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We study a differential-difference equation of the form z.(n+1)=f(¢(n),t(n+1),
t(n)) with unknown r=#(n,x) depending on x and n. The equation is called a
Darboux integrable if there exist functions F (called an x-integral) and I (called an
n-integral), both of a finite number of variables x,#(n),t(n*1),6(n=*=2),...,
t(n),t.(n),..., such that D,F=0 and DI=I, where D, is the operator of total
differentiation with respect to x and D is the shift operator: Dp(n)=p(n+1). The
Darboux integrability property is reformulated in terms of characteristic Lie alge-
bras that give an effective tool for classification of integrable equations. The com-
plete list of equations of the form above admitting nontrivial x-integrals is given in
the case when the function f is of the special form f(x,y,z)=z+d(x,y). © 2008
American Institute of Physics. [DOI: 10.1063/1.2992950]

I. INTRODUCTION

In this paper we study integrable semidiscrete chains of the following form:

tn+1) = flt(n),t(n +1),1,(n)), (1)

where the unknown ¢t=¢(n,x) is a function of two independent variables: discrete n and continuous
x. Chain (1) can also be interpreted as an infinite system of ordinary differential equations for the

sequence of the variables {7(n)}__,. Here f=f(t,1,,t,) is assumed to be a locally analytical func-
tion of three variables satisfying at least locally the condition

L 20, )

For the sake of convenience we introduce subindex denoting shifts 7,=t(n+k,x) (keep t,=t) and
derivatives t,=(d/ ox)t(n,x), t,,=(&/dx*)t(n,x), and so on. We denote through D and D, the shift
operator and, correspondingly, the operator of total derivative with respect to x. For instance,
Dh(n,x)=h(n+1,x) and D(n,x)=(d/dx)h(n,x). Set of all the variables {#,},__..; {DV1},._, con-
stitutes the set of dynamical variables. Below we consider the dynamical variables as independent
ones. Since in the literature the term “integrable” has various meanings let us specify the meaning
used in the article. Introduce first notions of n- and x-integrals.1

Functions I and F, both depending on x and a finite number of dynamical variables, are called,
respectively, n- and x-integrals of (1) if DI=I and D,F=0.

Definition: Chain (1) is called integrable (Darboux integrable) if it admits a nontrivial
n-integral and a nontrivial x-integral.

Darboux integrability implies the so-called C-integrability. Knowing both integrals F and I a
Cole-Hopf-type differential substitution w=F+1I reduces Eq. (1) to the discrete version of the
D’ Alembert wave equation, w,,—w,=0. Indeed, (D-1)D,(w)=(D-1)D,F+D (D-1)I=0.
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It is remarkable that an integrable chain is reduced to a pair consisting of an ordinary differ-
ential equation and an ordinary difference equation. To illustrate it, note first that any n-integral
might depend only on x- and x-derivatives of the variable 7, I=I(x,?,t,,t,,...), and similarly any
x-integral depends only on x and the shifts, F=F(x,t,f«,f+»,...). Therefore each solution of
integrable chain (1) satisfies two equations:

I(x,t,t 0t ...) =p(X),  F(x,t,t41,t49,...) =q(n),

with properly chosen functions p(x) and g(n).

Nowadays the discrete phenomena are studied intensively due to their various applications in
physics. For the discussions and references we refer to the articles in Refs. 1-5.

Chain (1) is very close to a well studied object—the partial differential equation of the
hyperbolic type

uxy=f(x7y7u’ux’u' ) (3)

The definition of integrability for Eq. (3) was introduced by Darboux. The famous Liouville
equation u,,=e" provides an illustrative example of the Darboux integrable equation. An effective
criterion of integrability of (3) was discovered by Darboux himself: Eq. (3) is integrable if and
only if the Laplace sequence of the linearized equation terminates at both ends (see Refs. 6-8).
This criterion of integrability was used in Ref. 8§ where the complete list of all Darboux integrable
equations of form (3) is given.

An alternative approach to the classification problem based on the notion of the characteristic
Lie algebra of hyperbolic-type systems was introduced years ago in Refs. 9 and 10. In these
articles an algebraic criterion of Darboux integrability property has been formulated. An important
classification result was obtained in Ref. 9 for the exponential system

Ltj;y:exp(a,-lu1 vapu’+ - +au), i=1,2,....n. 4)

It was proved that system (4) is a Darboux integrable if and only if the matrix A=(a;) is the
Cartan matrix of a semisimple Lie algebra. Properties of the characteristic Lie algebras of the
hyperbolic systems

Uy = Cdu, ijk=1.2, .. .n, (5)
have been studied in Refs. 11 and 12. Hyperbolic systems of general form admitting integrals are
studied in Ref. 13. A promising idea of adopting the characteristic Lie algebras to the problem of
classification of the hyperbolic systems which are integrated by means of the inverse scattering
transforms method is discussed in Ref. 14.

The method of characteristic Lie algebras is closely connected with the symmetry approach15
which is proved to be a very effective tool to classify integrable nonlinear equations of evolution-
ary typem_20 (see also the survey in Ref. 3 and references therein). However, the symmetry
approach meets very serious difficulties when applied to hyperbolic-type models. After the papers
in Refs. 21 and 22 it became clear that this case needs alternative methods.

In this article an algorithm of classification of integrable discrete chains of form (1) is sug-
gested based on the notion of the characteristic Lie algebra (see also Refs. 23-25).

To introduce the characteristic Lie algebra L, of (1) in the direction of n, note that

S d .
DI-=Dir=0 (6)
at
for any n-integral [ and j=1. Indeed, the equation DI/=1I can be rewritten in an enlarged form as

Ixe,n+ 1,1, o foof v ) = 10600001 ). (7)

The left hand side DI of equality (7) contains the variable #;, while the right hand side does not.
Hence, (d/dt,)(DI)=0, which implies
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9
D'—DI=0.
o,

Proceeding this way one can easily prove (6) from the equality D/I=1, j=1.
Define vector fields

y.:D—J'in, ji=1, (8)
/ ot
and
J
X=—, j=1 9
= J )

We have Y;/=0 and X;/=0 for any n-integral I of (1) and j=1. The following theorem (see Ref.
24) defines the characteristic Lie algebra L, of (1).

Theorem 1: Equation (1) admits a nontrivial n -integral if and only if the following two
conditions hold:

(1) Linear space spanned by the operators {Y ,}of is of finite dimension. We denote this dimension
by N .

(2) Lie algebra L, generated by the operators Y,,Ys,...,YyN, X\, X5, ..., Xy is of finite dimen-
sion. We call L, the characteristic Lie algebra of (1) in the direction of n .

To introduce the characteristic Lie algebra L, of (1) in the direction of x, note that Eq. (1) due
to (2) can be rewritten as t.(n—1)=g(t(n),t(n—-1),t,(n)). An x-integral F(x,t,t+,f+5,...) solves
the equation D F=0, i.e., KyF=0, where

PR fa P , P P (10)
=— 4L+ g i T+
% ax o ar T8 T an, T8 ar,

Since F does not depend on the variable ¢, one gets XF'=0, where

d
X= o (11)

Therefore, any vector field from the Lie algebra generated by K, and X annulates F. This algebra
is called the characteristic Lie algebra L, of chain (1) in the x-direction.

The following result is essential. Its proof is a simple consequence of the famous Jacobi
theorem (the Jacobi theorem is discussed, for instance, in Ref. 10).

Theorem 2: Equation (1) admits a nontrivial x -integral if and only if its Lie algebra L, is of
finite dimension.

In the present paper we restrict ourselves to consideration of the existence of x-integrals for a
particular kind of chain (1), namely, we study chains of the form

t1x=1x+d(tatl) (12)

admitting nontrivial x-integrals. The main result of the paper, Theorem 3 below, is the complete
list of chains (12) admitting nontrivial x-integrals.

Theorem 3: Chain (12) admits a nontrivial x -integral if and only if d(t,t,) is one of the
following kinds:

(1) dt,1)=A(t-1,),
(2) d(t,t))=cot(t—t;)+cy(t—1))*+cst—c3ty
(3) dlt,t)=A(t—t))e*,
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4)  d(t,t))=c4le®—e*) +cs(e™ =),
where A=A(r—1,) is a function of 7=r—1f; and c¢y-cs are some constants with ¢, # 0, ¢, #0,
and ¢5#0, and « is a nonzero constant. Moreover, x-integrals in each of the cases are

(1) F=x+["du/A(u) if A(u) #0 and F=t,—t if A(u)=0,

(i)  F=(1/(=cy—co)n|(=co—co) 7y/ o+ o+ 1/ caln|eym/ T—cy—co| for cy(cy+cy) #0 , F=In 7
—In n+ 7/ 7 for c,=0, and F=7/ 7—In 7+In 7| for cr=—c,,

(i)  F=["e"*du/A(u)—["du/A(u) , and

(IV) F= [(eat_eatz)(eatl at3)]/[(eat at3 (earl_ atz)]

The n-integrals of chain (12) can be studied in a similar way by using Theorem 1, but this
problem is out of the frame of the present article.

The article is organized as follows. In Sec. II, by using the properly chosen sequence of
multiple commutators, a very rough classification result is obtained: function d(z,¢,) for chain (12)
admitting x-integrals is a quasipolynomial on # with coefficients depending on 7=7—¢,. Then it is
observed that the exponents =0, «;, ..., a, in expansion (26) cannot be arbitrary. For example,
if the coefficient before e*'=1 is not identically zero, then the quasipolynomial d(z,7,) is really a
polynomial on ¢ with coefficients depending on 7. In Sec. IIl we prove that the degree of this
polynomial is at most 1. If d contains a term of the form u(7)#e®’ with e # 0, then j=0 (Sec. IV).
In Sec. V it is proved that if d contains terms with ¢*' and ¢®" having nonzero exponents, then
a,=—a;. This last case contains chains having infinite dimensional characteristic Lie algebras for
which the sequence of multiple commutators grows very slowly. They are studied in Secs. VI and
VII. One can find the well known semidiscrete version of the sine-Gordon (SG) model among
them. It is worth mentioning that in Sec. VII the characteristic Lie algebra L, for semidiscrete SG
is completely described. The last section, Sec. VIII, contains the proof of the main theorem,
Theorem 3, and here the method of constructing x-integrals is also briefly discussed.

Il. ANECESSARY INTEGRABILITY CONDITION

Define a class F of locally analytical functions each of which depends only on a finite number
of dynamical variables. In particular, we assume that f(z,7,¢,) € F. We will consider vector fields
given as an infinite formal series of the form

Y=y, (13)

with coefficients y; € F. Introduce notions of linearly dependent and independent sets of vector
fields (13). Denote through Py the projection operator acting according to the rule

Py(Y) = 2 }’k (14)

en Ot

First we consider finite vector fields as

Z= Z e (15)
k=N ot
We say that a set of finite vector fields Z,,2,, ...,Z,, is linearly dependent in some open region U
if there is a set of functions \y,\,, ...,\,, defined on U such that the function |\;|>+|\,|>+

+|\,,|* does not vanish identically and the condition

)\lZl+)\ZZZ+ +}\mZm=O (16)

holds for each point of region U.
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We call a set of the vector fields Y,,Y,,...,Y,, of form (13) linearly dependent in region U if
for each natural N the set of finite vector fields Py(Y,),Py(Y3),...,Py(Y,,) is linearly dependent
in this region. Otherwise we call the set Y{,Y,,...,Y,, linearly independent in U.

The following proposition is very useful. Its proof is almost evident.

Proposition: If a vector field Y is expressed as a linear combination,

Y= )\1Y1+)\2Y2+ +)\mYm, (17)

where the set of vector fields Y,Y,,...,Y,, is linearly independent in U and the coefficients of all
the vector fields Y,Y,Y,,...,Y,, belonging to F are defined in U , then the coefficients
NNy, ...\, arein F .

Below we concentrate on the class of chains of form (12). For this case the Lie algebra L,
splits down into a direct sum of two subalgebras. Indeed, since f=¢,+d and g=t,—d_; one gets
fk=tx+d+2§=1dj and g_k=tx—2f:lld_k for k=1, where d=d(t,t,) and d;=d(t;,t;,,). Due to this
observation the vector field K, can be rewritten as Ko=txf +Y, with

J J J J J

Xs—d—+—+— 4 — 4 (18)
at ot dt, I, dt,
and
1% J 1% d 14
Y=—+d——-d_—+d+d)——-(d_+dy))—+ .
ox atl 0"t_1 0712 (91‘_2

Due to the relations [X,X]=0 and [X,Y]=0 we have X=[X,K,] e L,; hence Y e L,. Therefore

L.={X}®L,,, where L, is the Lie algebra generated by the operators X and Y.

Lemma 1: If Eq. (12) admits a nontrivial x -integral, then it admits a nontrivial x -integral F
such that JF/dx=0 .

Proof: Assume that a nontrivial x-integral of (12) exists. Then the Lie algebra L, is of finite
dimension. One can choose a basis of L,; in the form

R J
T, =—+ a .,
! ax kzz_w th?[k

o
Tj: E aj’k_, ZSJSN
k=—00 atk

Thus, there exists an x-integral F depending on x,¢,¢{,...,ty_;, satisfying the system of equations

3 IF h—ien
a ,k_ =V, = J =
P
Due to the famous Jacobi theorem'® there is a change of variables 0j:0j(t,tl, ...,1y_y) that re-
duces the system to the form
GF "= oF
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IF
—=0, 2=j=N-2,
a6,
which is equivalent to
IF  _ IF 0
—Had N =
ox N aey

for F=F(x, Oy_,).

There are two possibilities: (1) @ y.;=0 and (2) a; y_;#0. In case (1), we at once have
JdF/dx=0. In case (2), F=x+H(0y_,)=x+H(t,t,,...,ty_;) for some function H. Evidently, F,
=DF=x+H(t,,t,...,ty) is also an x-integral, and F;—F is a nontrivial x-integral not depending
on x. O

Below we look for x-integrals F depending on dynamical variables ¢,f+,f+5,... only (not

depending on x). In other words, we study the Lie algebra generated by vector fields X and Y,
where

-9 P J P
Y=d—-d ,— +(d+d)——-(d_ +d ) — + . (19)
at at_, ot ot ,

One can prove that the linear operator Z— DZD~! defines an automorphism of the characteristic
Lie algebra L,. This automorphism plays the crucial role in all of our further considerations.
Further we refer to it as the shift automorphism. For instance, direct calculations show that

DXD'=X, DYD '=-dX+7Y. (20)

Lemma 2: Suppose that a vector field of the form Z=2a(j)(d/ dt;) with the coefficients a(j)
=a(j,t,t4,t+s,...) depending on a finite number of the dynamical variables solves an equation of
the form DZD™'=\Z . If for some j=j, we have a(j,) =0, then Z=0 .

Proof: By applying the shift automorphism to the vector field Z one gets DZD™!
=2D(a(}))(d/ dt;1,). Now, to complete the proof, we compare the coefficients of d/dt; in the
equation 2D(a(j))(d/ dt;,)=NZa(j)(d/ dt)). O

Construct an infinite sequence of multiple commutators of the vector fields X and Y,

?1=[§,?], ?k=[5(‘??k—l] for k= 2. (21)

Lemma 3: We have

DY, D' =-Xd)X+Y,, k=1. (22)

Proof: We prove the statement by induction on k. The base of induction holds. Indeed, by (20)
and (21), we have

DY, D' =D[X,YID'=[DXD',DYD '] =[X,-dX+Y]=-X(d)X +Y,.

Assuming Eq. (22) holds for k=n—1, we have

DY, D' =[DXD™',DY, D' =[X,-X""Nd)X+Y, ]=-X"(d)X+7Y,,

which finishes the proof of the lemma. O

Since vector fields X, X, and Y are linearly independent, then the dimension of Lie algebra L,
is at least 3. By (22), case Y;=0 corresponds to X(d)=0, or d+d, =0, which implies d=A(r
—1,), where A(7) is an arbitrary differentiable function of one variable.
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Assume Eq. (12) admits a nontrivial x-integral and Y 1 # 0. Consider the sequence of the vector

fields {}71,172,17 3,...;. Since L, is of finite dimension, then there exists a natural number N such
that

Yy =nY i+ nlh+ o+ ¥y, N=1, (23)
and Y Is )72, ,f’N are linearly independent. Therefore,
DYy, D™ '=D(v,)DY,D™" + D(y,)DY,D™" + - -+ + D(y,)DY\D™!, N=1.
Due to Lemma 3 and (23) the last equation can be rewritten as
- )?Nﬂ(d)iﬂL ')’1171 + 72172 + YN?N: D(y)(= i(d)i+ 171) +D(y)(= }?z(d))?‘ir )72)
+ o+ DY) (= XMD)X +Yy).

Comparing coefficients before linearly independent vector fields XY 1s Y 2y enns Y N> We obtain the
following system of equations:

XY (d) = D(y)X(d) + D(y,)XX(d) + -+ + D(yy)X"(d),

n=D(y), %=D(y),.... yny=D(w).

Since the coefficients of the vector fields )7j depend only on the variables 7,7, ,t+,,... the factors
7; might depend only on these variables (see the proposition above). Hence the system of equa-
tions implies that all coefficients vy,, 1=k=N, are constants, and d=d(t,t,) is a function that
satisfies the following differential equation:

XVU(d) =y, X(d) + 7 XA(d) + -+ + ypX(d), (24)
where )?(d)=d,+d,]. Using the substitution s=¢ and 7=t—1, Eq. (24) can be rewritten as

ARV ad Pd Hd

A A iy 25
g T Mias T V252 IV gsN (25)
which implies that
my—1
d(tn) =2 ( IR n)rf)eakf (26)
k o\ j=0
for some functions N j(r—1,), where a; are roots of multiplicity m, for a characteristic equation of
(25).
Let op=0,q;, ..., a, be the distinct roots of characteristic equation (24). Equation (24) can be

rewritten as

AX)d = X"0(X = )" /(X = ap)"2 -+ (X = @)"sd = 0 (27)

and mo+m;+- - +m;=N+1, my=1.
Initiated by formula (19) define a map h—Y, which assigns to any function h
=h(t,tsy,t+y,...) a vector field

Y, = )~ )L+
h— -1 10"[2 -1 -2 0t2 .

ot at, .

For any polynomial with constant coefficients P(\)=cy+c N+ **+c,, A" we have the formula
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P(ady)Y = Ypiys Wwhere adyY=[X,Y], (28)

which establishes an isomorphism between the linear space V of all solutions of Eq. (25) and the

linear space V= span{)?, Y Lseee Y v} of the corresponding vector fields.

Represent function (26) as the sum d(z,7;)=P(z,t,)+Q(t,t;) of the polynomial part P(z,;)
=E;"=00"')\0,j(t—t1)tj and the “exponential” part Q(t,tl)=Eizl(Eﬁkgl)\k,j(t—tl)tj)e“k’.

Lemma 4: Assume that Eq. (12) admits a nontrivial x -integral. Then one of the functions
P(t,1)) and Q(t,t,) vanishes.

Proof: Assume in contrary that neither of the functions vanish. First we show that in this case
algebra L, contains vector fields Ty=Y (. and T;=Yp, for some functions A(7) and B(7).

Indeed, take Tj:= Ao(adg)f’:YAo(;})deLx, where Ay(N)=A(N\)/(N—qa;). Evidently the function
X(t,t1)=A0(f)d solves the equation (X- ak)g(t,t1)=A(§)d=O which implies immediately that
A(t,1,)=A(7)e. In a similar way one shows that T, e L,. Note that due to our assumption the

functions A(7) and B(7) cannot vanish identically.
Consider an infinite sequence of the vector fields defined as follows:

T,= [TO’TI]’ T5= [To,Tz], Y [TO’Tn—l]v n=3.

One can show that

[i, To] = akTo, [i, Tl] = 0, [i, Tn] = ak(n - I)Tn, n= 2,

DT,D™'=—AeX +T,, DT,D™'=-BX+T),,

n-2

(-2 _
@=D0=2) w1 p R4S a"T,, n=2.
k=0

DT,D'=T,- 5

Since algebra L, is of finite dimension, then there exists number N such that

Tyer =NX+ uoTo+ m Ty + =+ + puyTy, (29)

and vector fields X, Ty,Ty,...,Ty are linearly independent. We have

DTy, D™ = DONX + D(p0){— Ae™¥X + T}

(N-1D(N-2)

ATy  + - (.
5 k N-1 }

+o +D(MN){TN—
By comparing the coefficients before T}y in the last equation one gets

N(N=1)

> a A(T)e™ =D (y).

MN—

It follows that uy is a function of variable ¢ only. Also, by applying adx to both sides of Eq. (29),
one gets

NayTyyy = [X. Ty 1= XX + (X(o) + poa) To+ -+ + (X(py) + pn(N = D) Ty.

Again, by comparing coefficients before Ty, we have

Nak/.LN=5?(ILLN) + (N— I)lekMN, i.e. 5 }?(/.LN) = apMy.

Therefore, uy=A,e“, where A, is some nonzero constant, and thus A(7)e“'=A,e* —A,e1,
Here A, is some constant. We have T,=A,e““X—-A,S,, where
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- P
SO= E eak[i—.
at;

j==

Also,

[E,SOJ = akSO, DSOD_1 = So.
Consider a new sequence of vector fields,
Py =Sy, Py=[T,S,). P3;=[T\.P,], P,=[T\.P,1], n=3.
One can show that

n-2

[X.P,]=aP, DP,D'=P,—an-1)BP,  +bX+a,Sy+>a"P, n=2.
j=2

Since algebra L, is of finite dimension, then there exists number M such that
PM+1:)\*)?+M;P2+'“+IU’;/[PM» (30)
and fields X ,P,, ..., Py are linearly independent. Thus,
DPy D™ = DIN)X + D(up){Pa+ -+ + -+ + D) {Pys — (M ~ 1)BPyy_y + -},
We compare the coefficients before Pj, in the last equation and get

oy — MayB(7) =D(uy,), (31)
which implies that u,, is a function of variable 7 only. Also, by applying adx to both sides of (30),
one gets
Py = D?’PMH] =}?O\*)X+ ()?(M;) + )Pyt o+ ()?(ML) + ey Py

Again, we compare the coefficients before Py, and have agul,(1)=X(u},(1))+ s (1), which
implies that u), is a constant. It follows then from (31) that B(7)=0. This contradiction shows that
our assumption that both functions are not identically zero was wrong. U

lll. MULTIPLE ZERO ROOT

In this section we assume that Eq. (12) admits a nontrivial x-integral and that a,=0 is a root
of the characteristic polynomial A(\). Then, due to Lemma 4, zero is the only root and therefore
AN)=\"1_Tt follows from formula (26) with my=m+1 that

dit,t)=a(D"+b(D" + -+, m=my—1=0.

The case m=0 corresponds to a very simple equation, ¢,,=t,+A(t—t,), which is easily solved in
quadratures, so we concentrate on the case m=1. For this case the characteristic algebra L,
contains a vector field T=Y with

K=a(nt+ lb(T).
m

Indeed,

1 m-15
= —ady V=Yg (32)

Introduce a sequence of multiple commutators defined as follows:
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To=X, T\=[T.T))=Y oy Ten=[LT1, k=0, Tio=[ToT..

Note that T’ ,=0. We will see below that the linear space spanned by this sequence is not invariant
under the action of the shift automorphism Z— DZD™! introduced above. We extend the sequence
to provide the invariance property. We define 7, with the multi-index a. For any sequence «

=k,0,i;,iy,...,iy_,i,, Where k is any natural number, i; € {0;1}, denote
[To.Tro.,...i, ] if i,=0
T,=
[T.Tvoi,...q, ) if i,=1,
k if a=k
m(a)=\k if a=k,0
k+iy+ ... +i, if a=k0,iy,...,i,

lay=k+n+1-m(a).

The multi-index « is characterized by two quantities, m(«) and I(«), which allow to order partially
the sequence {T,}. We have

DT,D™'=T,, DITD'=T-&T,, DT\D™'=T, +aT,.

One can prove by induction on k that

DD =T, +aly -k 2 Teg+ > nkB)Ts. (33)
m(B)=k—1 m(B)=k-2

In general, for any a,

DID'=T,+ 2 napTp. (34)
m(B)=m(a)-1

We can choose a system P of linearly independent vector fields in the following way:

(1) T and T, are linearly independent. We take them into P.

(2)  We check whether T, Ty, and T are linearly independent or not. If they are dependent, then
P={T,T,} and T,=uT+\T, for some functions wu and \.

(3) If T, T, and T, are linearly independent, then we check whether T, Ty, and T, T, are linearly
independent or not. If they are dependent, then P={T,T,,T,}.

(4) If T, Ty, T\, and T, are linearly independent, we add vector fields Tg, m(B)=2, Bel,
(actually, by definition I, is the collection of such ), in such a way that J,
={T,T,.T,,T»,Up. ,2T5} is a system of linearly independent vector fields and for any 7
with m(y) =2 we have T,=2 _; u(y,B)Tp.

(5) We check whether T;U J, is a ﬁnearly independent system. If it is not, then P consists of all
elements from J,, and T\;:ET[;E 5,m(y, BT If it s, then to the system 73U J, we add vector
fields T, m(B)=3, B I5, in such a way that J5:= {T3,J2,UBE,3T,3} is a system of linearly
independent vector fields and for any 7', with m(y) =3 we have T),=2TﬁE JS,U,('y, BT

Y

We continue the construction of system P. Since L, is of finite dimension, then there exists
such a natural number N such that we have the following:

() T,eP, k=N.

(i) m(B)=N for any Tge P.

(iii) ~ For any T, with m(y) =N we have T7=ETBE Pan()=m(» (¥, B) T and also
Ty =N+ LN T+ 21 c pmp=n(N+1, B)Tp.
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We then have the following:
(iv)  For any vector field T, with m(a)=N that does not belong to P, the coefficient w(ca,N)
before Ty in the expansion

T,=ma,N)Ty+ 2, (e, B)T g (35)
TBEP
is constant. Indeed, by (34),
DTD'=T,+ 2 nap)lp=waNTy+ 2 wapfT+ 2  nap)Tp.
m(B)=N-1 TgeP m(B)=N-1
From (35) we also have
DT,D™" = D(u(@N)DTD™ + 2 D(p(a,B)DTpD™" = D(p(a,N){Ty+ -}
TBEP

+ 2 D@ )T+ "}

TgeP
By comparing the coefficients before Ty in these two expressions for DT,D~!, we have

ma.N) = D(u(a.N)),

which implies that u(a,N) is a constant indeed.

Lemma 5: We have a(7)=cyt+c,, where ¢y and ¢, are some constants.
Proof: Since

Tye = p(N+ LNTy+ 2 u(N+1.8)Tg,
TBEP
then
DTyuD™' =D(p(N+ LNNTy+ -} + 2 D(u(N+ LBNT g+,
TBEP
On the other hand,
DTy D™'=Ty, +aly—Rk 2 T+ 2 nN+1,B)Ts
m(B)=N m(B)=N-1
We compare the coefficients before Ty in the last two expressions. For N=0 the equation is
pN+1LN+a-& X w(B.N)=D(uN+1.N)). (36)
TBEP,m(B)zN

Denote by C:_ETBEP,m(,B)zNM(B’N) and by uy=w(N+1,N). By property (iv), ¢ is a constant. It
follows from (36) that uy is a function of variables ¢ and n only. Therefore,

a(7) + c(a(7’)t+ ib(r)) = up(t,n+ 1) = up(t,n).

By differentiating both sides of the equation with respect to ¢ and then #;, we have

-d'(7) - c(a”(r)t +a'(7)+ ib”(r)) =0,

which implies that a”(7)=0, or the same, a(7)=c,7+c, for some constants ¢, and c;. O
Vector fields 7} and T in new variables are rewritten as
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oo

Ti= 2 a(r,-)ﬁ, (37)
J

Jj=—»

o0

1 P - 1 p)
T=-2 {a(rj)tj+—b(7j)}—=— > {a(rj)(t+p,-)+—b(r;)}—
j==e m ITj  jee m a1
T i ()+1b() J (38)
= — — T: . —_— T I
! j=—o AT m 7 07Tj
where
—T—T]—"‘—T]‘_l lszl
p;=10 if j=0

T+ T+ 4T

if j=-1.
The following two lemmas are to be useful.
Lemma 6: If the Lie algebra generated by the vector fields Sozﬁfz_x&/&w‘j and P

=37 _c(w)(d/ow;) is of finite dimension, then c(w) is one of the following forms:

j=—oc

(1) cw)=cr+cze™+ce™, N#0 , and
(2) c(w)=cy+csw+cw?, where c,—c, are some constants.

Proof: Introduce vector fields

S1=[S0.Pl, S,=[S0.S1 .- S,=[50,S,-1], n=3.
Clearly, we have
SRR
S, = > w)—, n=1. (39)
je—e w;

Since all vector fields S, are elements of L, and L, is of finite dimension, then there exists a natural
number N such that

Sn+1 = MNSN + MN-1Sn-1 + 0+ S+ poP + uSo, (40)
and Sy, P,S,,...,Sy are linearly independent. (Note that we may assume that S, and P are linearly
independent). Since DS,D~'=S,, DPD~'=P, and DS,D~'=S, for any n=1, then it follows from

(40) that

Sna1=D(un)Sy + D(pn-)Sno1 + ==+ + D(u)S) + D(o) P+ D(1)S
and together with (40), it implies that w, pg, &y, ..., my are all constants.
By comparing the coefficients before d/dw in (40) one gets, with the help of (39), the follow-
ing equality:
M (w) = uye™w) + -+ e (W) + poe(w) + p.

Thus, ¢(w) is a solution of the nonhomogeneous linear differential equation with constant coeffi-
cient whose characteristic polynomial is

AN =N — g NV — e — g\ - .

Denote by By, 8,, ..., B; the characteristic roots and by m,m,, ... ,m, their multiplicities. Follow-
ing are the possibilities:
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(1) There exists a nonzero characteristic root, say, 3;, and its multiplicity m;=2.
(ii)  There exists zero characteristic root, say, B, and m; =3, u=0 or m; =2, u#0.
(ili)  There are two distinct characteristic roots, say, 8, and B, with 8;# 0 and 8,=0
(iv)  There are two nonzero distinct characteristic roots, say, 8, and 3,.

In case (i), consider
AN @ AN
=B, and A7(N) = —()\—/31)2.

Then A,(Sy)c(w)=a,e?" +a, and A( )(So)c(w)=(aaw+ a)ePr + as, where . 1=j=35, are some
constants with «; #0 and a3 # 0. We have

Ay(N) =

o0 o0 a
Al(ads )P = E (a P 1+a2)——a1< E eﬁlw'0—> + aySy= a Py + aySy,
ow w

jE== 7 jE== J

J
E W eBIW — |+ CY4P1 + Ct'sSO
j==o° w;

A(Z)(ads )P = E ((azw; + ay)eP1vi + a5)7 = (

J=—* J
= (13P2+ a4P1 + a5SO

are elements from L, and therefore vector fields P1=E;C;_meﬁlwf((9/ dw;) and P,
=3 W €P1i(31 dw)) belong to L,. Since P and P, generate an infinite dimensional Lie algebra

L., then case (i) falls to be true.
In case (ii), consider

AP = ( ) and AP = ()‘) if u=0
or

<3>()\)_% and A?)()\):% it w#0.
We have

A(Sew) = ayw® + aow? + asw+ ey and  AP(Sp)e(w) = asw? + agw + a7,

where «;, 1 =j=7, are some constants with ; # 0 and as# 0. Straightforward calculations show
that Vector fields

- J
A (adSO)P > (alw +a2W + azw; +a4)— and A( )(ads)
aw;
]_—DO .I
- J
= (a5w + agw; +a7)—
- ow;
== J
generate an infinite dimensional Lie algebra. It proves that case (ii) fails to be true.
In case (iii), consider

Al()\)z% and Agk)—%
= b

We have
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Acw)= 1P+, and Arc(w)=asw+a, if u=0

or

A(Sp)e(w) = ayeP + a,  and  Ay(Sp)c(w) = asw? + agw + a7 if w#0,

where @;, 1 =j=7, are constants with @; #0, a3#0, and a5 # 0. Since vector fields Al(adSO)P
and Ay(ads )P generate an infinite dimensional Lie algebra, then case (iii) also fails to exist.
In case (iv), consider

Al()\) = );/x_ﬂ and Az()\) = A()\)

Bi N=-B,
We have A(Sp)c(w)=a;eP"+a, and A,(Sy)c(w)=as3eP?" +a,, where a; #0, a,, a;#0, and ay
are some constants. Note that

[

a = P
A(adg)P = a, > ePrvi— | + a,Sy and  A,(adg )P =y > ePrvi— |+ asSy,
0 aw; 0 aw;

jE== J jE== J
and vector fields E;i_weﬁle(r?/ dw;) and 2;';_meﬁzwf(r9/ dw;) generate an infinite dimensional Lie
algebra if B;+8,#0.
It follows from (i)—(iv) that c(w) is one of the following forms:
(1) cw)=cy+cze™+ce™, N#0.

(2) c(w)=cy+cw+cyw?, where ¢,—c,4 are some constants.
Ul

Lemma 7: If the Lie algebra generated by the vector (fields So=2;i_oc¢9/ w;,
0=37__.qw)(d/ow;) , and S1=E;';_Oc{ﬁj+l;(wj)}(&/&wj) is of finite dimension, then g(w) is a
constant function.

Proof: It follows from Lemma 6 that

(1) gw)=cy+cyw+cw? or
2) gw)=cy+cie™+ce™, N#0,
where ¢,—c, are some constants.

Consider case (1). We have

o0 a o) a I C?
(S0, Q] =c3 E ——+2¢ E wiT—=c38)+2¢y 2 Wi
Jj=— &W] j=—o z?W] j=—o0 aW]
If ¢, # 0, then Ef:_mwj((?/ ow;) € L, and E;i_wwjz-((?/ ow)) € L,.
If C4=O and C3 # O, then E;.;_OOWJ(&/(?WJ):(I /C3)(Q—C2S()) € Lx'

If ¢3=c4=0, then g(w)=c, and there is nothing to prove.
Assume ci+c§ #0. Denote by P=X". wj(&/ 8wj). Construct the vector fields

j=—%

P,=[P,S,], P,=[P,P,;], n=2.
We have

DS,D™' =,
DS]D_1 = Sl - (@W - E)So,

DPD™' =P,
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DP\ D' =P+ (—we" + " - ©)S,,

DP,D™' = P, + (- w?e" + we" — e + 0)S,,.

In general,

DP, D' =P, +(—w"e" +R,_;(w)e" +¢,)Sy, n=3,
where R,_; is a polynomial of degree n—1 and c, is a constant. Since L, is of finite dimension,
then there exists a natural number N such that
Py =unPy+ - + u Py + poSo,
and Sy, Py, ..., Py are linearly independent. Thus
DPy, D™ =D(uy)DPyD™" + -+ + D(u;)DPD™" + D(110)Sy,
or the same,

N+lew

MNP+ o+ Pyt poSo+ (= w +Ry(w)e" + cny1)So

= D(uy){Py+ (= whe” + Ry_(w)e" + cy)So} + -+ + D(u){Py + (- we" + € = &) So}

+D(0)So-
By comparing the coefficients before Py, ...,P; we have
py=D(py), .oy = D),
which implies that uy, ..., u; are all constants. By comparing the coefficients before S, we have
o —we" + Ry(w)eY + cyyp = (= whe” + Ry (w)e” +cp) + -+ + uy(—we” + e — &)

+D(pp).

The last equality shows that D(w)— g is a function of w only. Thus D(u) — w is a constant; we
denote it by d,,. The last equality becomes a contradictory one:

N+1ew

w =Ry(w)e" + cyyp — un(=wVe” + Ry_j(w)e” + cy) = -+ = i (= we" + " = &) — d,.

This contradiction proves that c§+ci=0, i.e., c3=c4=0 in case (1). Therefore, g(w)=c,.
Consider case (2). Since

[S07 Q] = )\6‘3 E e)\wja— — )\04 2 e—)\wj ,
w

Jj=— J J=—0 aWj

- J - J
[S0.[S0. Q1] = N2c3 20 eMi—+ NPy D e™Mi—,
Jj=—» aw} J=— &Wj
then vector fields Q)\=C3E;C:_w€)\wj(ﬁ/ dw;) and Q_)\=C4E;°=_we‘)‘wj(&/ dw;) both belong to L,. We

have DQ,D"'=Q, and DQ_,D'=0Q._,.
Assume c3 # 0. Construct vector fields

Ql = [Q}uSl]’ Qn = [Q}u Qn—l]» n= 2

Direct calculations show that

DQlD_1 = Ql - C3€(l+)\)WSO + (ew - E)))\Q)\,
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DQ,D™ = 0, = c5(1 + N)e VS + 2heze ™V Q.

It can be proved by induction on n that

DQnQ_l =Qn_an0+LInQ}w n ZZ,

where

Pa= A ENL+20) -+ (14 (n = DN)e I+,

Gu=ncT NI+ N) - (14 (n = 2)N)eH=DNw,

Since L, is of finite dimension, there exists such a natural number N that

One1 = Oy + - + Q1+ O + 10505
and S,,0\,0,...,0y are linearly independent. Then

DOy, D™ = D(uy)DQND™ + -+ + D(1)DSD™'

or

MNOn+ =+ + Q) + Oy + 10So = Pna1S0 + qna1Qx = D(un){On — PaSo + anOi}
+ -+ D(u {01 = p1So + q10)} + D(1)) Oy + D(11)S,.

By comparing the coefficients before Qy,...,0Q;, we have that w;, 1 =k=N, are all constants.
Comparing coefficients before S, gives

Mo = PNi1 == MNPN = * 0= MaP2 = Py + D). (41)

Since p;, 1=k=N+1, depend on w only, then D(uy)—p, is a function of w, and therefore
D(uo)— mo is a constant; we denote it by d,.

If N#—1/r for all r e N, then p,#0 for all k e N, and Eq. (41) fails to be true.

Consider the case when A=-1/r for some r e N. Substitution uj=e‘)‘wf' transforms vector
fields (—=1/N\c3)Q,, (=1/N)S;, and (=1/\)S, into vector fields

0i=2>

j==

9

ok - ~% T &
S = 2 {Pj +b (uj)}uj_>
jooe Ju;

where

fj_l

2 w—-o) if j=1
k=0

;=40 1 if j=0, b*(u;)=b(rn u))

- -2 if j=-1.

k=j

\
First consider the case r=1. We have
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re[00S= 3 {juj+ 5+ b (u)+ub*'<u>}—

j__oo J

K 0T1= 3 et o

J=—°

where c(u;)= b*’(u )+ u b*”( ),

o0

P
T =[T.K]= v 2 {*+ g\ (u)) + g (u.u,, )}
J

j:—oo

oo

. ; J
T,=[T,T\]= v, E {? +128g)2(“j) +Jg%”)1(u,u1, ’uj) + gg,)()(“?ul’ ,Mj)}£7
J

]__oc

where y,= ; and y, #0.
Construct vector fields, 7,,=[T,T,_;], n=3. Direct calculations show that

) n—1 -1
: . : 4 J
Tn= ’Ynz Jn+l +]ngn,n(uj)+Efkgn,k(u’ula "'?uj) -+ E aj_7 n=1.
j=0 k=0 aul j=—oo (714]

Since {7,}_, is an infinite sequence of linearly independent vector fields from L,, then case r
=1 fails to exist.

Consider case r=2. We have

[

j-1
% S ok . r— ~ T Xl J
adQ;iSl =[0).51]= > Sgn(])r(E uy, l)uj +p; +b () +ub™ (u)) (—

=m0 k=0 du,;
and
0 j-1
adySy = >\ ju+sgn()r ! 2w+ d(u)
N ;
o k=0

for some function d,

adel E {2r!j+d' (u; )}—
/—_oo
Note that vector fields ad, *51 and ad S have coefficients of the same kind as vector fields 7" and
K (from case r=1) have. It means that ad .S] and ad st | generate an infinite dimensional Lie
)\ )\

algebra. This contradiction implies that case r=2 also fails to exist.
Thus, ¢;=0. By interchanging A with —\, we obtain that ¢,=0 also. Hence c3=c4,=0 and
gw)=c,. O
We already know that a(7)=cy7+c,. The next lemma shows that ¢, # 0.
Lemma 8: ¢ is a nonzero constant.
Proof: Assume the contrary. Then a(7)=c, and c¢; # 0. Vector fields (37) and (38) become

and
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- 1 P _
T=—1tT,—c, >, pj+——b(1) (——=—c1tT\— T,
= me, I7;
where
O 1 a
=2 — T=2 {p,-+—b(r,-)}—.
e OT; o me aT;
Since

7 TT=—— S ()=

mC1j=_oc j

and 7, both belong to a finite dimensional L, then, by Lemma 6, (1) 5”"(7)=C,+Cye ™+ Cse¢™" or

(2) b"(7)=C,+C,7+C;7 for some constants C;—C;.
In case (1), b(7)=C;+Cre*+Cye™+Cy7+Cs7 and

-~ - ~ 2C,-\C, ~ - CiP+Cst; | 0
[T.[T. T -NT- ———T,=-\" 2 {p,»+ = ’}—
mc mc, aT;

1 j=== J

is an element in L,.
In case (2), b(7)=C+Cy7+C37+C47+Cs7* and

T-—LT,=
mcl j:-oc

C, ~ - C27‘+C372~+C4T3+C5T4 d
1 E {pj+ J I / Ly

mcy aT;

belongs to L,.
To finish the proof of the lemma it is enough to show that vector fields

~ - a
T2 = 2 {pj+ C2’Tj+ C37J2~+ C475’ + Csﬁ};

Jj=—© J

and

- w9
T, = 2 a_

j=== OTj
produce an infinite dimensional Lie algebra L, for any fixed constants C,—Cs. One can prove it by
showing that L, contains vector fields 2;';_mjk(¢9/ dj) for all k=1,2,.... Note that

S P
[T).T,]= > (—j+C2+2C3Tj+3C47‘]2»+4C57';)(7—.
J== 7
There are four cases: (a) Cs#0, (b) Cs=0,C,#0, (¢) Cs=C4,=0, C3#0, and (d) Cs5=C4=C;
=0.
In case (a),

1%

L9
",
IT;

_ _ _ _ _ o] a oo
[TL[TL[T. T - 6C,T = 2 24C57'ja_ =24CsP, e L, Py= 2,
j= j j=—
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©

[T.[T).T,]]= X {2C5+6C,7;+ 12c572} L.,
j=—° aT;
and therefore,
S, 0
Py= 2 11— €el,
j= " 0T;
and
Ty:=[T1,,T,] - CoT, = 2C3P, = 3C4Py= 2, (- J+4C573) L,.
Jj== aT;
We have
1~ S w0
N== (T P]+2Ty) = 2 j— e L.
j=e 7]
Now,

[Jl,[Jl,Pz]]— E J—

2/ 07
Assuming Ji=37 . j*(9/ 7)) € L, we have that
J ._l J,.[J..P E s J cL
k+1 P 2[ al ks 2l]= J x:
== aT;
In case (b) we have
Jd
Py {[Tl,[Tl,Tz]] 2C5Ty} = E 7o € L
Jj==* J
and
Ty=[T,,Ty] - C,T, - 2C5P, = E (- ]+3c472)
J_—OC
We have
1 ~ - w0
Jyi=——(T5,P ]+ T5) = X j— e L,
2 j== 97
and
1 o0
P,= T;,P —elL,.
2 6C -[Ts.P)) = ]gwr(%_je

As it was shown in the proof of case (a), J, and P, produce an infinite dimensional Lie algebra.
In case (c),

T;=[T\.T,]- C,T, = E( J+2C37')

j=—°
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- - - o« . ._1 ﬁ
T,=[T3,T5]= 2 (J(’ )—jC2—2C3jrj+2C§72)— el,.
o 2 J 0’;,7.}
]_—OC
Also,
- . . © . .+l &
Ts=[T5T,]=2C; >, (j(’ )+C2j—2C3jTj+2C§ f)a_ elL,.
j=== 7

Since 7~“4 and 7~“5 both belong to L,, then either
(i)

S0 - 2 P
L= j—el, Te= (J——anj7'j+2cg7'f)—eLx
jee 9T jeo \ 2 I

or
(ii)

In case (c) (i),

P, = 4%5{[?1,?6] +2C3J,} =j=§_‘,w Tj% eL,.
Since
- o P d
7= 3 (-Leacie)

J=—%°

J

and

©

2
e 2 (o2t

J

j:—oo
both belong to L,, then

o0

L d S, 4
=2 j~—eL, Py=2 17— €L,
je=e O] jme O]

P, and J| generate an infinite dimensional Lie algebra.
In case (c) (i),

1 d
(CSTJZ" 5 A,~+p_,->—'.

2 aT;

N o0 (9 N o0
TI:EE’ TZ:E

j== T jE==

Note that the Lie algebra generated by the vector fields

~ o~ 1\~ J J J
Tzk= T, - <C372— _T)Tl =d(r,m)——d(r_,D)—+d(r,7) +d(7,7)) — + -
2 am a7y &)

and
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_ a9
T,= 2 —

j==e 07

is infinite dimensional. It can be proved by comparing this algebra with the infinite dimensional
characteristic Lie algebra of the chain

=1+ G317 = 12) = 51, +1). (42)

Indeed, the Lie algebra L,, for (42) is generated by operators (18) and (19) with d(t,tl):C3(t%
—tz)—%(t1+t). To keep standard notations we set a(7)=—2C37—1 and b(T)=C37'2+%7'. Note that
since C;# 0, function a(7) is not a constant. It follows from Theorem 3 proved below that the
characteristic Lie algebras L, (and therefore algebra L,;) for Eq. (42) is of infinite dimension.
Thus, in case (c) (ii) we also have an infinite dimensional Lie algebra L,.

In case (d),

- < J
T2=E(_T_Tl_“._T]'—1+C27?]')_ELX'
j= I7;

Then

- -
Ji=cTy = [T, T,] = 2 J7- €L,

jeme 7]

and

_ 1 59
J2=—2([J1,T2]— <‘+C2>J1> => j—¢elL,.
2 37'}

Jj=—%

Assuming that J,, 1=k=n, belong to L,, by considering [J,L,Tz] one may show that J,,,
=E;i_ocjk+1(z9/ d7j) € L,. It implies that L, is of infinite dimension. d
Let us introduce new variables,

€l
wjzln Ti+— .
€o

Vector fields 7} and T in variables w; can be rewritten as

Ty=co 2,

Jj=—»°

J S
— =¢S,,
ow, 090

oo

~ d
T=—tCOS0+C02 {ﬁj+b(Wj)}_=—C0tS0+COS1,
== w;

where

So= 2 ﬁ, Sy = E {ﬁj"'l;(wj)}

JE=e O jE==

J
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fj_l
>(em-2) if j=1
k=0
5. =4 0 if =0, Lt ;’,‘(W,)=_l _b(7)
pj .] B J
_1 Co m 007'j+cl

D (e -7) if j=-1.

L

We have

DS,D'=S,, DS, D=8, - (e"-?)S,.
These lemmas allow one to prove the following theorem.
Theorem 4: If the equation
=t +a(n+b(D" e e, m=1,
admits a nontrivial x -integral, then

(1) a(n=cyt and b(1)=c,7+c37, where ¢y, ¢, , and cy are some constants.
2) m=1.

Proof: Consider case (1). Define vector field

oo~ _ J
0 =[S0,[S0,511]1 = [S0,81]1 = E (b"(Wj) - b’(Wj))_~
Jj=— 19Wj
By Lemma 7, B"(w)—b'(w)=C for some constant C. Thus, E(w)=C0+C]eW+ C,w for some con-

stants C;, C,, and C,. Consider vector fields

©

. d
P=(Cy-Co)So+ S, -[Sp.811= 2 (Czwj+c])_ﬁw ,
famc j

~.

% -1 -1
Jd J Jd
R=[S0.[50.5:1]= > (E EW") +Ce"i (——+Cie"—~ > (E @W") +Ce"i (—,
j=1 aw; . aw

k=1 j U = j

R1=[P’R]’ Rn+1=[P’Rn:|’ n=1.
Then

J
Rn = 2 {ew.f(C] gW;’ + Pn,j) + rn’j(W,W], . ,Wi_])}_
=0 Iw;

.. d
+ '21 {e"i((Cy - 1)C3W7 + P, )+ 1, (W, wo, . 7Wj+1)}£,
J== J

where P, ;=P, j(w;,j) is a polynomial of degree n—1 whose coefficients depend on j; r,, ; are the
functions that do not depend on w;. Since all vector fields R, belong to a finite dimensional Lie
algebra L., then C,C,=(C,—1)C,=0, or the same, C,=0. Therefore,

b(w)=Cy+ Cye”.
Since C,=0, then
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ow

and

J
Rn — mz {ew| + 27" 4 (] _ l)newj_| +jnclewj}_
j= &W]
-1
—& 2 (- 1)+ (= 2)" e 2 4 (j)"e i+ " Cre ,}—

J==* wj

Again, vector fields R, belong to a finite dimensional Lie algebra only if ¢=0, or the same, ¢
=0. It implies that

a(n)=cor, b(1)=cy™ +c57.

Consider case (2). Assume the contrary, that is, m=2. Then the following vector field:

1 o o o (1
19y () = Y@ mpe(nn-1hetn = = > (‘G(T)f +bT)+ (o )C(T)>
. Jj=—® ]

o

=-2 (%a(r)(wp,)% —b(r)(t+p) + ———— )———E

Jj=— ( - ) Tj j=—o j
—1 2 Yaln)pp+ —b(r) (= 2 —a(T)p, + b(T) sl GO ey
j:—oo m 197'1 j=_oc 2 (m ) ]
is in L,. In variables w;=In 7,
2

—adm (Y) _C050+tCOSI —C()Sz,
where

[’

1 7 .
S,= > {Eﬁ?—b(wj)ﬁﬁE(wj)}%, 5(Wj)=_c(7'L

j=o j m(m—1)7;
The vector fields S, and S; are as in Lemma 7. We have
[S0,:8,]=28,+ CoSy + P, P= 2, r(w )—, r(w) =& (w) = 28(w) — Cob(w).

j==* Wi

Construct the sequence

S3:[S1’S2]9 Sn+l =[Sl’Sn]’ n=2.

One can prove by induction on n that
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n-1

[SO’Sn] = nSn + E Vn,kSk
k=0

and
n(n 1) n-2
DS, D=8, + {T - 1}ewsn_1 + > p(n.k)S, n=3.
k=0

Since L, is of finite dimension, then there exists a natural number N such that

Sne1 = MNSN + Mn—1Sy-1 + 1+ oS-

Then

DSy D™ = D(uy)DSND™ + D(pay_)DSy_ D™ + -+ + D(po)DSyD™".
On the other hand,
. (N+1)N
DSN+1D :SN+]+ T—l eWSN‘l'

We compare the coefficients before Sy and have two equations:

N+1)N
D(uy) = oy + {% - 1}€W, N=2,
and
D(u)=p +e¥, N=1.
Both equations are contradictory. Therefore, our assumption that m=2 was wrong. 0

IV. NONZERO ROOT

Lemma 9: Assume that Eq. (12) admits a nontrivial x -integral. Then the characteristic
polynomial of Eq. (25) can only have simple nonzero roots.
Proof: Assume that m;=2. Introduce polynomials

@y - AN _ AN

Consider vector fields

Sy = AZNadp) Y=Y snears

81= Ao, (adR)Y 4= Y (a(rsn(apyecst
from the Lie algebra L,.

In variables 7,=1;—t;,,, vector fields S and S| become

©

" J
Sh=—em! A(T))e"1Pi— == e™'S),
j=== I7;
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©

J
Si= = 1e1Sg— e 3 {A(r)py+ B(r)}ethi-— = = 1e'S = e,
j=—= i

with So=27 _A(7))e“?i(9/d1)) and S,=27__{A(7))p;+B(7))}e1Pi(9/ ;).
Direct calculations show that

DS()D_l = ealTSO, DSID_] = @alTSI + T@alTSO.
Define the sequence
SZZ[SO’Sl]’ Sn+l :[SO’Sn]s n= 2
One can easily show that
DS,D™! = *17S, + a,e*17A(7)S| + e**1(A(7) — oy B(7))S,.

It can be proved by induction on n that

n-2
nn-1
DS, D' =e"7S + a ( )e"al"A(T)S,,_l + > Y(n,k)S,.
k=0
Since the dimension of L, is finite and S,,S;,... are elements of L,, then there exists a natural

number N such that

Sna1 = MNSN + MN-1SN-1 + 7+ (oS0,
and Sy,S;,...,Sy are linearly independent. Therefore,
DSpyiD™" = D(uy)DSyD™ + D(puy_)DSy_ D™ + =+ + D(pg) DSyD™".
On the other hand,

N-1

eNDUTA (DS + D YN+ 1,K)S,.

(N+1)N
2 k=0

DSy, D' =e™MDns, L+ a

By comparing the coefficients before Sy in the last two equations we have

+T€

e(N+1)a17’MN N+1)aer(7.) =D(MN)€NQIT.

It follows at once that uy is a constant and then

2y

A(r)=Ce"=1), C= m.

Let us construct a new infinite sequence of vector fields belonging to L., enumerated by a multi-
index,

TO = Sl’ Tl = SO’ TZ = [Sl’Tl]’ Tn+1 = [Sl’Tn:L n= 27 Tn,O = [SO’ Tn]’

L0y iy iy = [Siann,O,i],...,in_]]7 ij € {0;1}.

Direct calculations show that

DT,D™' = &> T, + 217(a,B — A)T, — a;*1"AT,
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DT5D™' = &9 + 3973y B - A+ 3y TA) Ty + 7Ty g+ >, v(3,8)Tp
m(B)<2

Here and below we use functions m=m(B) and [/=I(8) defined in Sec. III. It can be proved by
induction on n that

DT, D™ =" T, + "¢, B—A +c,7AMT,_; + 7" >, Vi PTe+ 2 v(n,B)Tp,
m(B)=n-1,1(B)=1 m(B)=n-2
where
an(n—1)
Cp=—""T—"7,
2

and v*(n, B) are constants for any 8 with m(B8)=n—1 and I(8)=1.
In general, for any 7y,

DT,/D_I — e(m(7)+l(7))a17'Ty+ E V(%IB)T,B"
m(B)=m(y)-1

Among the vector fields 75 we choose a system P of linearly independent vector fields in such a
way that for some natural number N, we have the following:

() T.eP,k=N.
(i) m(B)=N for any Tge P.
(iii) ~ For any T, with m(y) =N we have Ty=ETBeP,m(,3)5m(y)M(%,B)T,& Also

Tyer=p(N+ LN)Ty+ 2 p(N+1.8)Tp.
TBEP
(iv)  For any T, & P with m(y)=N and I(y)=1, we have u(y,N)=0.
Indeed,
DT, D™ =D(u(y,N)DTyD™ + 2 D(u(y,B))DTsD™".
TgeP. BN
On the other hand,

DTyD_l — e(m(7)+l(7))0117T7+ 2 V('V’B)T,B
m(B)=N-1

=e(N+1>alT{,u(y,N)TN+ > ;f«(%B)TB}+ 2 vrpT

Tﬂe P.m(B)=N,B#N m(B)=N-1

By comparing the coefficients before T we have

N DTy (3, N) = D(u(y,N))eN™,

which proves u(y,N)=0 for any y with m(y)=N and I(y)=1. We have

Ty = pnTy+ 2 (N + l,ﬁ)T'B.
TﬁeP
Here puy=u(N+1,N). Then
DTy, D™ =D(uy)DTyD™ + 2 D(u(N+1,8))DTD™".
TBEP

We continue and have
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e(NH)a‘T{MNTN*‘ > N+ Lﬂ)Tﬁ} +eMaTey \B-A+ ey, ATy
TﬂEP

+reMhar X PN+ LB)Te+ X vN+1,8)Tg
m(B)=N.I(B)=1 m(B)=N-1

= D(;U«N){@NQITTN + 2 N, ,B)Tﬁ}

m(B)=N-1

+ > D(M(N+1,B)>{e<m<ﬁ>+"‘*”a%+ > V(B,r)Tr}-

TBEP m(r)=N-1

We compare the coefficients before 7 and get

NNy 4 NN e B— At ey TAY = VD ().

Note that, by property (iv), we do not have term 7e™*D 7 in the left side of the last equality. Thus,

using the expression for A(7)=C(e™*1"—1) and the fact that uy is a constant, we have

B(T) = ClA + CzTA = Cl(e_alT— 1) + C27'(€_alT— l),

where
1
C]Zﬂ'i'_, Cz——]
Congr - Cng
We introduce new vector fields
~ 1 J ~ 1 o J
So=—=Sp=("=1)—+ -+, S;==8S;+—Sp=7me"=1)—+ ---.
oco(e )&T 1C1Co (e )07_

§2 = [S;O’S;l]v §n+l = [§O?§n]7 n=2.
We have

D§00_1 = ealrgo, D§1D_1 = ealT§1 - TealTS;(),

n
DS,D™' =2 7(n,k)S;,  F(n,n) =",
k=0

where %(n,k) are functions of 7 only. Since all vector fields §k belong to a finite dimensional Lie
algebra L, then there exists such a natural number M that
Sue1 = By + -+ + oo, (43)

and §0, o sSy are linearly independent. Then

DSy D™ = D(jiy)DSy D™ + +++ + D(jig) DS,D™!
and

M

M + 1M + DSy + -+ + fLoSo} + 2 M + 1,08, = D(EN{F(M,M)Sy+ -+ -+ .
k=0

By comparing the coefficients before S u» we have
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eMDATG 4 H(M +1,M) = D(fEy)eM,

which implies that f,, is a constant. In the same way, by comparing the coefficients before §M_1

and then before u-> and so on, one can show that all coefficients [, are constants.
One can show by induction on n that for n=2,

n-1
~ Jd
S,=\ (= 1) (n=2) e+ 2 r(nk)em kT — 4
=0 aT
where r(n,k) are some constants. Return to equality (43) with constant coefficients i&; and com-
pare the coefficients before d/d:

M
AN = MM = 1) Ve M7 LT (M + 1,k) e = (2= DM2(M - 2) 1 e VT
k=0
M-1
+ 2 F(M e ) 4 ok (e @T=1).
k=0

The last equality fails to be true. It shows that our assumption that multiplicity m; of a nonzero

root a; can be 2 or more was wrong. O
If the characteristic polynomial of (25) has only one nonzero root a, then d(z,t;)=A(t

—1t,)e™. In this case Eq. (12) admits a nontrivial x-integral (see Sec. I, Theorem 3). In Sec. V we

consider a case when the characteristic polynomial of (25) has at least two nonzero roots.

V. TWO NONZERO ROOTS

Let @ and B be two nonzero roots. Consider the vector fields

So= 2 A(T)e™i—, 8= > B())ePri—
jE== &T] Jj=—® &7'1

from the Lie algebra L, and construct a new sequence of vector fields
S,=[80.81), S.1=[5.5,), n=1
We have

DS,D™'=¢?7S,, DS,D'=¢P7S,,

DSZD_I — e(a+B)TS2 + IBAe(MB)TSI _ aBe('”ﬁ)TSo.
In general, for any n=3,

n-2

DS, D' = DB g 4 (¢ a+d, BAS, |+ (p,A" +q,A)AS, ,+ >, v(n,k)S, [,
k=0

where

(-2 “D|n=-2
cnz%, dy=n—1, pn+l=”(”2 ){”Tmﬁ}, n=2.

nn-2)(n-1)3n- l)a2+ (n- 1)2na,8+ nn-1) ,

= =2,
Gn+1 24 2 2 ﬂ s n

Let us consider a particular case when
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Sy = moSo + m1S1- (44)
We have
DS,D™" = D(ug)e® ™Sy + D)) eP’S, = e\ @P)7S, + BA**P)S| — aBe*+P7S,)
= e P 0So + w1} + BALPTS| — aBel RS
Comparing coefficients before S, and S; produces the following two equations:
e(a+B)TM0 _ a,Be(a+B)T: D(/J’())em-? e(a+,B)TMl + ,8Ae<“+/3)7= D(/-Ll)eBT'

It follows that u, and u; are constants and

B == B, A@ =),

Finally, comparing coefficients before d/dr in Eq. (44) implies that a=-.
Let us return to the general case. Since L, is of finite dimension, then there exists such number
N that S;,S;,...,Sy are linearly independent and

Snet = UNSN + my1Sh-1 + 0+ (oS-
Then
DSy D™ = D(pp)DSyD™" + D(py_1)DSy_ D™ + - -+ + D(g) DS,D™!
and therefore,
e(Na+B)T{(MNSN + o1 Syot + ) Aoy @+ dy B)Sy + APyt A’ + g A) Sy + -}
= D(MN){e«N_UmB)T(SN"' Aleya+dyB)Sy_y + )} + D(ﬂN—]){e((N_z)a+’8)TSN—1 SRR
By comparing the coefficients before Sy we have
NPy + Aleyy i+ dy, i By = D(py)e VDT,
It follows that uy is a constant and then
Aleyy@+dy, B) = pyle™ = 1).
If CN+1a+dN+1,8=N{[(N— l)/2]a+ﬂ} * 0, then
A(n)=Ci(e™*=1)

for some constant C;.
If cypat+dy, B=N{{(N-1)/2]a+B}=0 (in this case uy=0) we compare coefficients before
Sy_; and have

e(Na+ﬁ)T{MN—1 +A(pynA’ +qnaA)} = D(MN—])E((N_Z)MB)T-
It follows that uy_; is a constant and

PrniAA” + i AT = g (€797 - 1),

Note that if CN+1 a+dN+|ﬂ=N{[(N— l)/2]a+ﬂ}=0, then PN+1 Z—[N(N— l)(N+ l)/ lZ]a #0 and
qns1=—[(N=1)N(N+1)/24]a?#0 for N=2. Therefore, (2/qyy)pn+1=a. Case N=1 should be
studied separately (S,=x;S;+1oSo) and it was already. Let us solve the equation

PNstAA" + gy A = py (€727 1),
Denote by y=A2. We have
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V' +ay=kie -k,
for some constant k;. It follows that
A7) =K (e + Kpe ™+ 1)

for some constants K; and K,.
Construct a new sequence of vector fields,

$5=[81.5], S, =[S1.5,1, n=2.

Note that S;:—Sz. Since L, is of finite dimension, then there exists number M such that
So>S1s .- ,S;‘W are linearly independent and

Shis1 = MarSu + M-Sy + 0+ 16So-

Following are the possibilities:

(1)
A(n) =K (e™*=1),
B(1) =Ky(eP-1),
()
A(T):Kl(e_a‘r_ 1),
2 2 ~2B7 -Br . o P . M-1
BA1) =K3(e T+ Kye P+ 1), Syper = mySy+ M-Sy + 0+ HoSo, 5 B+a=0,
(3)
B(7) =Ks(eP7-1),
AT = Ki(e* + Kpe ™ + 1), Syyt = punSy+ Uyo1Snot + 00 + 1oSos ; a+p=0,
and
4)
2 2( —2ar —at N-1
A7) =K+ Ky "+ 1), Sy = unSy+ py-1Syo1 + 0 + oS0, > a+p=0,
2 2 2B -pr o o ok - . M-1
BA(7) =K5(e™ "+ Kye™ + 1), Sypor = mySp+ M Syo1 + 7+ 1oSos > B+a=0,

where K, K, # -2, K3, and K, # -2 are some constants, M ,N=2.

In case (1), vector fields S, and S, generate an infinite dimensional Lie algebra L, unless «
+3=0.
In case (2), we make a substitution 1—e*"=¢~*". Vector fields S, and S, become

So=K J
= — 4 -,
0 ](9W
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J Jd
S1 - {K%((l _ e—aw)—Zﬁ/a+ K4(1 _ e—a’w)—ﬂ/a+ 1)}1/2_ oo =g(w)— 4.
ow ow
Note that if

ok * * * % *
Swrer = MySpr + Myr—1Sy—1 + 7+ (oS0,

then all coefficients u; are constants. By comparing coefficients before ¢/ dw in both sides of the
last equation we obtain that g(w) is a solution of linear differential equation with constant coef-
ficients, that is,

gw) ={K3((1 =) 2P0 L Ky(1 — ™) P 1)}12 = ) Ry(w)e™, (45)
k

where R;(w) are some polynomials. One can show that equality (45) holds only if B(7)=K;(e*"
+1). It can be shown that in case (3) A(7)=K,(e’"+1). In case (4) we make substitution e*”

aT
+K, /24 Ve?amtKie T+l — g% Then

(1 K, (K} 1\ _ 7P 1 K, (K} 1\ _ \Pe 2
S =VK5|l ze——+|——<]e ™ +Ky | ze™——+|— == +1 —
\2 2 \8 2 2 2 \8 2 ow

For function g(w) to be of form 2R, (w)e” ", where R,(w) are polynomials, function B(7) has to
be of form B(7)=K;(e*"+1). Then, by case (3), A(7)=K,(e”*"+1).
It has been proved that in cases (1)—(4) one has

(17)

A1) =K ("= 1),

B(1) =K3(e* - 1),

(2%
A(D) =K (e "= 1),
B(7) = K;3(e“"+ 1),
(3%)
A(T) =K (e 7+ 1),
B(7)=K5(e* - 1),
and
4

A(T)=K (e + 1),

B(7) =K;5(e“"+1).
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In case (17) function d(z,¢,) in (12) has the form d(z,;)=c,(e®1—e*)+cs(e”*1—e™ ), where
¢y and cs are some constants. Equation (12) with such function d(z,7,) admits a nontrivial
x-integral (see Sec. I, Theorem 3 and Sec. VIII).

In Secs. VI and VII we show that cases (3%) and (4") both correspond to infinite dimensional
Lie algebra L,. Case (2¥) also produces an infinite dimensional Lie algebra L,. It can be proved in
the same way as it is proved for case (3%).

VL. CHARACTERISTIC LIE ALGEBRA L, OF THE CHAIN t,,=t,+A,(e*" + e
_Az(e-at_ e—afﬁ)

Since A(7)=A;(e”*"+1) and B(7)=A,(e¢*"—1), then

k k-1
A(T)e‘”+EA 1(6‘ +<2Ee )+ea’k>

Jj=1
and

k

B(De ™™+, B(7j)e™i=Ay(e™ — e ).
j=1

We have

) k-1 =) k-1
1 J J Jd
—Sp= (e + ™) — + > (e“’ + (22 e“’f) + e”"k) —+ ( (22 e‘”/) + e‘”k)
Ay It ke =1 Oy =i dt_y

j=1

and
Jd
—Sl—e ary E e M— = X -8,
f=—co ity
where
o P
S, = e ¥h—
: k:E—oc 27

In variables w;=(1/a)e® vector fields S, and (1/A,)S, can be rewritten as

o0

[ k-1 ® k-1
1 J d
—So_ag wk(w+22w>+wk a—+az w_k<w+22w_]~)+wzk D

A, j=1 Wi j=1 IW_g

We have

- 1 S _
T,=1S.,1S,—5—S =4 k— =4T,, k—
AT, ISP

k=—o0 Wy k=—00 ow k

I U | P L
T2=[Sl,[T1,a2A ” 3E{k2 k+1}(—+—>=3T2—3T1+3Sl, Tz_Ek2
1

Iwg Iwy . Owyg

Assume that Tm=2f=_ock’"(r9/ owy), m=1,2...,n, are vector fields from L,. Then
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~ [~ 1 - d a
Tpir = [Sl,[Tm,z—ASO” =2 201427 4+3" 4 e 4 kM) 4+ 2k —k’”}(— + —)
o k=1

1 &Wk O”W_k
*© km+1 | a 19
=>92 +dy k" + o+ dy gk d e | 2K =K — + —
1,1 S 0,m
=1 m+1 aw,  dw_y

and therefore, T, =Ef=_mk'”+lmivk € L,. It shows that T,,=Ef=_wk"ﬁk eL, forall n=1,2,3,... and
L, is of infinite dimension.

VIl. CHARACTERISTIC LIE ALGEBRA L, OF THE CHAIN t,,=t,+A,(e*" +e")
+Ay(e %y eoM)

It was observed in previous studies (see, for instance, Ref. 10) that S-integrable models have
the characteristic Lie algebra of finite growth. The chain studied in this section can easily be
reduced to the semidiscrete SG model #;,=¢,+sin #+sin #; which belongs to the S-integrable class.
It is remarkable that its algebra L, is of finite growth, or, more exactly, the dimension of the linear
space of multiple commutators grows linearly with the multiplicity. Below we prove that the linear
space V, of all commutators of multiplicity =n has a basis {P, P, P3,...Py; 05,04, ... Q) for
n=2k and a basis {Py,P,,P3, ... Pyy1:05,Q4., ... Oy} for n=2k+1, where the operators P; and Q;
are defined consecutively,

Py =[S0, 811+ aSy+aS;, Q=P
Py=[S..P\], 0,=[50.01l,
Py=[So, Pyl + Py, 03=[S,,0,] - a0y,
Py =[S1,Pyuct)s 02, =[50, 0201

Pyt =[S0, Poyl + aPsy Qo =[81.05,] — @Qy,

for n=1. Direct calculations show that

DP\D™' =P, -2a(Sy+S)),
DP,D™ = ¢ ®(Py+ 2aP, - 2a°(Sy + S))),
DPiD™'= Py +2aQ, - 2aP, - 4a*P, +4a’(Sy + S)),
DP, D' = ¢ (P, +2a0Q; — 40*P, + 4070, — 4a° P + 4a*(Sy + 5))),
DQ,D™" =e*(Q, - 2aP; +2a°(Sy+51)),
DQO;D™'= Q5+ 2a0, - 2aP, - 4a’P, +4a°(Sy + S)),
DQD™' =" (Qy—2aP; +2a(Py — Q) + 42’ Py — 4a*(Sy + 5))),

P3=Qs, [S1,P]=—aPy,[S0,02]= aQ,,[S),Py]=— aPy[S),04] = aQy. (46)
The coefficient before d/d7 in all vector fields DP;,D~! and DQ,D™!, 1=i=<4, is zero.
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Lemma 10: For n=1 we have

(1) DPy, D' +20e“ DP,, D' =P, +2aQ,, ,
(2) €Y DPysD™ ' =aDPy, D7 =Py r+ Qo1
(3) DQ2n+1D_l_2ae_aTDQ2nD_l=Q2n+1_2ap2n ’
(4) €Dy, 2D ™ +aDQy, 1D =00y APy
(5) Pr1=02ps1 >

(6) [S),Prr]=—aPyy,, , and

(7) [S0,02n42]= Q015 -

Moreover; the coefficient before 9/ dt in all vector fields DPD™" and DQ,D" is zero.

Proof: We prove the lemma by induction on n. It follows from (46) that the base of induction
holds for n=1. Assume that (1)—(7) are true for all n, 1 =n=k. Let us prove that (1) is true for
n=k+1.

DP3, 3D = D([Sg, Papia] + @P2y0) D™ =[S0, D Py, :D ™' 1+ aDP,, 2D
=[eSg,ae™ " DPy, D™ + € Pyyy + @€ "Qy,41] + @D Py, D7

—a*(14+ e *)DP,,,\ D™ + ae™*e*"Sy,DP,, D]

— a1+ )Py — (1 + €N Q1 + Poyys — @Poyir + @Qsp4r + aDPy, ,D7
- (1 + e *)DPy, D™ + ae™ D[S, 02,1 1D — a2 + €77 Py

- (1 +€ ) Qo1 + Poyys + Qi + aDP, 0D
— (14 “)DPy, D™ + aQp — &Py = *D Qe D!

— a2+ € )P — (1 + €70 =20 Qo) = 20Ps, 10+ oy
—20%DP, D7 4200540 = 207 Qsp41 = 2P0 + Poyis
=2aPy,p+20° Qo1 — 20" DPy, ,D™ + 2005, = 207 Q341 = 2aPs, 00 + Poyay

=—2ae“DPy,:D 7" + 2005, + Py

The proof of (3) is the same as the proof of (1). Let us show that (5) is true for n=k+1. We have

DPy, 3D ==20e* DPy, ;D" + 200y,17 + Pz =—20(aDPy, D™ + Pppp + Q)11

+ 200,00+ Poy3

and

DQy, 3D =20e™"DQy,,,D7! = 2aPy, 5 + Qi3 =2a(— aDQy, D™ + 0y0 — aPyyy)

=2aPy,0+ Qs

By (5), P3,.1=05,+1 and therefore

D(Py3— Q211+3)D_1 ==2aPyu = 200,40 + 200,15 + 2aP;,,, =0.

Hence, Ps,,3=0243-
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Let us prove that (2) is true for n=k+ 1. We have

€“"DPy, D" = "' D[S, Py,31D7" = ¢* ™S}, DPy,43D7']
= e“e™"S),= 2ae“ DPy,,D™' + 200515 + Payi3)
=e*(=22%(1 + €“)DP,, ,D™") = 2ae** €78, D P, oD ™' 1+ Poyos + 200543
+20%Qs40
==20%(e* + e**)DP,,,,D" +20%€** DP,,, ,D 7 + Py + 200543 + 20200
= =20 DPy, 3D + Pypy + 200,43+ 207 Qo4
= aDPy, 3D = aPyy3 = 202 Qspin + Poyis + 200043+ 20° 0o
= aDPy,3D7" + a0y + Poyas-
The proof of (4) is similar to the proof of (2).
Let us prove that (6) is true for n=k+1,
D[S, Py, g]D™" =[S, e "D Py, 3D + € TPy + € 705,,5]
=[S}, ae™ " (= 2ae“ DP 2D~ + Pz + 2005,10) + € TPy + a2 0,45
=[e7"S1,= 20’ DP2, oD + 24€™ TPy, 3+ 207€ YTy, 0 + € VP 4]
==20?D[S). Py, ]D7" = 207771 + €*)Pyypp3 — 2a7¢77(1 + %) Q5,00
+20e7 Py, +200€ 05,5+ 200770, — ae (1 + ) Poyyy
+e7S 1, Pyl
=2a’DP;,,D™' = 207€ TPy, 5+ A€ = € ) Pyyg = 200€ 0,000
+e7YS ), Pyyal
= a?e™ Py, +20°¢ Q)00 — AP DP,, 3D = 207 YP,, 5
+ (€= e )Py =200 Qnpn + €S|, Poyas]
== ¢ Pyuy + A€ — € )Py — aDPyy 4D + aeT Py, + 07605,
+ eS| Pyl
Thus,

D[S, Py, ]D7" = €778 . Pyl + € 7Py, — aDPy,, D7

D([SI’P2n+4] + aP2n+4)D_l = e_zar([S15P2n+4] + aP2n+4) .

Hence, [S}, Pyy4]=—aPyy 4. O
The proof of (7) is similar to the proof of (6).
Corollary 1: We have

e DQ,,D7' + e DP,, D' = Q,, + P,,,
n n—1
_ 2+l 2n+1 2n+l 2+ 2n+1
DPyyy D7 = Poyy + 2 (u5 Py + 570050 + 2 M(zk': P + VS0 + v s,
k=0

k=1

n—1 n—1

DP,,D™" = e_M<P ot 2 (S Po+ V5 000) + 2 w5 Por + 1 So + 7S 1),
k=1 k=0
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n-1 n-1

DQ,, D" = ear( o= 2 (WS Py + 150 050) = 2 S Py = S — v’ 1) .
k=1 k=0

Moreover. M(22,,n+1)=_2a , V(Zi”“):Za , and ,u(22n"_)1=2a .

Assume that L, is of finite dimension. There are three possibilities:

(1) 84,8,,P,,P5,0,,P5,P4,0Qy,...,P,,_, are linearly independent and

S0.51,P1,P>,05,P3,P4,04,...,P>,_1,P,, are linearly dependent,
2) S¢,81,P1,Py,0,,P3,P4,04,...,Py,_, P, are linearly independent and

S0:51,P1,P2,05,P3,P4,04,...,Ps,_1,P>,,0,, are linearly dependent, and
3) S0,8,,P,P3,0,,P5,P4,04,...,Ps,,0,, are linearly independent and

S0:81:P1,P2,05,P3,P4,04,...,P5,,05,,P>,,; are linearly dependent.
In case (1),
Py =Yon-1Pon1 + Yan2Pon2+ Mn2Qopa+
and
DPy,D™" = D(7,-)DP3, 1 D™" + D(72,2) DP5, 2D~ + D(1,5)DQ5, oD~  + -+ . (47)
We use Corollary 1 to compare the coefficients before P,,_; in (47) and have the contradictory
equality
e_aT(‘yZn—l + 2&) = D('}’Zn—l)-

It shows that case (1) is impossible to have.
In case (2),

Q20 = Y2uPon + Yon-1Pon-1 + Mp-2Qon2+ "+
and
DQ2,D™" = D(72,)DP3,D™" + D(y3,.)DP2y i D™ + D(92, ) DQ3,y sD ™" 4 . (48)
We use Corollary 1 to compare the coefficients before P,,_; in (48) and have the contradictory
equation
e (Va-1 = 20) = D(¥2-1)-

It shows that case (2) is impossible to have.
In case (3),

P2n+1 = 772nQ2n + 72nP2n +-
and
DP2n+1D_1 =D(7]2n)DQ2nD_1 + D(72t1)DP2nD_1 + . (49)

We use Corollary 1 to compare the coefficients before P,, in (49) and have the contradictory
equation

(72;1 - 2&) = D(‘YZn)e_aT'

It shows that case (3) also fails to be true. Therefore, characteristic Lie algebra L, is of infinite
dimension.
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VIIl. FINDING x-INTEGRALS

Now we are ready to prove the main theorem, Theorem 3, formulated in Sec. I. Really, in the
previous sections we proved that if chain (12) admits a nontrivial x-integral, then it is one of forms
(1)—(4). List (i)—(iv) allows one to prove the inverse statement: each of the equations from the list
admits indeed a nontrivial x-integral. O

Let us explain briefly how we found list (i)—(iv). Since for each equation (1)—(4) we have
constructed the related characteristic Lie algebra to find x-integral F one has to solve the corre-
sponding system of the first order partial differential equations. Below we illustrate the method
with case (2), for which the basis of the characteristic algebra L, is given by the vector fields

Y=0,+Y T,=Y =2, 0,2 ,2,79
=4, + , =Y_un ==ttt + -,

X a(7)t+b(7) 1 a(7) ot 5ll (9[_1 &lz at_2
where a(7)=c,7 and b(7)=c,7+c;7. Note that x-integral F of (2) should satisfy the equations
YF=0, T,F=0, and XF=0. Introduce new variables t,W,W+y,... where w;=In(7) and 7=t
—1t;,1. Vector fields X, T,, and Y in new variables are rewritten as

R S - PR o P
Y=—-12 o t+Co > pi+bw)—=—-1T +¢ > {pi+b(w)t—,
ox j=—oo W] j=—0 (9Wj 0. . ow

X j== j

where
(.

j-1
S if j=1
k=0

- e ~ 1 .
pj=< 0 if j=0, b(wj)=—c—(cze i+cs),
-1 0
D e if j=—1.
k=j

\
Note that since we have XF =0, F does not depend on ¢. Now let us consider the vector field

[

~ J ~ d
Y+tT1=A=_+C02 {ﬁj+b(wj)} .
ox = é’wj

We can write the vector field A explicitly as

I S g4 - - p
c
=—+ 2\ |coX | —cpei—cs (= - 2T+ 2 | co € | —cpe™i [ —.
ax &Wj ox ow

k=0 €o j=—w k=0 j

Jj=—%

The commutator [7,A] gives

d
[Tl,A] = C()A —Co_— + C3T1.
ox

Thus we have three vector fields,

[ j—l
Jd c ~ d
A——+—3T1 = A= E COE ek | —cye"i (—,
ox Cop j=—oo k=0 19Wj
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which solve AF=0, T1F=O, and f1F=O. Note that [YN"I ,A]=A. Since )Z'IF=O, F does not depend
on x. Hence we end up with two equations. By the Jacobi theorem the system of equations has a
nontrivial solution F(w,w;,w,) depending on three variables. Therefore we need first three terms

of A and Tl,

n J w w J w w w 4
A=—-cow + (cge” — cre™t + (cge” + cpe’l — cre™? s
2 0 2 0 0 2

aw ow,y ow,

~ J J J
Ty=—+—+—.
aw &Wl l?Wz
Now we again introduce new variables w=¢€, w—w;=¢€, and w;—w,=¢€,. Vector fields A and T in
new variables are rewritten as

~ J J Jd
A=eN—cr—+((mca—co)tcre™)—+((—cy—cole T+ cre ™ 2)— o, T\=—.
Jde 3 Jde) Je

To find the x-integral (ii) in Theorem 3 one has to solve the equation

17 1%
(mer—co)+cre™)—+ e U((—cy—cp) + cre2)— (F=0.
&El (?62

IX. CONCLUSION

In this article the problem of classification of Darboux integrable nonlinear semidiscrete
chains of hyperbolic type was studied. An approach based on the notion of characteristic Lie
algebra was properly modified and successfully used. We gave a complete list of hyperbolic-type
chains ¢,,=t,+d(t,;) admitting nontrivial x-integrals. We demonstrated that the method of char-
acteristic Lie algebras provides an effective tool to classify integrable discrete chains as well. The
method did not get much attention in the literature. To our knowledge there are only two studies
(see Refs. 9 and 14) where the characteristic Lie algebras are applied for solving the classification
problem for the partial differential equations and systems. Surprisingly the first of them was
published in 1981 and the second one only 25 years later.
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