term of the form ����tje�kt with �k�0, then j=0 �Sec. IV�.
In Sec. V it is proved that if d contains terms with e�kt and e�jt having nonzero exponents, then
�k=−� j. This last case contains chains having infinite dimensional characteristic Lie algebras for
which the sequence of multiple commutators grows very slowly. They are studied in Secs. VI and
VII. One can find the well known semidiscrete version of the sine-Gordon �SG� model among
them. It is worth mentioning that in Sec. VII the characteristic Lie algebra Lx for semidiscrete SG
is completely described. The last section, Sec. VIII, contains the proof of the main theorem,
Theorem 3, and here the method of constructing x-integrals is also briefly discussed.

II. A NECESSARY INTEGRABILITY CONDITION

Define a class F of locally analytical functions each of which depends only on a finite number
of dynamical variables. In particular, we assume that f�t , t1 , tx��F. We will consider vector fields
given as an infinite formal series of the form

Y = 

−�

�

yk
�

�tk
, �13�

with coefficients yk�F. Introduce notions of linearly dependent and independent sets of vector
fields �13�. Denote through PN the projection operator acting according to the rule

PN�Y� = 

k=−N

N

yk
�

�tk
. �14�

First we consider finite vector fields as

Z = 

k=−N

N

zk
�

�tk
. �15�

We say that a set of finite vector fields Z1 ,Z2 , . . . ,Zm is linearly dependent in some open region U
if there is a set of functions �1 ,�2 , . . . ,�m defined on U such that the function 	�1	2+ 	�2	2+ ¯

+ 	�m	2 does not vanish identically and the condition

�1Z1 + �2Z2 + ¯ + �mZm = 0 �16�

holds for each point of region U.
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We call a set of the vector fields Y1 ,Y2 , . . . ,Ym of form �13� linearly dependent in region U if
for each natural N the set of finite vector fields PN�Y1� , PN�Y2� , . . . , PN�Ym� is linearly dependent
in this region. Otherwise we call the set Y1 ,Y2 , . . . ,Ym linearly independent in U.

The following proposition is very useful. Its proof is almost evident.
Proposition: If a vector field Y is expressed as a linear combination,

Y = �1Y1 + �2Y2 + ¯ + �mYm, �17�

where the set of vector fields Y1 ,Y2 , . . . ,Ym is linearly independent in U and the coefficients of all
the vector fields Y ,Y1 ,Y2 , . . . ,Ym belonging to F are defined in U , then the coefficients
�1 ,�2 , . . . ,�m are in F .

Below we concentrate on the class of chains of form �12�. For this case the Lie algebra Lx

splits down into a direct sum of two subalgebras. Indeed, since f = tx+d and g= tx−d−1 one gets
fk= tx+d+
 j=1

k dj and g−k= tx−
 j=1
k+1d−k for k�1, where d=d�t , t1� and dj =d�tj , tj+1�. Due to this

observation the vector field K0 can be rewritten as K0= txX̃+Y, with

X̃ =
�

�t
+

�

�t1
+

�

�t−1
+

�

�t2
+

�

�t−2
+ ¯ �18�

and

Y =
�

�x
+ d

�

�t1
− d−1

�

�t−1
+ �d + d1�

�

�t2
− �d−1 + d−2�

�

�t−2
+ ¯ .

Due to the relations �X , X̃�=0 and �X ,Y�=0 we have X̃= �X ,K0��Lx; hence Y �Lx. Therefore

Lx= �X� � Lx1, where Lx1 is the Lie algebra generated by the operators X̃ and Y.
Lemma 1: If Eq. (12) admits a nontrivial x -integral, then it admits a nontrivial x -integral F

such that �F /�x=0 .
Proof: Assume that a nontrivial x-integral of �12� exists. Then the Lie algebra Lx1 is of finite

dimension. One can choose a basis of Lx1 in the form

T1 =
�

�x
+ 


k=−�

�

a1,k
�

�tk
,

Tj = 

k=−�

�

aj,k
�

�tk
, 2 � j � N .

Thus, there exists an x-integral F depending on x , t , t1 , . . . , tN−1, satisfying the system of equations

�F

�x
+ 


k=0

N−1

a1,k
�F

�tk
= 0,



k=0

N−1

aj,k
�F

�tk
= 0, 2 � j � N .

Due to the famous Jacobi theorem10 there is a change of variables 	 j =	 j�t , t1 , . . . , tN−1� that re-
duces the system to the form

�F

�x
+ 


k=0

N−1

ã1,k
�F

�	k
= 0,
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�F

�	k
= 0, 2 � j � N − 2,

which is equivalent to

�F

�x
+ ã1,N−1

�F

�	N−1
= 0

for F=F�x ,	N−1�.
There are two possibilities: �1� ã1,N−1=0 and �2� ã1,N−1�0. In case �1�, we at once have

�F /�x=0. In case �2�, F=x+H�	N−1�=x+H�t , t1 , . . . , tN−1� for some function H. Evidently, F1

=DF=x+H�t1 , t2 , . . . , tN� is also an x-integral, and F1−F is a nontrivial x-integral not depending
on x. �

Below we look for x-integrals F depending on dynamical variables t , t�1 , t�2 , . . . only �not

depending on x�. In other words, we study the Lie algebra generated by vector fields X̃ and Ỹ,
where

Ỹ = d
�

�t1
− d−1

�

�t−1
+ �d + d1�

�

�t2
− �d−1 + d−2�

�

�t−2
+ ¯ . �19�

One can prove that the linear operator Z→DZD−1 defines an automorphism of the characteristic
Lie algebra Lx. This automorphism plays the crucial role in all of our further considerations.
Further we refer to it as the shift automorphism. For instance, direct calculations show that

DX̃D−1 = X̃, DỸD−1 = − dX̃ + Ỹ . �20�

Lemma 2: Suppose that a vector field of the form Z=
a�j��� /�tj� with the coefficients a�j�
=a�j , t , t�1 , t�2 , . . .� depending on a finite number of the dynamical variables solves an equation of
the form DZD−1=�Z . If for some j= j0 we have a�j0��0 , then Z=0 .

Proof: By applying the shift automorphism to the vector field Z one gets DZD−1

=
D�a�j���� /�tj+1�. Now, to complete the proof, we compare the coefficients of � /�tj in the
equation 
D�a�j���� /�tj+1�=�
a�j��� /�tj�. �

Construct an infinite sequence of multiple commutators of the vector fields X̃ and Ỹ,

Ỹ1 = �X̃,Ỹ�, Ỹk = �X̃,Ỹk−1� for k � 2. �21�

Lemma 3: We have

DỸkD
−1 = − X̃k�d�X̃ + Ỹk, k � 1. �22�

Proof: We prove the statement by induction on k. The base of induction holds. Indeed, by �20�
and �21�, we have

DỸ1D−1 = D�X̃,Ỹ�D−1 = �DX̃D−1,DỸD−1� = �X̃,− dX̃ + Ỹ� = − X̃�d�X̃ + Ỹ1.

Assuming Eq. �22� holds for k=n−1, we have

DỸnD−1 = �DX̃D−1,DỸn−1D−1� = �X̃,− X̃n−1�d�X̃ + Ỹn−1� = − X̃n�d�X̃ + Ỹn,

which finishes the proof of the lemma. �

Since vector fields X, X̃, and Ỹ are linearly independent, then the dimension of Lie algebra Lx

is at least 3. By �22�, case Ỹ1=0 corresponds to X̃�d�=0, or dt+dt1
=0, which implies d=A�t

− t1�, where A��� is an arbitrary differentiable function of one variable.
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Assume Eq. �12� admits a nontrivial x-integral and Ỹ1�0. Consider the sequence of the vector

fields �Ỹ1 , Ỹ2 , Ỹ3 , . . .�. Since Lx is of finite dimension, then there exists a natural number N such
that

ỸN+1 = 
1Ỹ1 + 
2Ỹ2 + ¯ + 
NỸN, N � 1, �23�

and Ỹ1 , Ỹ2 , . . . , ỸN are linearly independent. Therefore,

DỸN+1D−1 = D�
1�DỸ1D−1 + D�
2�DỸ2D−1 + ¯ + D�
N�DỸND−1, N � 1.

Due to Lemma 3 and �23� the last equation can be rewritten as

− X̃N+1�d�X̃ + 
1Ỹ1 + 
2Ỹ2 + ¯ + 
NỸN = D�
1��− X̃�d�X̃ + Ỹ1� + D�
2��− X̃2�d�X̃ + Ỹ2�

+ ¯ + D�
N��− X̃N�d�X̃ + ỸN� .

Comparing coefficients before linearly independent vector fields X̃ , Ỹ1 , Ỹ2 , . . . , ỸN, we obtain the
following system of equations:

X̃N+1�d� = D�
1�X̃�d� + D�
2�X̃2�d� + ¯ + D�
N�X̃N�d� ,


1 = D�
1�, 
2 = D�
2�, . . . , 
N = D�
N� .

Since the coefficients of the vector fields Ỹ j depend only on the variables t , t�1 , t�2 , . . . the factors

 j might depend only on these variables �see the proposition above�. Hence the system of equa-
tions implies that all coefficients 
k, 1�k�N, are constants, and d=d�t , t1� is a function that
satisfies the following differential equation:

X̃N+1�d� = 
1X̃�d� + 
2X̃2�d� + ¯ + 
NX̃N�d� , �24�

where X̃�d�=dt+dt1
. Using the substitution s= t and �= t− t1, Eq. �24� can be rewritten as

�N+1d

�sN+1 = 
1
�d

�s
+ 
2

�2d

�s2 + ¯ + 
N
�Nd

�sN , �25�

which implies that

d�t,t1� = 

k
� 


j=0

mk−1

�k,j�t − t1�tj�e�kt �26�

for some functions �k,j�t− t1�, where �k are roots of multiplicity mk for a characteristic equation of
�25�.

Let �0=0 ,�1 , . . . ,�s be the distinct roots of characteristic equation �24�. Equation �24� can be
rewritten as

��X̃�d ª X̃m0�X̃ − �1�m1�X̃ − �2�m2
¯ �X̃ − �s�msd = 0 �27�

and m0+m1+ ¯ +ms=N+1, m0�1.
Initiated by formula �19� define a map h→Yh which assigns to any function h

=h�t , t�1 , t�2 , . . .� a vector field

Yh = h
�

�t1
− h−1

�

�t−1
+ �h + h1�

�

�t2
− �h−1 + h−2�

�

�t−2
+ ¯ .

For any polynomial with constant coefficients P���=c0+c1�+ ¯ +cm�m we have the formula
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P�adX̃�Ỹ = YP�X̃�h, where adXY = �X,Y� , �28�

which establishes an isomorphism between the linear space V of all solutions of Eq. �25� and the

linear space Ṽ=span�Ỹ , Ỹ1 , . . . , ỸN� of the corresponding vector fields.
Represent function �26� as the sum d�t , t1�= P�t , t1�+Q�t , t1� of the polynomial part P�t , t1�

=
 j=0
m0−1�0,j�t− t1�tj and the “exponential” part Q�t , t1�=
k=1

s �
 j=0
mk−1�k,j�t− t1�tj�e�kt.

Lemma 4: Assume that Eq. (12) admits a nontrivial x -integral. Then one of the functions
P�t , t1� and Q�t , t1� vanishes.

Proof: Assume in contrary that neither of the functions vanish. First we show that in this case
algebra Lx contains vector fields T0=YA���e�kt and T1=YB��� for some functions A��� and B���.
Indeed, take T0ª�0�adX̃�Ỹ =Y�0�X̃�d�Lx, where �0���=���� / ��−�k�. Evidently the function

Ã�t , t1�=�0�X̃�d solves the equation �X̃−�k�Ã�t , t1�=��X̃�d=0 which implies immediately that

Ã�t , t1�=A���e�kt. In a similar way one shows that T1�Lx. Note that due to our assumption the
functions A��� and B��� cannot vanish identically.

Consider an infinite sequence of the vector fields defined as follows:

T2 = �T0,T1�, T3 = �T0,T2�, . . . , Tn = �T0,Tn−1�, n � 3.

One can show that

�X̃,T0� = �kT0, �X̃,T1� = 0, �X̃,Tn� = �k�n − 1�Tn, n � 2,

DT0D−1 = − Ae�ktX̃ + T0, DT1D−1 = − BX̃ + T1,

DTnD−1 = Tn −
�n − 1��n − 2�

2
�kAe�ktTn−1 + bnX̃ + 


k=0

n−2

ak
�n�Tk, n � 2.

Since algebra Lx is of finite dimension, then there exists number N such that

TN+1 = �X̃ + �0T0 + �1T1 + ¯ + �NTN, �29�

and vector fields X̃ ,T0 ,T1 , . . . ,TN are linearly independent. We have

DTN+1D−1 = D���X̃ + D��0��− Ae�ktX̃ + T0�

+ ¯ + D��N�
TN −
�N − 1��N − 2�

2
�kAe�ktTN−1 + ¯� .

By comparing the coefficients before TN in the last equation one gets

�N −
N�N − 1�

2
�kA���e�kt = D��N� .

It follows that �N is a function of variable t only. Also, by applying adX̃ to both sides of Eq. �29�,
one gets

N�kTN+1 = �X̃,TN+1� = X̃���X̃ + �X̃��0� + �0�k�T0 + ¯ + �X̃��N� + �N�N − 1��k�TN.

Again, by comparing coefficients before TN, we have

N�k�N = X̃��N� + �N − 1��k�N, i . e . , X̃��N� = �k�N.

Therefore, �N=A1e�kt, where A1 is some nonzero constant, and thus A���e�kt=A2e�kt−A2e�kt1.

Here A2 is some constant. We have T0=A2e�ktX̃−A2S0, where
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S0 = 

j=−�

�

e�ktj
�

�tj
.

Also,

�X̃,S0� = �kS0, DS0D−1 = S0.

Consider a new sequence of vector fields,

P1 = S0, P2 = �T1,S0�, P3 = �T1,P2�, Pn = �T1,Pn−1�, n � 3.

One can show that

�X̃,Pn� = �kPn, DPnD−1 = Pn − �k�n − 1�BPn−1 + bnX̃ + anS0 + 

j=2

n−2

aj
�n�Pj, n � 2.

Since algebra Lx is of finite dimension, then there exists number M such that

PM+1 = ��X̃ + �2
�P2 + ¯ + �M

� PM , �30�

and fields X̃ , P2 , . . . , PM are linearly independent. Thus,

DPM+1D−1 = D����X̃ + D��2
���P2 + ¯� + ¯ + D��M

� ��PM − �k�M − 1�BPM−1 + ¯� .

We compare the coefficients before PM in the last equation and get

�M
� − M�kB��� = D��M

� � , �31�

which implies that �M
� is a function of variable t only. Also, by applying adX̃ to both sides of �30�,

one gets

�kPM+1 = �X̃,PM+1� = X̃����X̃ + �X̃��2
�� + �k�2

��P2 + ¯ + �X̃��M
� � + �k�M

� �PM .

Again, we compare the coefficients before PM and have �k�M
� �t�= X̃��M

� �t��+�k�M
� �t�, which

implies that �M
� is a constant. It follows then from �31� that B���=0. This contradiction shows that

our assumption that both functions are not identically zero was wrong. �

III. MULTIPLE ZERO ROOT

In this section we assume that Eq. �12� admits a nontrivial x-integral and that �0=0 is a root
of the characteristic polynomial ����. Then, due to Lemma 4, zero is the only root and therefore
����=�m+1. It follows from formula �26� with m0=m+1 that

d�t,t1� = a���tm + b���tm−1 + ¯ , m = m0 − 1 � 0.

The case m=0 corresponds to a very simple equation, t1x= tx+A�t− t1�, which is easily solved in
quadratures, so we concentrate on the case m�1. For this case the characteristic algebra Lx

contains a vector field T=Y �̃ with

�̃ = a���t +
1

m
b��� .

Indeed,

T =
1

m!
ad

X̃

m−1
Ỹ = Y �̃. �32�

Introduce a sequence of multiple commutators defined as follows:
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T0 = X̃, T1 = �T,T0� = Y−a���, Tk+1 = �T,Tk�, k � 0, Tk,0 = �T0,Tk� .

Note that T1,0=0. We will see below that the linear space spanned by this sequence is not invariant
under the action of the shift automorphism Z→DZD−1 introduced above. We extend the sequence
to provide the invariance property. We define T� with the multi-index �. For any sequence �
=k ,0 , i1 , i2 , . . . , in−1 , in, where k is any natural number, ij � �0;1�, denote

T� = 
�T0,Tk,0,i1,. . .,in−1
� if in = 0

�T,Tk,0,i1,. . .,in−1
� if in = 1,

�
m��� = �k if � = k

k if � = k,0

k + i1 + . . . + in if � = k,0,i1, . . . ,in,
�

l��� = k + n + 1 − m��� .

The multi-index � is characterized by two quantities, m��� and l���, which allow to order partially
the sequence �T��. We have

DT0D−1 = T0, DTD−1 = T − �̃T0, DT1D−1 = T1 + aT0.

One can prove by induction on k that

DTkD
−1 = Tk + aTk−1 − �̃ 


m�
�=k−1
T
 + 


m�
��k−2
��k,
�T
. �33�

In general, for any �,

DT�D−1 = T� + 

m�
��m���−1

���,
�T
. �34�

We can choose a system P of linearly independent vector fields in the following way:

�1� T and T0 are linearly independent. We take them into P.
�2� We check whether T, T0, and T1 are linearly independent or not. If they are dependent, then

P= �T ,T0� and T1=�T+�T0 for some functions � and �.
�3� If T, T0, and T1 are linearly independent, then we check whether T, T0, and T1, T2 are linearly

independent or not. If they are dependent, then P= �T ,T0 ,T1�.
�4� If T, T0, T1, and T2 are linearly independent, we add vector fields T
, m�
�=2, 
� I2

�actually, by definition I2 is the collection of such 
�, in such a way that J2
ª �T ,T0 ,T1 ,T2 ,�
�I2

T
� is a system of linearly independent vector fields and for any T


with m�
��2 we have T
=
T
�J2
��
 ,
�T
.

�5� We check whether T3�J2 is a linearly independent system. If it is not, then P consists of all
elements from J2, and T3=
T
�J2

��
 ,
�T
. If it is, then to the system T3�J2 we add vector
fields T
, m�
�=3, 
� I3, in such a way that J3ª �T3 ,J2 ,�
�I3

T
� is a system of linearly
independent vector fields and for any T
 with m�
��3 we have T
=
T
�J3

��
 ,
�T
.

We continue the construction of system P. Since Lx is of finite dimension, then there exists
such a natural number N such that we have the following:

�i� Tk� P, k�N.
�ii� m�
��N for any T
� P.
�iii� For any T
 with m�
��N we have T
=
T
�P,m�
��m�
���
 ,
�T
 and also

TN+1=��N+1,N�TN+
T
�P,m�
��N��N+1,
�T
.
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We then have the following:
�iv� For any vector field T� with m���=N that does not belong to P, the coefficient ��� ,N�

before TN in the expansion

T� = ���,N�TN + 

T
�P

���,
�T
 �35�

is constant. Indeed, by �34�,

DT�D−1 = T� + 

m�
��N−1

���,
�T
 = ���,N�TN + 

T
�P

���,
�T
 + 

m�
��N−1

���,
�T
.

From �35� we also have

DT�D−1 = D����,N��DTND−1 + 

T
�P

D����,
��DT
D−1 = D����,N���TN + ¯�

+ 

T
�P

D����,
���T
 + ¯� .

By comparing the coefficients before TN in these two expressions for DT�D−1, we have

���,N� = D����,N�� ,

which implies that ��� ,N� is a constant indeed.

Lemma 5: We have a���=c0�+c1, where c0 and c1 are some constants.
Proof: Since

TN+1 = ��N + 1,N�TN + 

T
�P

��N + 1,
�T
,

then

DTN+1D−1 = D���N + 1,N���TN + ¯� + 

T
�P

D���N + 1,
���T
 + ¯� .

On the other hand,

DTN+1D−1 = TN+1 + aTN − �̃ 

m�
�=N

T
 + 

m�
��N−1

��N + 1,
�T
.

We compare the coefficients before TN in the last two expressions. For N�0 the equation is

��N + 1,N� + a − �̃ 

T
�P,m�
�=N

��
,N� = D���N + 1,N�� . �36�

Denote by c=−
T
�P,m�
�=N��
 ,N� and by �N=��N+1,N�. By property �iv�, c is a constant. It
follows from �36� that �N is a function of variables t and n only. Therefore,

a��� + c�a���t +
1

m
b���� = �N�t1,n + 1� − �N�t,n� .

By differentiating both sides of the equation with respect to t and then t1, we have

− a���� − c�a����t + a���� +
1

m
b����� = 0,

which implies that a����=0, or the same, a���=c0�+c1 for some constants c0 and c1. �

Vector fields T1 and T in new variables are rewritten as
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T1 = 

j=−�

�

a�� j�
�

�� j
, �37�

T = − 

j=−�

� 
a�� j�tj +
1

m
b�� j�� �

�� j
= − 


j=−�

� 
a�� j��t + � j� +
1

m
b�� j�� �

�� j

= − tT1 − 

j=−�

� 
a�� j�� j +
1

m
b�� j�� �

�� j
, �38�

where

� j = �− � − �1 − ¯ − � j−1 if j � 1

0 if j = 0

�−1 + �−2 + ¯ + � j if j � − 1.
�

The following two lemmas are to be useful.
Lemma 6: If the Lie algebra generated by the vector fields S0=
 j=−�

� � /�wj and P
=
 j=−�

� c�wj��� /�wj� is of finite dimension, then c�w� is one of the following forms:

�1� c�w�=c2+c3e�w+c4e−�w, ��0 , and
�2� c�w�=c2+c3w+c4w2, where c2−c4 are some constants.

Proof: Introduce vector fields

S1 = �S0,P�, S2 = �S0,S1�, . . . , Sn = �S0,Sn−1�, n � 3.

Clearly, we have

Sn = 

j=−�

�

c�n��wj�
�

�wj
, n � 1. �39�

Since all vector fields Sn are elements of Lx and Lx is of finite dimension, then there exists a natural
number N such that

SN+1 = �NSN + �N−1SN−1 + ¯ + �1S1 + �0P + �S0, �40�

and S0 , P ,S1 , . . . ,SN are linearly independent. �Note that we may assume that S0 and P are linearly
independent�. Since DS0D−1=S0, DPD−1= P, and DSnD−1=Sn for any n�1, then it follows from
�40� that

SN+1 = D��N�SN + D��N−1�SN−1 + ¯ + D��1�S1 + D��0�P + D���S0

and together with �40�, it implies that � ,�0 ,�1 , . . . ,�N are all constants.
By comparing the coefficients before � /�w in �40� one gets, with the help of �39�, the follow-

ing equality:

c�N+1��w� = �Nc�N��w� + ¯ + �1c��w� + �0c�w� + � .

Thus, c�w� is a solution of the nonhomogeneous linear differential equation with constant coeffi-
cient whose characteristic polynomial is

���� = �N+1 − �N�N − ¯ − �1� − �0.

Denote by 
1 ,
2 , . . . ,
t the characteristic roots and by m1 ,m2 , . . . ,mt their multiplicities. Follow-
ing are the possibilities:
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�i� There exists a nonzero characteristic root, say, 
1, and its multiplicity m1�2.
�ii� There exists zero characteristic root, say, 
1, and m1�3, �=0 or m1�2, ��0.
�iii� There are two distinct characteristic roots, say, 
1 and 
2 with 
1�0 and 
2=0.
�iv� There are two nonzero distinct characteristic roots, say, 
1 and 
2.

In case �i�, consider

�1��� =
����

� − 
1
and �1

�2���� =
����

�� − 
1�2 .

Then �1�S0�c�w�=�1e
1w+�2 and �1
�2��S0�c�w�= ��3w+�4�e
1w+�5, where � j, 1� j�5, are some

constants with �1�0 and �3�0. We have

�1�adS0
�P = 


j=−�

�

��1e
1wj + �2�
�

�wj
= �1� 


j=−�

�

e
1wj
�

�wj
� + �2S0 = �1P1 + �2S0,

�1
�2��adS0

�P = 

j=−�

�

���3wj + �4�e
1wj + �5�
�

�wj
= �3� 


j=−�

�

wje

1wj

�

�wj
� + �4P1 + �5S0

= �3P2 + �4P1 + �5S0

are elements from Lx and therefore vector fields P1=
 j=−�
� e
1wj�� /�wj� and P2

=
 j=−�
� wje


1wj�� /�wj� belong to Lx. Since P1 and P2 generate an infinite dimensional Lie algebra
Lx, then case �i� fails to be true.

In case �ii�, consider

�1
�3���� =

����
�3 and �1

�2���� =
����

�2 if � = 0

or

�1
�3���� =

����
�2 and �1

�2���� =
����

�
if � � 0.

We have

�1
�3��S0�c�w� = �1w3 + �2w2 + �3w + �4 and �1

�2��S0�c�w� = �5w2 + �6w + �7,

where � j, 1� j�7, are some constants with �1�0 and �5�0. Straightforward calculations show
that vector fields

�1
�3��adS0

�P = 

j=−�

�

��1wj
3 + �2wj

2 + �3wj + �4�
�

�wj
and �1

�2��adS0
�P

= 

j=−�

�

��5wj
2 + �6wj + �7�

�

�wj

generate an infinite dimensional Lie algebra. It proves that case �ii� fails to be true.
In case �iii�, consider

�1��� =
����

� − 
1
and �2��� =

����
�

.

We have
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�1c�w� = �1e
1w + �2 and �2c�w� = �3w + �4 if � = 0

or

�1�S0�c�w� = �1e
1w + �2 and �2�S0�c�w� = �5w2 + �6w + �7 if � � 0,

where � j, 1� j�7, are constants with �1�0, �3�0, and �5�0. Since vector fields �1�adS0
�P

and �2�adS0
�P generate an infinite dimensional Lie algebra, then case �iii� also fails to exist.

In case �iv�, consider

�1��� =
����

� − 
1
and �2��� =

����
� − 
2

.

We have �1�S0�c�w�=�1e
1w+�2 and �2�S0�c�w�=�3e
2w+�4, where �1�0, �2, �3�0, and �4

are some constants. Note that

�1�adS0
�P = �1� 


j=−�

�

e
1wj
�

�wj
� + �2S0 and �2�adS0

�P = �3� 

j=−�

�

e
2wj
�

�wj
� + �4S0,

and vector fields 
 j=−�
� e
1wj�� /�wj� and 
 j=−�

� e
2wj�� /�wj� generate an infinite dimensional Lie
algebra if 
1+
2�0.

It follows from �i�–�iv� that c�w� is one of the following forms:

�1� c�w�=c2+c3e�w+c4e−�w, ��0.
�2� c�w�=c2+c3w+c4w2, where c2−c4 are some constants.

�

Lemma 7: If the Lie algebra generated by the vector fields S0=
 j=−�
� � /�wj,

Q=
 j=−�
� q�wj��� /�wj� , and S1=
 j=−�

� ��̃ j + b̃�wj���� /�wj� is of finite dimension, then q�w� is a
constant function.

Proof: It follows from Lemma 6 that

�1� q�w�=c2+c3w+c4w2 or
�2� q�w�=c2+c3e�w+c4e−�w, ��0,

where c2−c4 are some constants.

Consider case �1�. We have

�S0,Q� = c3 

j=−�

�
�

�wj
+ 2c4 


j=−�

�

wj
�

�wj
= c3S0 + 2c4 


j=−�

�

wj
�

�wj
.

If c4�0, then 
 j=−�
� wj�� /�wj��Lx and 
 j=−�

� wj
2�� /�wj��Lx.

If c4=0 and c3�0, then 
 j=−�
� wj�� /�wj�= �1 /c3��Q−c2S0��Lx.

If c3=c4=0, then q�w�=c2 and there is nothing to prove.
Assume c4

2+c3
2�0. Denote by P=
 j=−�

� wj�� /�wj�. Construct the vector fields

P1 = �P,S1�, Pn = �P,Pn−1�, n � 2.

We have

DS0D−1 = S0,

DS1D−1 = S1 − �ew − c̃�S0,

DPD−1 = P ,
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DP1D−1 = P1 + �− wew + ew − c̃�S0,

DP2D−1 = P2 + �− w2ew + wew − ew + c̃�S0.

In general,

DPnD−1 = Pn + �− wnew + Rn−1�w�ew + cn�S0, n � 3,

where Rn−1 is a polynomial of degree n−1 and cn is a constant. Since Lx is of finite dimension,
then there exists a natural number N such that

PN+1 = �NPN + ¯ + �1P1 + �0S0,

and S0 , P1 , . . . , PN are linearly independent. Thus

DPN+1D−1 = D��N�DPND−1 + ¯ + D��1�DP1D−1 + D��0�S0,

or the same,

�NPN + ¯ + �1P1 + �0S0 + �− wN+1ew + RN�w�ew + cN+1�S0

= D��N��PN + �− wNew + RN−1�w�ew + cN�S0� + ¯ + D��1��P1 + �− wew + ew − c̃�S0�

+ D��0�S0.

By comparing the coefficients before PN , . . . , P1 we have

�N = D��N�, . . . ,�1 = D��1� ,

which implies that �N , . . . ,�1 are all constants. By comparing the coefficients before S0 we have

�0 − wN+1ew + RN�w�ew + cN+1 = �N�− wNew + RN−1�w�ew + cN� + ¯ + �1�− wew + ew − c̃�

+ D��0� .

The last equality shows that D��0�−�0 is a function of w only. Thus D��0�−�0 is a constant; we
denote it by d0. The last equality becomes a contradictory one:

wN+1ew = RN�w�ew + cN+1 − �N�− wNew + RN−1�w�ew + cN� − ¯ − �1�− wew + ew − c̃� − d0.

This contradiction proves that c3
2+c4

2=0, i.e., c3=c4=0 in case �1�. Therefore, q�w�=c2.
Consider case �2�. Since

�S0,Q� = �c3 

j=−�

�

e�wj
�

�wj
− �c4 


j=−�

�

e−�wj
�

�wj
,

�S0,�S0,Q�� = �2c3 

j=−�

�

e�wj
�

�wj
+ �2c4 


j=−�

�

e−�wj
�

�wj
,

then vector fields Q�=c3
 j=−�
� e�wj�� /�wj� and Q−�=c4
 j=−�

� e−�wj�� /�wj� both belong to Lx. We
have DQ�D−1=Q� and DQ−�D−1=Q−�.

Assume c3�0. Construct vector fields

Q1 = �Q�,S1�, Qn = �Q�,Qn−1�, n � 2.

Direct calculations show that

DQ1D−1 = Q1 − c3e�1+��wS0 + �ew − c̃��Q�,
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DQ2D−1 = Q2 − c3
2�1 + ��e�1+2��wS0 + 2�c3e�1+��wQ�.

It can be proved by induction on n that

DQnQ−1 = Qn − pnS0 + qnQ�, n � 2,

where

pn = c3
n�1 + ���1 + 2�� ¯ �1 + �n − 1���e�1+n��w,

qn = nc3
n−1��1 + �� ¯ �1 + �n − 2���e�1+�n−1���w.

Since Lx is of finite dimension, there exists such a natural number N that

QN+1 = �NQN + ¯ + �1Q1 + ��Q� + �0S0,

and S0 ,Q� ,Q1 , . . . ,QN are linearly independent. Then

DQN+1D−1 = D��N�DQND−1 + ¯ + D��0�DS0D−1

or

�NQN + ¯ + �1Q1 + ��Q� + �0S0 − pN+1S0 + qN+1Q� = D��N��QN − pNS0 + qNQ��

+ ¯ + D��1��Q1 − p1S0 + q1Q�� + D����Q� + D��0�S0.

By comparing the coefficients before QN , . . . ,Q1, we have that �k, 1�k�N, are all constants.
Comparing coefficients before S0 gives

�0 − pN+1 = − �NpN − ¯ − �2p2 − �1p1 + D��0� . �41�

Since pk, 1�k�N+1, depend on w only, then D��0�−�0 is a function of w, and therefore
D��0�−�0 is a constant; we denote it by d0.

If ��−1 /r for all r�N, then pk�0 for all k�N, and Eq. �41� fails to be true.
Consider the case when �=−1 /r for some r�N. Substitution uj =e−�wj transforms vector

fields �−1 /�c3�Q�, �−1 /��S1, and �−1 /��S0 into vector fields

Q�
� = 


j=−�

�
�

�uj
,

S1
� = 


j=−�

�

��̃ j
� + b̃��uj��uj

�

�uj
,

S0
� = 


j=−�

�

uj
�

�uj
,

where

�̃ j
� =�


k=0

j−1

�uk
r − c̃� if j � 1

0 if j = 0,

− 

k=j

−1

�uk
r − c̃� if j � − 1.� b̃��uj� = b̃�r ln uj�

First consider the case r=1. We have
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T ª �Q�
�,S1

�� = 

j=−�

�

�juj + �̃ j
� + b̃��uj� + ujb̃

���uj��
�

�uj
,

K ª

1

2
�Q�

�,T� = 

j=−�

�

�j + c�uj��
�

�uj
,

where c�uj�= b̃���uj�+ 1
2ujb̃

���uj�,

T1 = �T,K� = 
1 

j=−�

�

�j2 + jg1,1
�j� �uj� + g1,0

�j� �u,u1, . . . ,uj��
�

�uj
,

T2 = �T,T1� = 
2 

j=−�

�

�j3 + j2g2,2
�j� �uj� + jg2,1

�j� �u,u1, . . . ,uj� + g2,0
�j� �u,u1, . . . ,uj��

�

�uj
,

where 
1=− 3
2 and 
2�0.

Construct vector fields, Tn= �T ,Tn−1�, n�3. Direct calculations show that

Tn = 
n

j=0

� 
 jn+1 + jngn,n�uj� + 

k=0

n−1

jkgn,k�u,u1, . . . ,uj�� �

�uj
+ 


j=−�

−1

aj
�

�uj
, n � 1.

Since �Tn�n=1
� is an infinite sequence of linearly independent vector fields from Lx, then case r

=1 fails to exist.
Consider case r�2. We have

adQ
�
�S1

� = �Q�
�,S1

�� = 

j=−�

� 
sgn�j�r�

k=0

j−1

uk
r−1�uj + �̃ j

� + b̃��uj� + ujb̃
���uj�� �

�uj

and

adQ
�
�

r S1
� = 


j=−�

� 
r ! juj + sgn�j�r ! 

k=0

j−1

uk + d�uj��
for some function d,

adQ
�
�

r+1S1
� = 


j=−�

�

�2r ! j + d��uj��
�

�uj
.

Note that vector fields adQ
�
�

r S1
� and adQ

�
�

r+1S1
� have coefficients of the same kind as vector fields T and

K �from case r=1� have. It means that adQ
�
�

r S1
� and adQ

�
�

r+1S1
� generate an infinite dimensional Lie

algebra. This contradiction implies that case r�2 also fails to exist.
Thus, c3=0. By interchanging � with −�, we obtain that c4=0 also. Hence c3=c4=0 and

q�w�=c2. �

We already know that a���=c0�+c1. The next lemma shows that c0�0.
Lemma 8: c0 is a nonzero constant.
Proof: Assume the contrary. Then a���=c1 and c1�0. Vector fields �37� and �38� become

T1 = c1 

j=−�

�
�

�� j
= c1T̃1

and
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T = − tT1 − c1 

j=−�

� 
� j +
1

mc1
b�� j�� �

�� j
= − c1tT̃1 − c1T̃ ,

where

T̃1 = 

j=−�

�
�

�� j
, T̃ = 


j=−�

� 
� j +
1

mc1
b�� j�� �

�� j
.

Since

�T̃1,�T̃1,T̃�� =
1

mc1



j=−�

�

b��� j�
�

�� j

and T̃1 both belong to a finite dimensional Lx, then, by Lemma 6, �1� b����= C̃1+ C̃2e��+ C̃3e−�� or

�2� b����= C̃1+ C̃2�+ C̃3�2 for some constants C̃1− C̃3.
In case �1�, b���=C1+C2e��+C3e−��+C4�2+C5� and

�T̃1,�T̃1,T̃�� − �2T̃ −
2C4 − �2C1

mc1
T̃1 = − �2 


j=−�

� 
� j +
C4� j

2 + C5� j

mc1
� �

�� j

is an element in Lx.
In case �2�, b���=C1+C2�+C3�2+C4�3+C5�4 and

T̃ −
C1

mc1
T̃1 = 


j=−�

� 
� j +
C2� j + C3� j

2 + C4� j
3 + C5� j

4

mc1
� �

�� j

belongs to Lx.
To finish the proof of the lemma it is enough to show that vector fields

T̃2 ª 

j=−�

�

�� j + C2� j + C3� j
2 + C4� j

3 + C5� j
4�

�

�� j

and

T̃1 = 

j=−�

�
�

�� j

produce an infinite dimensional Lie algebra Lx for any fixed constants C2−C5. One can prove it by
showing that Lx contains vector fields 
 j=−�

� jk�� /�� j� for all k=1,2 , . . .. Note that

�T̃1,T̃2� = 

j=−�

�

�− j + C2 + 2C3� j + 3C4� j
2 + 4C5� j

3�
�

�� j
.

There are four cases: �a� C5�0, �b� C5=0 ,C4�0, �c� C5=C4=0, C3�0, and �d� C5=C4=C3

=0.
In case �a�,

�T̃1,�T̃1,�T̃1,T̃2��� − 6C4T̃1 = 

j=−�

�

24C5� j
�

�� j
= 24C5P1 � Lx, P1 = 


j=−�

�

� j
�

�� j
,
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�T̃1,�T̃1,T̃2�� = 

j=−�

�

�2C3 + 6C4� j + 12C5� j
2�

�

�� j
� Lx,

and therefore,

P2 ª 

j=−�

�

� j
2 �

�� j
� Lx

and

T̃3 ª �T̃1,T̃2� − C2T̃1 − 2C3P1 − 3C4P2 = 

j=−�

�

�− j + 4C5� j
3�

�

�� j
� Lx.

We have

J1 ª −
1

3
��T̃3,P1� + 2T̃3� = 


j=−�

�

j
�

�� j
� Lx.

Now,

�J1,�J1,P2�� =
1

2 

j=−�

�

j2 �

�� j
� Lx.

Assuming Jk=
 j=−�
� jk�� /�� j��Lx we have that

Jk+1 ª
1

2
�J1,�Jk,P2�� = 


j=−�

�

jk+1 �

�� j
� Lx.

In case �b� we have

P1 ª
1

6C4
��T̃1,�T̃1,T̃2�� − 2C3T1� = 


j=−�

�

� j
�

�� j
� Lx

and

T̃3 = �T̃1,T̃2� − C2T̃1 − 2C3P1 = 

j=−�

�

�− j + 3C4� j
2�

�

�� j
� Lx.

We have

J1 ª −
1

2
��T̃3,P1� + T̃3� = 


j=−�

�

j
�

�� j
� Lx

and

P2 =
1

6C4
�T̃3 − �T̃3,P1�� = 


j=−�

�

� j
2 �

�� j
� Lx.

As it was shown in the proof of case �a�, J1 and P2 produce an infinite dimensional Lie algebra.
In case �c�,

T̃3 = �T̃1,T̃2� − C2T̃1 = 

j=−�

�

�− j + 2C3� j�
�

�� j
� Lx,
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T̃4 = �T̃3,T̃2� = 

j=−�

� � j�j − 1�
2

− jC2 − 2C3j� j + 2C3
2� j

2� �

�� j
� Lx.

Also,

T̃5 = �T̃3,T̃4� = 2C3 

j=−�

� � j�j + 1�
2

+ C2j − 2C3j� j + 2C3
2� j

2� �

�� j
� Lx.

Since T̃4 and T̃5 both belong to Lx, then either

�i�

J1 = 

j=−�

�

j
�

�� j
� Lx, T̃6 = 


j=−�

� � j2

2
− 2C3j� j + 2C3

2� j
2� �

�� j
� Lx

or
�ii�

C2 = −
1

2
, T̃6 = 


j=−�

� � j2

2
− 2C3j� j + 2C3

2� j
2� �

�� j
� Lx.

In case �c� �i�,

P1 =
1

4C3
2 ��T̃1,T̃6� + 2C3J1� = 


j=−�

�

� j
�

�� j
� Lx.

Since

�P1,T̃6� = 

j=−�

� �−
j2

2
+ 2C3

2� j
2� �

�� j

and

�P1,�P1,T̃6�� = 

j=−�

� � j2

2
+ 2C3

2� j
2� �

�� j

both belong to Lx, then

J2 = 

j=−�

�

j2 �

�� j
� Lx, P2 = 


j=−�

�

� j
2 �

�� j
� Lx.

P2 and J1 generate an infinite dimensional Lie algebra.

In case �c� �ii�,

T̃1 = 

j=−�

�
�

�� j
, T̃2 = 


j=−�

� �C3� j
2 −

1

2
� j + � j� �

�� j
.

Note that the Lie algebra generated by the vector fields

T̃2
� = T̃2 − �C3�2 −

1

2
��T̃1 = d��,�1�

�

��1
− d��−1,��

�

��−1
+ �d��,�1� + d��1,�2��

�

��2
+ ¯

and
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T̃1 = 

j=−�

�
�

�� j

is infinite dimensional. It can be proved by comparing this algebra with the infinite dimensional
characteristic Lie algebra of the chain

t1x = tx + C3�t1
2 − t2� − 1

2 �t1 + t� . �42�

Indeed, the Lie algebra Lx1 for �42� is generated by operators �18� and �19� with d�t , t1�=C3�t1
2

− t2�− 1
2 �t1+ t�. To keep standard notations we set a���=−2C3�−1 and b���=C3�2+ 1

2�. Note that
since C3�0, function a��� is not a constant. It follows from Theorem 3 proved below that the
characteristic Lie algebras Lx �and therefore algebra Lx1� for Eq. �42� is of infinite dimension.
Thus, in case �c� �ii� we also have an infinite dimensional Lie algebra Lx.

In case �d�,

T̃2 = 

j=−�

�

�− � − �1 − ¯ − � j−1 + C2� j�
�

�� j
� Lx.

Then

J1 = c2T̃1 − �T̃1,T̃2� = 

j=−�

�

j
�

�� j
� Lx

and

J2 = − 2��J1,T̃2� − �1

2
+ C2�J1� = 


j=−�

�

j2 �

�� j
� Lx.

Assuming that Jk, 1�k�n, belong to Lx, by considering �Jn , T̃2� one may show that Jn+1

=
 j=−�
� jk+1�� /�� j��Lx. It implies that Lx is of infinite dimension. �

Let us introduce new variables,

wj = ln�� j +
c1

c0
� .

Vector fields T1 and T in variables wj can be rewritten as

T1 = c0 

j=−�

�
�

�wj
= c0S0,

T = − tc0S0 + c0 

j=−�

�

��̃ j + b̃�wj��
�

�wj
= − c0tS0 + c0S1,

where

S0 = 

j=−�

�
�

�wj
, S1 = 


j=−�

�

��̃ j + b̃�wj��
�

�wj
,
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�̃ j =� 

k=0

j−1

�ewk − c̃� if j � 1

0 if j = 0,

− 

k=j

−1

�ewk − c̃� if j � − 1.� c̃ =
c1

c0
, b̃�wj� = −

1

m
� b�� j�

c0� j + c1
�

We have

DS0D−1 = S0, DS1D−1 = S1 − �ew − c̃�S0.

These lemmas allow one to prove the following theorem.
Theorem 4: If the equation

t1x = tx + a���tm + b���tm−1 + ¯ , m � 1,

admits a nontrivial x -integral, then

�1� a���=c0� and b���=c2�2+c3� , where c0 , c2 , and c3 are some constants.
�2� m=1 .

Proof: Consider case �1�. Define vector field

Q = �S0,�S0,S1�� − �S0,S1� = 

j=−�

�

�b�̃�wj� − b�̃�wj��
�

�wj
.

By Lemma 7, b�̃�w�−b�̃�w�=C for some constant C. Thus, b̃�w�=C0+C1ew+C2w for some con-
stants C1, C2, and C0. Consider vector fields

P = �C2 − C0�S0 + S1 − �S0,S1� = 

j=−�

�

�C2wj + c̃ j�
�

�wj
,

R = �S0,�S0,S1�� = 

j=1

� 
�

k=1

j

ewk� + C1ewj� �

�wj
+ C1ew �

�w
− 


j=−�

−1 
�

k=j

−1

ewk� + C1ewj� �

�wj
,

R1 = �P,R�, Rn+1 = �P,Rn�, n � 1.

Then

Rn = 

j�0

�ewj�C1C2
nwj

n + Pn,j� + rn,j�w,w1, . . . ,wj−1��
�

�wj

+ 

j�−1

�ewj��C1 − 1�C2
nwj

n + Pn,j� + rn,j�w−1,w−2, . . . ,wj+1��
�

�wj
,

where Pn,j = Pn,j�wj , j� is a polynomial of degree n−1 whose coefficients depend on j; rn,j are the
functions that do not depend on wj. Since all vector fields Rn belong to a finite dimensional Lie
algebra Lx, then C1C2= �C1−1�C2=0, or the same, C2=0. Therefore,

b̃�w� = C0 + C1ew.

Since C2=0, then
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P = c̃ 

j=−�

�

j
�

�wj
,

R = 

j=1

� 
�

k=1

j

ewk� + C1ewj� �

�wj
+ C1ew �

�w
− 


j=−�

−1 
�

k=j

−1

ewk� + C1ewj� �

�wj

and

Rn = c̃n

j=1

�

�ew1 + 2new2 + �j − 1�newj−1 + jnC1ewj�
�

�wj

− c̃n 

j=−�

−1

��− 1�new−1 + �− 2�new−2 + �j�newj + jnC1ewj�
�

�wj
.

Again, vector fields Rn belong to a finite dimensional Lie algebra only if c̃=0, or the same, c1

=0. It implies that

a��� = c0�, b��� = c2�2 + c3� .

Consider case �2�. Assume the contrary, that is, m�2. Then the following vector field:

1

m!
ad

X̃

m−2�Ỹ� = Y�1/2�a���t2+�1/m�b���t+�1/�m�m−1���c��� = − 

j=−�

� �1

2
a�� j�tj

2 +
1

m
b�� j�tj +

1

m�m − 1�
c�� j�� �

�� j

= − 

j=−�

� �1

2
a�� j��t + � j�2 +

1

m
b�� j��t + � j� +

1

m�m − 1�
c�� j�� �

�� j
−

t2

2 

j=−�

�

a�� j�
�

�� j

− t 

j=−�

� 
a�� j�� j +
1

m
b�� j�� �

�� j
− 


j=−�

� 
1

2
a�� j�� j

2 +
1

m
b�� j� +

1

m�m − 1�
c�� j�� �

�� j
,

is in Lx. In variables wj =ln � j,

1

m!
ad

X̃

m−2�Ỹ� = −
t2

2
c0S0 + tc0S1 − c0S2,

where

S2 = 

j=−�

� 
1

2
�̃ j

2 − b̃�wj��̃ j + c̃�wj�� �

�wj
, c̃�wj� =

c�� j�
m�m − 1�� j

.

The vector fields S0 and S1 are as in Lemma 7. We have

�S0,S2� = 2S2 + C0S1 + P, P = 

j=−�

�

r�wj�
�

�wj
, r�w� = c̃��w� − 2c̃�w� − C0b̃�w� .

Construct the sequence

S3 = �S1,S2�, Sn+1 = �S1,Sn�, n � 2.

One can prove by induction on n that

102702-23 On the classification of Darboux integrable chains J. Math. Phys. 49, 102702 �2008�

Downloaded 17 May 2011 to 139.179.14.104. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



�S0,Sn� = nSn + 

k=0

n−1

�n,kSk

and

DSnD−1 = Sn + 
n�n − 1�
2

− 1�ewSn−1 + 

k=0

n−2

��n,k�Sk, n � 3.

Since Lx is of finite dimension, then there exists a natural number N such that

SN+1 = �NSN + �N−1SN−1 + ¯ + �0S0.

Then

DSN+1D−1 = D��N�DSND−1 + D��N−1�DSN−1D−1 + ¯ + D��0�DS0D−1.

On the other hand,

DSN+1D−1 = SN+1 + 
 �N + 1�N
2

− 1�ewSN + ¯ .

We compare the coefficients before SN and have two equations:

D��N� = �N + 
 �N + 1�N
2

− 1�ew, N � 2,

and

D��1� = �1 + ew, N = 1.

Both equations are contradictory. Therefore, our assumption that m�2 was wrong. �

IV. NONZERO ROOT

Lemma 9: Assume that Eq. (12) admits a nontrivial x -integral. Then the characteristic
polynomial of Eq. (25) can only have simple nonzero roots.

Proof: Assume that m1�2. Introduce polynomials

��1

�2���� =
����

�� − �1�2 , ��1
��� =

����
�� − �1�

.

Consider vector fields

S0
� = ��1

�2��adX̃�Yd = YA���e�1t,

S1
� = ��1

�adX̃�Yd = Y�A���t+B����e�1t

from the Lie algebra Lx.
In variables � j = tj − tj+1, vector fields S0

� and S1
� become

S0
� = − e�1t 


j=−�

�

A�� j�e�1�j
�

�� j
= − e�1tS0,
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S1
� = − te�1tS0 − e�1t 


j=−�

�

�A�� j�� j + B�� j��e�1�j
�

�� j
= − te�1tS0 − e�1tS1,

with S0=
 j=−�
� A�� j�e�1�j�� /�� j� and S1=
 j=−�

� �A�� j�� j +B�� j��e�1�j�� /�� j�.
Direct calculations show that

DS0D−1 = e�1�S0, DS1D−1 = e�1�S1 + �e�1�S0.

Define the sequence

S2 = �S0,S1�, Sn+1 = �S0,Sn�, n � 2.

One can easily show that

DS2D−1 = e2�1�S2 + �1e2�1�A���S1 + e2�1��A��� − �1B����S0.

It can be proved by induction on n that

DSnD−1 = en�1�Sn + �1
n�n − 1�

2
en�1�A���Sn−1 + 


k=0

n−2


�n,k�Sk.

Since the dimension of Lx is finite and S0 ,S1 , . . . are elements of Lx, then there exists a natural
number N such that

SN+1 = �NSN + �N−1SN−1 + ¯ + �0S0,

and S0 ,S1 , . . . ,SN are linearly independent. Therefore,

DSN+1D−1 = D��N�DSND−1 + D��N−1�DSN−1D−1 + ¯ + D��0�DS0D−1.

On the other hand,

DSN+1D−1 = e�N+1��1�SN+1 + �1
�N + 1�N

2
e�N+1��1�A���SN + 


k=0

N−1


�N + 1,k�Sk.

By comparing the coefficients before SN in the last two equations we have

e�N+1��1��N +
�1�N + 1�N

2
e�N+1��1�A��� = D��N�eN�1�.

It follows at once that �N is a constant and then

A��� = C�e−�1� − 1�, C =
2�N

�1N�N + 1�
.

Let us construct a new infinite sequence of vector fields belonging to Lx, enumerated by a multi-
index,

T0 ª S1, T1 ª S0, T2 = �S1,T1�, Tn+1 = �S1,Tn�, n � 2, Tn,0 = �S0,Tn� ,

Tn,0,i1,. . .,in−1,in
= �Sin

,Tn,0,i1,. . .,in−1
�, ij � �0;1� .

Direct calculations show that

DT2D−1 = e2�1�T2 + e2�1���1B − A�T1 − �1e2�1�AT0,
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DT3D−1 = e3�1�T3 + e3�1��3�1B − A + 3�1�A�T2 + �e3�1�T2,0 + 

m�
��2

��3,
�T
.

Here and below we use functions m=m�
� and l= l�
� defined in Sec. III. It can be proved by
induction on n that

DTnD−1 = en�1�Tn + en�1��cnB − A + cn�A�Tn−1 + �en�1� 

m�
�=n−1,l�
�=1

���n,
�T
 + 

m�
��n−2

��n,
�T
,

where

cn =
�1n�n − 1�

2
,

and ���n ,
� are constants for any 
 with m�
�=n−1 and l�
�=1.
In general, for any 
,

DT
D−1 = e�m�
�+l�
���1�T
 + 

m�
��m�
�−1

��
,
�T
.

Among the vector fields T
 we choose a system P of linearly independent vector fields in such a
way that for some natural number N, we have the following:

�i� Tk� P, k�N.
�ii� m�
��N for any T
� P.
�iii� For any T
 with m�
��N we have T
=
T
�P,m�
��m�
���
 ,
�T
. Also

TN+1 = ��N + 1,N�TN + 

T
�P

��N + 1,
�T
.

�iv� For any T
� P with m�
�=N and l�
�=1, we have ��
 ,N�=0.

Indeed,

DT
D−1 = D���
,N��DTND−1 + 

T
�P,
�N

D���
,
��DT
D−1.

On the other hand,

DT
D−1 = e�m�
�+l�
���1�T
 + 

m�
��N−1

��
,
�T


= e�N+1��1�
��
,N�TN + 

T
�P,m�
��N,
�N

��
,
�T
� + 

m�
��N−1

��
,
�T
.

By comparing the coefficients before TN we have

e�N+1��1���
,N� = D���
,N��eN�1�,

which proves ��
 ,N�=0 for any 
 with m�
�=N and l�
�=1. We have

TN+1 = �NTN + 

T
�P

��N + 1,
�T
.

Here �N=��N+1,N�. Then

DTN+1D−1 = D��N�DTND−1 + 

T
�P

D���N + 1,
��DT
D−1.

We continue and have

102702-26 Habibullin, Zheltukhina, and Pekcan J. Math. Phys. 49, 102702 �2008�

Downloaded 17 May 2011 to 139.179.14.104. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



e�N+1��1�
�NTN + 

T
�P

��N + 1,
�T
� + e�N+1��1��cN+1B − A + cN+1�A�TN

+ �e�N+1��1� 

m�
�=N,l�
�=1

���N + 1,
�T
 + 

m�
��N−1

��N + 1,
�T


= D��N�
eN�1�TN + 

m�
��N−1

��N,
�T
�
+ 


T
�P

D���N + 1,
��
e�m�
�+l�
���1�T
 + 

m�r��N−1

��
,r�Tr� .

We compare the coefficients before TN and get

e�N+1��1��N + e�N+1��1��cN+1B − A + cN+1�A� = eN�1�D��N� .

Note that, by property �iv�, we do not have term �e�N+1��1� in the left side of the last equality. Thus,
using the expression for A���=C�e−�1�−1� and the fact that �N is a constant, we have

B��� = C1A + C2�A = C1�e−�1� − 1� + C2��e−�1� − 1� ,

where

C1 =
�N

CcN+1
+

1

cN+1
, C2 = − 1.

We introduce new vector fields

S̃0 =
1

C
S0 = �e−�1� − 1�

�

��
+ ¯ , S̃1 =

1

C
S1 +

C1

C
S0 = ��e−�1� − 1�

�

��
+ ¯ .

S̃2 = �S̃0, S̃1�, S̃n+1 = �S̃0, S̃n�, n � 2.

We have

DS̃0D−1 = e�1�S̃0, DS̃1D−1 = e�1�S̃1 − �e�1�S̃0,

DS̃nD−1 = 

k=0

n


̃�n,k�S̃k, 
̃�n,n� = en�1�,

where 
̃�n ,k� are functions of � only. Since all vector fields S̃k belong to a finite dimensional Lie
algebra Lx, then there exists such a natural number M that

S̃M+1 = �̃MS̃M + ¯ + �̃0S̃0, �43�

and S̃0 , . . . , S̃M are linearly independent. Then

DS̃M+1D−1 = D��̃M�DS̃MD−1 + ¯ + D��̃0�DS̃0D−1

and


̃�M + 1,M + 1���̃MS̃M + ¯ + �̃0S̃0� + 

k=0

M


̃�M + 1,k�S̃k = D��̃N��
̃�M,M�S̃M + ¯� + ¯ .

By comparing the coefficients before S̃M, we have
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e�M+1��1��̃M + 
̃�M + 1,M� = D��̃M�eM�1�,

which implies that �̃M is a constant. In the same way, by comparing the coefficients before S̃M−1

and then before S̃M−2 and so on, one can show that all coefficients �̃k are constants.
One can show by induction on n that for n�2,

S̃n = 
�1
n−2�− 1�n−2�n − 2� ! e−n�1� + 


k=0

n−1

r�n,k�e−�1k�� �

��
+ ¯ ,

where r�n ,k� are some constants. Return to equality �43� with constant coefficients �̃k and com-
pare the coefficients before � /��:

�1
M−1�− 1�M−1�M − 1� ! e−�M+1��1� + 


k=0

M

r�M + 1,k�e−�1k� = �̃M��1
M−2�− 1�M−2�M − 2� ! e−M�1�

+ 

k=0

M−1

r�M,k�e−�1k�� + ¯ + �̃0�e−�1� − 1� .

The last equality fails to be true. It shows that our assumption that multiplicity m1 of a nonzero
root �1 can be 2 or more was wrong. �

If the characteristic polynomial of �25� has only one nonzero root �, then d�t , t1�=A�t
− t1�e�t. In this case Eq. �12� admits a nontrivial x-integral �see Sec. I, Theorem 3�. In Sec. V we
consider a case when the characteristic polynomial of �25� has at least two nonzero roots.

V. TWO NONZERO ROOTS

Let � and 
 be two nonzero roots. Consider the vector fields

S0 = 

j=−�

�

A�� j�e��j
�

�� j
, S1 = 


j=−�

�

B�� j�e
�j
�

�� j

from the Lie algebra Lx and construct a new sequence of vector fields

S2 = �S0,S1�, Sn+1 = �S0,Sn�, n � 1.

We have

DS0D−1 = e��S0, DS1D−1 = e
�S1,

DS2D−1 = e��+
��S2 + 
Ae��+
��S1 − �Be��+
��S0.

In general, for any n�3,

DSnD−1 = e��n−1��+
��
Sn + �cn� + dn
�ASn−1 + �pnA� + qnA�ASn−2 + 

k=0

n−2

��n,k�Sk� ,

where

cn =
�n − 1��n − 2�

2
, dn = n − 1, pn+1 =

n�n − 1�
2


n − 2

3
� + 
�, n � 2,

qn+1 =
n�n − 2��n − 1��3n − 1�

24
�2 +

�n − 1�2n

2
�
 +

n�n − 1�
2


2, n � 2.

Let us consider a particular case when
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S2 = �0S0 + �1S1. �44�

We have

DS2D−1 = D��0�e��S0 + D��1�e
�S1 = e��+
��S2 + 
Ae��+
��S1 − �Be��+
��S0

= e��+
����0S0 + �1S1� + 
Ae��+
��S1 − �Be��+
��S0.

Comparing coefficients before S0 and S1 produces the following two equations:

e��+
���0 − �Be��+
�� = D��0�e��, e��+
���1 + 
Ae��+
�� = D��1�e
�.

It follows that �0 and �1 are constants and

B��� = −
�0

�
�e−
� − 1�, A��� =

�1



�e−�� − 1� .

Finally, comparing coefficients before � /�� in Eq. �44� implies that �=−
.
Let us return to the general case. Since Lx is of finite dimension, then there exists such number

N that S0 ,S1 , . . . ,SN are linearly independent and

SN+1 = �NSN + �N−1SN−1 + ¯ + �0S0.

Then

DSN+1D−1 = D��N�DSND−1 + D��N−1�DSN−1D−1 + ¯ + D��0�DS0D−1

and therefore,

e�N�+
�����NSN + �N−1SN−1 + ¯� + A�cN+1� + dN+1
�SN + A�pN+1A� + qN+1A�SN+1 + ¯�

= D��N��e��N−1��+
���SN + A�cN� + dN
�SN−1 + ¯�� + D��N−1��e��N−2��+
��SN−1 + ¯� + ¯ .

By comparing the coefficients before SN we have

e�N�+
����N + A�cN+1� + dN+1
�� = D��N�e��N−1��+
��.

It follows that �N is a constant and then

A�cN+1� + dN+1
� = �N�e−�� − 1� .

If cN+1�+dN+1
=N���N−1� /2��+
��0, then

A��� = C1�e−�� − 1�

for some constant C1.
If cN+1�+dN+1
=N���N−1� /2��+
�=0 �in this case �N=0� we compare coefficients before

SN−1 and have

e�N�+
����N−1 + A�pN+1A� + qN+1A�� = D��N−1�e��N−2��+
��.

It follows that �N−1 is a constant and

pN+1AA� + qN+1A2 = �N−1�e−2�� − 1� .

Note that if cN+1�+dN+1
=N���N−1� /2��+
�=0, then pN+1=−�N�N−1��N+1� /12���0 and
qN+1=−��N−1�N�N+1� /24��2�0 for N�2. Therefore, �2 /qN+1�pN+1=�. Case N=1 should be
studied separately �S2=�1S1+�0S0� and it was already. Let us solve the equation

pN+1AA� + qN+1A2 = �N−1�e−2�� − 1� .

Denote by y=A2. We have
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y� + �y = k1e−2�� − k1

for some constant k1. It follows that

A2��� = K1�e−2�� + K2e−�� + 1�

for some constants K1 and K2.
Construct a new sequence of vector fields,

S2
� = �S1,S0�, Sn+1

� = �S1,Sn
��, n � 2.

Note that S2
�=−S2. Since Lx is of finite dimension, then there exists number M such that

S0 ,S1 , . . . ,SM
� are linearly independent and

SM+1
� = �M

� SM
� + �M−1

� SM−1
� + ¯ + �0

�S0.

Following are the possibilities:

�1�

A��� = K1�e−�� − 1� ,

B��� = K3�e−
� − 1� ,

�2�

A��� = K1�e−�� − 1� ,

B2��� = K3
2�e−2
� + K4e−
� + 1�, SM+1

� = �M
� SM

� + �M−1
� SM−1

� + ¯ + �0
�S0,

M − 1

2

 + � = 0,

�3�

B��� = K3�e−
� − 1� ,

A2��� = K1
2�e−2�� + K2e−�� + 1�, SN+1 = �NSN + �N−1SN−1 + ¯ + �0S0,

N − 1

2
� + 
 = 0,

and
�4�

A2��� = K1
2�e−2�� + K2e−�� + 1�, SN+1 = �NSN + �N−1SN−1 + ¯ + �0S0,

N − 1

2
� + 
 = 0,

B2��� = K3
2�e−2
� + K4e−
� + 1�, SM+1

� = �M
� SM

� + �M−1
� SM−1

� + ¯ + �0
�S0,

M − 1

2

 + � = 0,

where K1, K2�−2, K3, and K4�−2 are some constants, M ,N�2.

In case �1�, vector fields S0 and S1 generate an infinite dimensional Lie algebra Lx unless �
+
=0.

In case �2�, we make a substitution 1−e��=e−�w. Vector fields S0 and S1 become

S0 = K1
�

�w
+ ¯ ,
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S1 = �K3
2��1 − e−�w�−2
/� + K4�1 − e−�w�−
/� + 1��1/2 �

�w
+ ¯ = g�w�

�

�w
+ ¯ .

Note that if

SM+1
� = �M

� SM
� + �M−1

� SM−1
� + ¯ + �0

�S0,

then all coefficients �k
� are constants. By comparing coefficients before � /�w in both sides of the

last equation we obtain that g�w� is a solution of linear differential equation with constant coef-
ficients, that is,

g�w� = �K3
2��1 − e−�w�−2
/� + K4�1 − e−�w�−
/� + 1��1/2 = 


k

Rk�w�e�kw, �45�

where Rk�w� are some polynomials. One can show that equality �45� holds only if B���=K3�e��

+1�. It can be shown that in case �3� A���=K1�e
�+1�. In case �4� we make substitution e��

+K1 /2+�e2��+K1e��+1=e�w. Then

S0 = K1
�

�w
+ ¯ ,

S1 = 
K3
2�1

2
e�w −

K1

2
+ �K1

2

8
−

1

2
�e−�w�−2
/�

+ K4��1

2
e�w −

K1

2
+ �K1

2

8
−

1

2
�e−�w�−
/�

+ 1��1/2 �

�w

+ ¯ = g�w�
�

�w
+ ¯ .

For function g�w� to be of form 
kRk�w�e�kw, where Rk�w� are polynomials, function B��� has to
be of form B���=K3�e��+1�. Then, by case �3�, A���=K1�e−��+1�.

It has been proved that in cases �1�–�4� one has
�1��

A��� = K1�e−�� − 1� ,

B��� = K3�e�� − 1� ,

�2��

A��� = K1�e−�� − 1� ,

B��� = K3�e�� + 1� ,

�3��


A��� = K1�e−�� + 1� ,

B��� = K3�e�� − 1� ,
�

and
�4��

A��� = K1�e−�� + 1� ,

B��� = K3�e�� + 1� .
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In case �1�� function d�t , t1� in �12� has the form d�t , t1�=c4�e�t1 −e�t�+c5�e−�t1 −e−�t�, where
c4 and c5 are some constants. Equation �12� with such function d�t , t1� admits a nontrivial
x-integral �see Sec. I, Theorem 3 and Sec. VIII�.

In Secs. VI and VII we show that cases �3�� and �4�� both correspond to infinite dimensional
Lie algebra Lx. Case �2�� also produces an infinite dimensional Lie algebra Lx. It can be proved in
the same way as it is proved for case �3��.

VI. CHARACTERISTIC LIE ALGEBRA Lx OF THE CHAIN t1x= tx+A1„e�t1+e�t
…

−A2„e−�t−e−�t1
…

Since A���=A1�e−��+1� and B���=A2�e��−1�, then

A���e�t + 

j=1

k

A�� j�e�tj = A1�e�t + �2

j=1

k−1

e�tj� + e�tk�
and

B���e−�t + 

j=1

k

B�� j�e−�tj = A2�e−�t − e−�tk� .

We have

1

A1
S0 = �e�t + e�t1�

�

�t1
+ 


k=1

� �e�t + �2

j=1

k−1

e�tj� + e�tk� �

�tk
+ 


k=1

� �e�t + �2

j=1

k−1

e�t−j� + e�t−k� �

�t−k

and

1

A2
S1 = e−��X̃ − 


k=−�

�

e−�tk
�

�tk
= e−��X̃ − S̃1,

where

S̃1 = 

k=−�

�

e−�tk
�

�tk
.

In variables wj = �1 /��e�tj vector fields S̃1 and �1 /A1�S0 can be rewritten as

S̃1 = 

k=−�

�
�

�wj
,

1

A1
S0 = �2


k=1

� 
wk�w + 2

j=1

k−1

wj� + wk
2� �

�wk
+ �2


k=1

� 
w−k�w + 2

j=1

k−1

w−j� + w−k
2 � �

�w−k
.

We have

T1 = �S̃1,�S̃1,
1

�2A1
S0�� = 4 


k=−�

�

k
�

�wk
= 4T̃1, T̃1 = 


k=−�

�

k
�

�wk
,

T2 = �S̃1,�T̃1,
1

�2A1
S0�� = 3


k=1

�

�k2 − k + 1�� �

�wk
+

�

�w−k
� = 3T̃2 − 3T̃1 + 3S̃1, T̃2 = 


k=−�

�

k2 �

�wk
.

Assume that T̃m=
k=−�
� km�� /�wk�, m=1,2 . . . ,n, are vector fields from Lx. Then
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Tm+1 = �S̃1,�T̃m,
1

�2A1
S0�� = 


k=1

�

�2�1 + 2m + 3m + ¯ + km� + 2km+1 − km�� �

�wk
+

�

�w−k
�

= 

k=1

� 
2� km+1

m + 1
+ dm,m+1km + ¯ + d1,m+1k + d0,m+1� + 2km+1 − km�� �

�wk
+

�

�w−k
�

and therefore, T̃m+1=
k=−�
� km+1 �

�wk
�Lx. It shows that T̃n=
k=−�

� kn �
�wk

�Lx for all n=1,2 ,3 , . . . and
Lx is of infinite dimension.

VII. CHARACTERISTIC LIE ALGEBRA Lx OF THE CHAIN t1x= tx+A1„e�t1+e�t
…

+A2„e−�t+e−�t1
…

It was observed in previous studies �see, for instance, Ref. 10� that S-integrable models have
the characteristic Lie algebra of finite growth. The chain studied in this section can easily be
reduced to the semidiscrete SG model t1x= tx+sin t+sin t1 which belongs to the S-integrable class.
It is remarkable that its algebra Lx is of finite growth, or, more exactly, the dimension of the linear
space of multiple commutators grows linearly with the multiplicity. Below we prove that the linear
space Vn of all commutators of multiplicity �n has a basis �P1 , P2 , P3 , . . . P2k ;Q2 ,Q4 , . . .Q2k� for
n=2k and a basis �P1 , P2 , P3 , . . . P2k+1 ;Q2 ,Q4 , . . .Q2k� for n=2k+1, where the operators Pj and Qj

are defined consecutively,

P1 = �S0,S1� + �S0 + �S1, Q1 = P1,

P2 = �S1,P1�, Q2 = �S0,Q1� ,

P3 = �S0,P2� + �P2, Q3 = �S1,Q2� − �Q2,

P2n = �S1,P2n−1�, Q2n = �S0,Q2n−1� ,

P2n+1 = �S0,P2n� + �P2n, Q2n+1 = �S1,Q2n� − �Q2n

for n�1. Direct calculations show that

DP1D−1 = P1 − 2��S0 + S1� ,

DP2D−1 = e−���P2 + 2�P1 − 2�2�S0 + S1�� ,

DP3D−1 = P3 + 2�Q2 − 2�P2 − 4�2P1 + 4�3�S0 + S1� ,

DP4D−1 = e−���P4 + 2�Q3 − 4�2P2 + 4�2Q2 − 4�3P1 + 4�4�S0 + S1�� ,

DQ2D−1 = e���Q2 − 2�P1 + 2�2�S0 + S1�� ,

DQ3D−1 = Q3 + 2�Q2 − 2�P2 − 4�2P1 + 4�3�S0 + S1� ,

DQ4D−1 = e���Q4 − 2�P3 + 2�2�P2 − Q2� + 4�3P1 − 4�4�S0 + S1�� ,

P3 = Q3, �S1,P2� = − �P2,�S0,Q2� = �Q2,�S1,P4� = − �P4,�S0,Q4� = �Q4. �46�

The coefficient before � /�� in all vector fields DPiD
−1 and DQiD

−1, 1� i�4, is zero.
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Lemma 10: For n�1 we have

�1� DP2n+1D−1+2�e��DP2nD−1= P2n+1+2�Q2n ,
�2� e��DP2n+2D−1−�DP2n+1D−1= P2n+2+�Q2n+1 ,
�3� DQ2n+1D−1−2�e−��DQ2nD−1=Q2n+1−2�P2n ,
�4� e−��DQ2n+2D−1+�DQ2n+1D−1=Q2n+2−�P2n+1 ,
�5� P2n+1=Q2n+1 ,
�6� �S1 , P2n+2�=−�P2n+2 , and
�7� �S0 ,Q2n+2�=�Q2n+2 .

Moreover, the coefficient before � /�� in all vector fields DPkD
−1 and DQkD

−1 is zero.
Proof: We prove the lemma by induction on n. It follows from �46� that the base of induction

holds for n=1. Assume that �1�–�7� are true for all n, 1�n�k. Let us prove that �1� is true for
n=k+1.

DP2n+3D−1 = D��S0,P2n+2� + �P2n+2�D−1 = �e��S0,DP2n+2D−1� + �DP2n+2D−1

= �e��S0,�e−��DP2n+1D−1 + e−��P2n+2 + �e−��Q2n+1� + �DP2n+2D−1

= − �2�1 + e−���DP2n+1D−1 + �e−���e��S0,DP2n+1D−1�

− ��1 + e−���P2n+2 − �2�1 + e−���Q2n+1 + P2n+3 − �P2n+2 + �Q2n+2 + �DP2n+2D−1

= − �2�1 + e−���DP2n+1D−1 + �e−��D�S0,Q2n+1�D−1 − ��2 + e−���P2n+2

− �2�1 + e−���Q2n+1 + P2n+3 + �Q2n+2 + �DP2n+2D−1

= − �2�1 + e−���DP2n+1D−1 + �Q2n+2 − �2P2n+1 − �2DQ2n+1D−1

− ��2 + e−���P2n+2 − �2�1 + e−���Q2n+1 − 2�2Q2n+1 − 2�P2n+2 + P2n+3

= − 2�2DP2n+1D−1 + 2�Q2n+2 − 2�2Q2n+1 − 2�P2n+2 + P2n+3

= 2�P2n+2 + 2�2Q2n+1 − 2�e��DP2n+2D−1 + 2�Q2n+2 − 2�2Q2n+1 − 2�P2n+2 + P2n+3

= − 2�e��DP2n+2D−1 + 2�Q2n+2 + P2n+3.

The proof of �3� is the same as the proof of �1�. Let us show that �5� is true for n=k+1. We have

DP2n+3D−1 = − 2�e��DP2n+2D−1 + 2�Q2n+2 + P2n+3 = − 2���DP2n+1D−1 + P2n+2 + �Q2n+1�

+ 2�Q2n+2 + P2n+3

and

DQ2n+3D−1 = 2�e−��DQ2n+2D−1 − 2�P2n+2 + Q2n+3 = 2��− �DQ2n+1D−1 + Q2n+2 − �P2n+1�

− 2�P2n+2 + Q2n+3.

By �5�, P2n+1=Q2n+1 and therefore

D�P2n+3 − Q2n+3�D−1 = − 2�P2n+2 − 2�Q2n+2 + 2�Q2n+2 + 2�P2n+2 = 0.

Hence, P2n+3=Q2n+3.
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Let us prove that �2� is true for n=k+1. We have

e��DP2n+1D−1 = e��D�S1,P2n+3�D−1 = e���e−��S1,DP2n+3D−1�

= e���e−��S1,− 2�e��DP2n+2D−1 + 2�Q2n+2 + P2n+3�

= e���− 2�2�1 + e���DP2n+2D−1� − 2�e2���e−��S1,DP2n+2D−1� + P2n+4 + 2�Q2n+3

+ 2�2Q2n+2

= − 2�2�e�� + e2���DP2n+2D−1 + 2�2e2��DP2n+2D−1 + P2n+4 + 2�Q2n+3 + 2�2Q2n+2

= − 2�2e��DP2n+2D−1 + P2n+4 + 2�Q2n+3 + 2�2Q2n+2

= �DP2n+3D−1 − �P2n+3 − 2�2Q2n+2 + P2n+4 + 2�Q2n+3 + 2�2Q2n+2

= �DP2n+3D−1 + �Q2n+3 + P2n+4.

The proof of �4� is similar to the proof of �2�.
Let us prove that �6� is true for n=k+1,

D�S1,P2n+4�D−1 = �e−��S1,�e−��DP2n+3D−1 + e−��P2n+4 + �e−��Q2n+3�

= �e−��S1,�e−���− 2�e��DP2n+2D−1 + P2n+3 + 2�Q2n+2� + e−��P2n+4 + �e−��Q2n+3�

= �e−��S1,− 2�2DP2n+2D−1 + 2�e−��P2n+3 + 2�2e−��Q2n+2 + e−��P2n+4�

= − 2�2D�S1,P2n+2�D−1 − 2�2e−2���1 + e���P2n+3 − 2�3e−2���1 + e���Q2n+2

+ 2�e−2��P2n+4 + 2�2e−2��Q2n+3 + 2�3e−2��Q2n+2 − �e−2���1 + e���P2n+4

+ e−2���S1,P2n+4�

= 2�3DP2n+2D−1 − 2�2e−��P2n+3 + ��e−2�� − e−���P2n+4 − 2�3e−��Q2n+2

+ e−2���S1,P2n+4�

= �2e−��P2n+3 + 2�3e−��Q2n+2 − �2e−��DP2n+3D−1 − 2�2e−��P2n+3

+ ��e−2�� − e−���P2n+4 − 2�3e−��Q2n+2 + e−2���S1,P2n+4�

= − �2e−��P2n+3 + ��e−2�� − e−���P2n+4 − �DP2n+4D−1 + �e−��P2n+4 + �2e−��Q2n+3

+ e−2���S1,P2n+4� .

Thus,

D�S1,P2n+4�D−1 = e−2���S1,P2n+4� + �e−2��P2n+4 − �DP2n+4D−1,

D��S1,P2n+4� + �P2n+4�D−1 = e−2����S1,P2n+4� + �P2n+4� .

Hence, �S1 , P2n+4�=−�P2n+4. �

The proof of �7� is similar to the proof of �6�.
Corollary 1: We have

e−��DQ2nD−1 + e��DP2nD−1 = Q2n + P2n,

DP2n+1D−1 = P2n+1 + 

k=1

n

��2k
�2n+1�P2k + �2k

�2n+1�Q2k� + 

k=0

n−1

�2k+1
�2n+1�P2k+1 + �0

�2n+1�S0 + �0
�2n+1�S1,

DP2nD−1 = e−���P2n + 

k=1

n−1

��2k
�2n�P2k + �2k

�2n�Q2k� + 

k=0

n−1

�2k+1
�2n� P2k+1 + �0

�2n�S0 + �0
�2n�S1� ,
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DQ2nD−1 = e���Q2n − 

k=1

n−1

��2k
�2n�P2k + �2k

�2n�Q2k� − 

k=0

n−1

�2k+1
�2n� P2k+1 − �0

�2n�S0 − �0
�2n�S1� .

Moreover, �2n
�2n+1�=−2� , �2n

�2n+1�=2� , and �2n−1
�2n� =2� .

Assume that Lx is of finite dimension. There are three possibilities:

�1� S0 ,S1 , P1 , P2 ,Q2 , P3 , P4 ,Q4 , . . . , P2n−1 are linearly independent and

S0 ,S1 , P1 , P2 ,Q2 , P3 , P4 ,Q4 , . . . , P2n−1 , P2n are linearly dependent,
�2� S0 ,S1 , P1 , P2 ,Q2 , P3 , P4 ,Q4 , . . . , P2n−1 , P2n are linearly independent and

S0 ,S1 , P1 , P2 ,Q2 , P3 , P4 ,Q4 , . . . , P2n−1 , P2n ,Q2n are linearly dependent, and
�3� S0 ,S1 , P1 , P2 ,Q2 , P3 , P4 ,Q4 , . . . , P2n ,Q2n are linearly independent and

S0 ,S1 , P1 , P2 ,Q2 , P3 , P4 ,Q4 , . . . , P2n ,Q2n , P2n+1 are linearly dependent.

In case �1�,

P2n = 
2n−1P2n−1 + 
2n−2P2n−2 + �2n−2Q2n−2 + ¯

and

DP2nD−1 = D�
2n−1�DP2n−1D−1 + D�
2n−2�DP2n−2D−1 + D��2n−2�DQ2n−2D−1 + ¯ . �47�

We use Corollary 1 to compare the coefficients before P2n−1 in �47� and have the contradictory
equality

e−���
2n−1 + 2�� = D�
2n−1� .

It shows that case �1� is impossible to have.
In case �2�,

Q2n = 
2nP2n + 
2n−1P2n−1 + �2n−2Q2n−2 + ¯

and

DQ2nD−1 = D�
2n�DP2nD−1 + D�
2n−1�DP2n−1D−1 + D��2n−2�DQ2n−2D−1 + ¯ . �48�

We use Corollary 1 to compare the coefficients before P2n−1 in �48� and have the contradictory
equation

e���
2n−1 − 2�� = D�
2n−1� .

It shows that case �2� is impossible to have.
In case �3�,

P2n+1 = �2nQ2n + 
2nP2n + ¯

and

DP2n+1D−1 = D��2n�DQ2nD−1 + D�
2n�DP2nD−1 + ¯ . �49�

We use Corollary 1 to compare the coefficients before P2n in �49� and have the contradictory
equation

�
2n − 2�� = D�
2n�e−��.

It shows that case �3� also fails to be true. Therefore, characteristic Lie algebra Lx is of infinite
dimension.
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VIII. FINDING x-INTEGRALS

Now we are ready to prove the main theorem, Theorem 3, formulated in Sec. I. Really, in the
previous sections we proved that if chain �12� admits a nontrivial x-integral, then it is one of forms
�1�–�4�. List �i�–�iv� allows one to prove the inverse statement: each of the equations from the list
admits indeed a nontrivial x-integral. �

Let us explain briefly how we found list �i�–�iv�. Since for each equation �1�–�4� we have
constructed the related characteristic Lie algebra to find x-integral F one has to solve the corre-
sponding system of the first order partial differential equations. Below we illustrate the method
with case �2�, for which the basis of the characteristic algebra Lx is given by the vector fields

Ỹ = �x + Ya���t+b���, T1 = Y−a���, X̃ =
�

�t
+

�

�t1
+

�

�t−1
+

�

�t2
+

�

�t−2
+ ¯ ,

where a���=c0� and b���=c2�2+c3�. Note that x-integral F of �2� should satisfy the equations

ỸF=0, T1F=0, and X̃F=0. Introduce new variables t ,w ,w�1 , . . . where wj =ln�� j� and � j = tj

− tj+1. Vector fields X̃, T1, and Ỹ in new variables are rewritten as

X̃ =
�

�t
, T1 = 


j=−�

�

c0
�

�wj
,

Ỹ =
�

�x
− t 


j=−�

�

c0
�

�wj
+ c0 


j=−�

�

��̃ j + b̃�wj��
�

�wj
=

�

�x
− tT1 + c0 


j=−�

�

��̃ j + b̃�wj��
�

�wj
,

where

�̃ j =� 

k=0

j−1

ewk if j � 1

0 if j = 0,

− 

k=j

−1

ewk if j � − 1.� b̃�wj� = −
1

c0
�c2ewj + c3� ,

Note that since we have X̃F=0, F does not depend on t. Now let us consider the vector field

Ỹ + tT1 = A =
�

�x
+ c0 


j=−�

�

��̃ j + b̃�wj��
�

�wj
.

We can write the vector field A explicitly as

A =
�

�x
+ 


j=−�

� 
�c0

k=0

j−1

ewk� − c2ewj − c3� �

�wj
=

�

�x
−

c3

c0
T1 + 


j=−�

� 
�c0

k=0

j−1

ewk� − c2ewj� �

�wj
.

The commutator �T1 ,A� gives

�T1,A� = c0A − c0
�

�x
+ c3T1.

Thus we have three vector fields,

A −
�

�x
+

c3

c0
T1 ª Ã = 


j=−�

� 
�c0

k=0

j−1

ewk� − c2ewj� �

�wj
,
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T1

c0
ª T1 = 


j=−�

�
�

�wj
, X̃1 =

�

�x
,

which solve ÃF=0, T̃1F=0, and X̃1F=0. Note that �T̃1 , Ã�= Ã. Since X̃1F=0, F does not depend
on x. Hence we end up with two equations. By the Jacobi theorem the system of equations has a
nontrivial solution F�w ,w1 ,w2� depending on three variables. Therefore we need first three terms

of Ã and T̃1,

Ã = − c2w
�

�w
+ �c0ew − c2ew1�

�

�w1
+ �c0ew + c0ew1 − c2ew2�

�

�w2
,

T̃1 =
�

�w
+

�

�w1
+

�

�w2
.

Now we again introduce new variables w=�, w−w1=�1, and w1−w2=�2. Vector fields Ã and T̃1 in
new variables are rewritten as

Ã = e�
− c2
�

��
+ ��− c2 − c0� + c2e−�1�

�

��1
+ ��− c2 − c0�e−�1 + c2e−�1−�2�

�

��2
�, T̃1 =

�

��
.

To find the x-integral �ii� in Theorem 3 one has to solve the equation


��− c2 − c0� + c2e−�1�
�

��1
+ e−�1��− c2 − c0� + c2e−�2�

�

��2
�F = 0.

IX. CONCLUSION

In this article the problem of classification of Darboux integrable nonlinear semidiscrete
chains of hyperbolic type was studied. An approach based on the notion of characteristic Lie
algebra was properly modified and successfully used. We gave a complete list of hyperbolic-type
chains t1x= tx+d�t , t1� admitting nontrivial x-integrals. We demonstrated that the method of char-
acteristic Lie algebras provides an effective tool to classify integrable discrete chains as well. The
method did not get much attention in the literature. To our knowledge there are only two studies
�see Refs. 9 and 14� where the characteristic Lie algebras are applied for solving the classification
problem for the partial differential equations and systems. Surprisingly the first of them was
published in 1981 and the second one only 25 years later.
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