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The concept of integrable boundary conditions is applied to hydrodynamic type
systems. Examples of such boundary conditions for dispersionless Toda systems are
obtained. The close relation of integrable boundary conditions with integrable re-
ductions in multifield systems is observed. The problem of consistency of boundary
conditions with the Hamiltonian formulation is discussed. Examples of Hamil-
tonian integrable hydrodynamic type systems on a segment and a semiline are
presented. © 2008 American Institute of Physics. �DOI: 10.1063/1.2993008�

I. INTRODUCTION

The theory of the integrable hydrodynamic type of systems

ut
i = v j

i�u�ux
j , i, j = 1,2, . . . N �1�

was initiated by Dubrovin and Novikov1 and Tsarev.2 Here in Eq. �1� summation over the repeated
indices is assumed and u is an N-component column vector of the form u= �u1 ,u2 , . . . ,uN�t. Such
systems have a variety of applications in gas dynamics, fluid mechanics,3–6 chemical kinetics,
Whitham averaging procedure,7–10 differential geometry, and topological field theory. We refer to
Refs. 11 and 12 for further discussions and references.

In the present article, a problem of finding boundary conditions for hydrodynamic type equa-
tions consistent with the integrability property is studied for a special case of the system �1� called
dispersionless Toda lattices.13–15 Actually we assume that Eq. �1� admits a Lax representation on
the algebra

A = ��
−�

�

ui�x�pi:ui decay sufficiently rapidly as x → � �� �2�

with the following Poisson bracket:

�f ,g	 = p
 � f

�p

�g

�x
−

� f

�x

�g

�p
�, f ,g � A .

Such equations, for example, appear in the fluid mechanics as reductions in Benney moment
equations.3–12

Our definition of consistency of boundary conditions with the integrability �see Refs. 16–18�
is based on the notion of symmetries. A constraint of the form

a�Electronic mail: gurses@fen.bilkent.edu.tr.
b�Electronic addresses: habibullin_i@mail.rb.ru and habib@fen.bilkent.edu.tr. On leave from Ufa Institute of Mathematics,

Russian Academy of Science, Chernyshevskii Str. 112, Ufa 450077, Russia.
c�Electronic mail: zheltukh@metu.edu.tr.

JOURNAL OF MATHEMATICAL PHYSICS 49, 102704 �2008�

49, 102704-10022-2488/2008/49�10�/102704/15/$23.00 © 2008 American Institute of Physics

Downloaded 17 May 2011 to 139.179.14.104. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2993008
http://dx.doi.org/10.1063/1.2993008
http://dx.doi.org/10.1063/1.2993008


f�t,u,u�1�, . . . ,u�k���x=x0
= 0, �3�

where u�j�=� j /�xju imposed at some point x0 is called a boundary condition at this point. Bound-
ary value problems �1� and �3� �or simply boundary condition �3�� are called consistent with the
symmetry

u�
i = �i�t,x,u,u�1�, . . . ,u�m�� �4�

if �1� and �4� are compatible under the constraint �3�. More precisely, we mean the following:
differentiation of �3� with respect to � yields

� � f

�u�n�
i �u�n�

i �� = 0, �5�

where �-derivatives are replaced by means of Eq. �4�.
Definition 1: Boundary value problems (1) and (3) are consistent with the symmetry (4) if (5)

holds identical by means of (3) and its differential consequences obtained by differentiating with
respect to t.

Note that since constraint �3� is valid only for x=x0, it cannot be differentiated with respect to
x. For this reason, it is convenient to exclude the x-derivatives of dependent variable u from our
scheme. By solving Eq. �1� for ux

i one gets ux=v−1ut, where v−1 is the matrix inverse to v j
i�u�.

Similarly, uxx= �v−1ut�x= �v−1�xut+v−1�v−1�tut+v−2utt is expressed through u ,ut ,utt and so on. As a
result one can rewrite boundary condition �3� and symmetry �4� taken at point x0 as

f1�t,u,ut, . . .� = 0 �6�

and

u� = �1�t,x0,u,ut, . . .� . �7�

Now the consistency requirement can be reformulated as follows. Boundary condition �3� is
consistent with �4� if differential constraint �6� is consistent with the associated �-dynamics �7�.
We call the boundary condition consistent with integrability if it is consistent with an infinite
dimensional subspace of symmetries. Hydrodynamic type system given in �1� defines an
N-dimensional dynamical system and the boundary condition �6� defines a hypersurface in
N-dimensional space of functions. Thus, due to the remark above, an integrable boundary condi-
tion is closely connected to reductions in the associated system �7� compatible with integrability.15

Below we use this important observation in order to find symmetry consistent boundary condi-
tions.

Boundary conditions that passed the symmetry test are then tested for consistency with the
conserved quantities, Hamiltonian structures, and the complete integrability property of system
�1�.19–22

It is remarkable that some of the boundary conditions also satisfy these additional require-
ments and thus allow one to reduce �1� to a completely integrable Hamiltonian system on a
segment and a half-line. For more information see Ref. 23 and references therein.

This paper is organized as follows. In Sec. II some integrable boundary conditions for Toda
system are derived and it is shown that these boundary conditions are compatible with infinite
number of symmetries. The relation between the integrable reductions in N-system and the inte-
grable boundary conditions is considered in Sec. III. It is observed that some integrable boundary
conditions lead to integrable reductions. In Sec. IV we discuss the compatibility of the integrable
boundary conditions found in the previous sections with the Hamiltonian formulation. We show
that some boundary conditions are indeed compatible with the Hamiltonian formulation and also
with an infinite class of symmetries. In all sections up to Sec. IV only N=2 systems are consid-
ered. In Sec. V we study N=3 systems which give other examples of hydrodynamic type equa-
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tions. For this case, some integrable boundary conditions compatible with infinite number of
symmetries and boundary conditions compatible with the Hamiltonian formulation are found.

II. INTEGRABLE BOUNDARY CONDITIONS FOR THE TODA SYSTEM

In this section we study the well known example of integrable model24

St = Px,

�8�
Pt = PSx

called Toda system, admitting the Lax representation on the algebra of Lourent series �2�

Lt = ��L��0,L	 , �9�

where

L = p + S + Pp−1. �10�

The corresponding hierarchy of symmetries of the Toda system �8� is

Ltn
= �L,�Ln��0	 . �11�

Recursion operator corresponding to the above hierarchy is �for calculation of recursion operator
see Refs. 15 and 25�

R = 
S 2 + PxDx
−1 · P−1

2P S + SxPDx
−1 · P−1 � . �12�

In some cases, it is convenient to consider the Toda system �8� in other variables. We write the Lax
function �10� as L= p−1�p+u��p+v�, that is,

S = u + v, P = uv . �13�

Then the Toda system �9� gives

ut = uvx,

�14�
vt = vux.

Let us find boundary conditions compatible with an infinite number of symmetries from the
hierarchy �11�. As a boundary, we take x=0. First we find boundary conditions compatible with
the first symmetry of the hierarchy �11�. Assume that the boundary condition depends on P and S
and can be solved with respect to S. So the boundary condition can be written as

S = F�P�, x = 0. �15�

Lemma 1: On the boundary x=0, the boundary condition of the form (15) compatible with
the first symmetry of the hierarchy (11)

St1
= 2SPx + 2PSx,

�16�
Pt1

= 2PPx + 2SPSx

is given by

P =
�S + c�2

4
, x = 0. �17�
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Proof: The boundary condition �15� is compatible with the symmetry �16� if on the boundary
x=0

St1
= F��P�Pt1

�18�

for all solutions of Eq. �8�. Let us find functions F for which the above equality holds. We rewrite
the symmetry �16� in terms of variables S, P, and their t derivatives using Eq. �8�

St1
= 2SSt + 2Pt,

�19�
Pt1

= 2PSt + 2SPt.

Then we substitute St1
and Pt1

into �18�, so

2SSt + 2Pt = F��P��2PSt + 2SPt� . �20�

From �15� it follows that St=F��P�Pt, so

2SF��P�Pt + 2Pt = F��P��2PF��P�Pt + 2SPt� . �21�

Hence,

F�2�P� =
1

P
. �22�

The above equation has a solution �17�. �

It is convenient to write the boundary condition �17� as

P =
S2

4
, x = 0. �23�

By shifting S, the Toda system �8� is invariant with respect to such shift.
Lemma 2: All the symmetries of the hierarchy (11) are compatible with the boundary condi-

tion (23).
Proof: The boundary condition �23� is compatible with an evolution symmetry


S

P
�

�

= 
�

�
� �24�

if �= 1
2S� for P= 1

4S2. That is, under the constraint �23� the symmetry �24� should take the form


S�
1
2SS�

� = 
�
1
2S�

� . �25�

Evidently, the first symmetry of the hierarchy �11� has such a form. Let us show that the recursion
operator �12� preserves the property �25�. On the boundary x=0, we rewrite the recursion operator
�12� in terms of t derivatives using the Toda system �8� as follows:

R = 
S + StDt
−1 2

2P + PtDt
−1 S

� . �26�

Applying the recursion operator �26� into a symmetry �25�, we obtained a symmetry


S

P
�

�̃

= 
�̃
1
2S�̃

� . �27�

�
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We also have the following boundary condition compatible with the hierarchy �11�.
Lemma 3: On the boundary x=0, the boundary condition

P = 0 �28�

is compatible with all symmetries of the hierarchy (11).
The above lemma is proved in the same way as Lemma 2.
Another boundary condition comes from consideration of odd and even solutions of the Toda

system �8�. This boundary condition is not compatible with all symmetries of the hierarchy �11�
but only with even ones.

Lemma 4: On the boundary x=0, the boundary condition

S = 0 �29�

is compatible with all even numbered symmetries of the hierarchy (11).
The above lemma is proved in the same way as Lemma 2 using the square of the recursion

operator �26�.

III. INTEGRABLE REDUCTIONS

Let us consider other equations admitting a Lax representation on the algebra �2�. For a Lax
function L= p−1�p−uN��p−uN−1�¯ �p−u1�, where N�2, we consider the Lax equation,

Lt = �L,�L��0	 �30�

and an infinite hierarchy of symmetries

Ltn
= �L,�Ln��0	, n = 1,2, . . . . �31�

For such equations we cannot directly find boundary conditions compatible with symmetries �see
Sec. V�. So we use integrable reductions.15

Definition 2: A reduction in an integrable equation is called integrable if reduced equation is
also integrable. That is, the reduced equation admits an infinite hierarchy of symmetries.

In Ref. 15 it was shown that the following reductions

uN = uN−1 = ¯ = ui = 0, i � 2,

uN = uN−1 = ¯ = uj, j � 1 �32�

of the above equations are integrable. We note that for these reductions the symmetries of the
reduced equation are obtained by the reduction in the symmetries of the original system.

If we have an integrable reduction such that symmetries of the reduced system are obtained by
the reduction in the symmetries of the original system, then the reduction can be taken as inte-
grable boundary conditions. Indeed, the original system is invariant under the hierarchy of sym-
metries and the reduced system is invariant under the symmetries. Since reduction can be recov-
ered from the original system and the reduced system, it is also invariant under the symmetries.
So, taking the reductions �32� as boundary conditions we obtain symmetry invariant boundary
conditions.

Theorem 1: For a system (30) the boundary condition �uN=uN−1= ¯ =ui� �x=a=0 or �uN

=uN−1= ¯ =uj� �x=a (taking x=a as the boundary) is integrable.
Let us take boundary conditions obtained in Sec. II. The condition �P=S2 /4� �x=0 in u ,v

variables �13� is �u−v� �x=0=0. It corresponds to a reduction u=v. The condition P �x=0=0 in u ,v
variables is �uv� �x=0=0. It corresponds to a reduction u=0 �or v=0�. The condition S �x=0=0 in u ,v
variables is �u+v� �x=0=0. It does not correspond to reductions considered above.

Remark: If we take a reduction mentioned above as a boundary condition, then we can
consider the corresponding reduced system. Solutions of the reduced system obviously satisfy the
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main system equations and the boundary condition. For Toda system, the reduction P=0 leads to
the equation

St = 0. �33�

Its solution S= f�x�, for any differentiable function f , gives the solution of Toda system �8�
satisfying the corresponding boundary condition �28�. The reduction P=S2 /4 leads to the Hopf
equation,

St = 1
2SSx. �34�

Its solution S=h�2x+ tS� gives the solution of Toda system �8� satisfying the corresponding bound-
ary condition. Here h is any differentiable function of x and t. To find a solution of N-system
satisfying the integrable boundary condition, the method described above is very effective. We
take the corresponding reduction and the corresponding reduced �N−1� system. Solving the re-
duced system gives automatically the solution of the N-system, satisfying the integrable boundary
condition.

IV. HAMILTONIAN REPRESENTATION OF THE INTEGRABLE BOUNDARY VALUE
PROBLEMS

To obtain the Hamiltonian formulation of the Toda system �8�, we use its Lax representation
on the algebra �2�.

We define, for the algebra of Lourent series �2�, a trace functional

tr f = 

−�

�

u0dx, f � A, f = �
−�

�

ui�x�pi �35�

and a nondegenerate ad-invariant pairing

�f ,g� = tr�f · g�, f ,g � A . �36�

Thus we have a Poisson algebra with a commutative multiplication and unity, the multiplication
satisfies the derivation property with respect to the Poisson bracket, and the algebra is equipped
with a nondegenerate ad-invariant pairing. Following Ref. 14 we can define an infinite family of
Poisson structures for smooth functions on the algebra A. A function F on A is smooth if there is
a map dF :A→A such that

F��t=0�f + tg� = �dF�f�,g�, f ,g � A .

The following theorem �Ref. 14 see also Refs. 26 and 27� holds.
Theorem 2: Let A be a Poisson algebra with unity, commutative multiplication, Poisson

bracket {.,.}, and nondegenerate, ad-invariant pairing (.,.). Assume that the multiplication satisfies
the derivation property with respect to the Poisson bracket and is symmetric with respect to the
pairing �fg ,h�= �f ,gh�. If R :A→A is a classical r-matrix, then for smooth functions F and G on
A:

�a�

�F,G	�n��f� = �f ,�R�fn+1dF�f��,dG�f�	� + �f ,�dF�f�,R�fn+1dG�f��	� �37�

defines a Poisson structure for each integer n�−1.

�b� The structures �. , .	�n� are compatible with each other (their sum is again a Poisson
structure).

A linear operator R :A→A is a classical r-matrix if the bracket
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�f ,g� = 1
2 ��Rf ,g	 + �f ,Rg	�

is a Lie bracket.
To apply the above theorem, we take an r-matrix

R = 1
2 �P�0 − P�−1� , �38�

where P�0 and P�−1 are projectors on Poisson subalgebras

A�0 = �u = �
0

�

uip
i:u � A� and A�0 = �u = �

−�

−1

uip
i:u � A� ,

respectively. Note that the Lax equation �9� is

Lt = �R�L�,L	 , �39�

where L= p+S+ Pp−1.
Using the Poisson structures given by Theorem 2 we obtain bi-Hamiltonian formulation of the

Toda lattice.
The submanifold M = �L�A :L= p+S+ Pp−1	 is a Poisson submanifold for the Poisson struc-

ture �37� with n=−1. Restricting this structure on M we obtain the following Hamiltonian opera-
tor:

D−1 = 
0 PDx + Px

PDx 0
� . �40�

We have first Hamiltonian formulation for �8�


S

P
�

t
= D−1
	H−1/	S

	H−1/	P
� , �41�

where

H−1 =
1

2
tr L2, that is, H−1 =

1

2



−�

�

�S2 + 2P�dx . �42�

The second Hamiltonian operator can be obtained by restricting the Poisson structure �37� with
n=0 on the submanifold M or by application of the recursion operator �12� to the Hamiltonian
operator �40�. The second Hamiltonian operator is

D0 = 
2PDx + Px SPDx + SPx

SPDx + SxP P2Dx + PPx
� . �43�

The corresponding Hamiltonian functional is

H0 = tr L, that is, H0 = 

−�

�

Sdx . �44�

Since Hamiltonian operators D−1 and D0 are compatible, we have a bi-Hamiltonian representation
of Eq. �8�.

In u ,v variables �13� the Hamiltonian operators and functionals take form

B−1 =
uv

�u − v�2
− 2u u + v

u + v − 2v
�Dx �45�
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+
1

�u − v�3
2uv2ux − u3vx − u2vvx u2vvx + u3vx − 2uv2ux

2uv2vx − uv2ux − v3ux v3ux + uv2ux − 2u2vvx
� �46�

and

G−1 = 

−�

�

�u2 + v2 + 4uv�dx , �47�

B0 = 
 0 uvx + uvDx

vux + uvDx 0
� , �48�

and

G0 = 

−�

�

�u + v�dx . �49�

A different approach was used in Ref. 13 to obtain the Hamiltonian operator B0 �see also refer-
ences in Ref. 13�. The explicit expressions of an infinite number of conservation laws for the Toda
system �14� was given in Ref. 13,

Qn,t = Fn,x, n = 1,2 . . . , �50�

where

Qn = �
j=0

n 
n

j
�2

ujvn−j , n = 1,2,3. . . �51�

and

Fn = �
j=0

n
n − j

j + 1

n

j
�2

uj+1vn−j , n = 1,2,3 . . . . �52�

The conserved quantities Qn=�−�
� Qndx are in involution with respect to the Hamiltonian operators

B−1 and B0. One can easily check if the boundary conditions preserve the conserved quantities.
Lemma 5: For the Toda system (14) with the boundary condition

�a� �u−v� �x=0=0 ��P=S2 /4� �x=0� the above conservation laws are not preserved;
�b� uv �x=0=0 �P �x=0=0� the quantities



0

�

Qndx , n = 1,2,3. . . �53�

are conserved; and
�c� �u+v� �x=0=0 �S �x=0=0� the quantities



0

�

Qndx , n = 2,4,6. . . �54�

are conserved.

We can use the above Hamiltonian operators to obtain the Hamiltonian representation of some
of the boundary value problems.

Theorem 3: The Toda system (14) on a segment �0,1� with boundary conditions
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uv�x=0 = 0 and uv�x=1 = 0 �55�

admits the bi-Hamiltonian representation with Hamiltonian operators B�n�, n=−1,0, and Hamil-
tonians

G−1 = 

0

1

�u2 + v2 + 4uv�dx = 

−�

�

�u2 + v2 + 4uv�
�x�
�1 − x�dx �56�

and

G0 = 

0

1

�u + v�dx = 

−�

�

�u + v�
�x�
�1 − x�dx , �57�

respectively, where 
�x� is the Heaviside step function.
Proof: The Hamiltonian equations


u

v
�

t
= Bn
	Gn/	u

	Gn/	v
�, n = − 1,0 �58�

are for n=−1

ut = uvx −
uv

u − v
�	�x� − 	�1 − x�� ,

�59�

vt = vux +
uv

u − v
�	�x� − 	�1 − x��

and for n=0

ut = uvx + uv�	�x� − 	�1 − x�� ,

�60�
vt = vux + uv�	�x� − 	�1 − x�� ,

where x� �0,1�. Under the boundary conditions uv �x=0=0 and uv �x=1=0 we have the Toda system
�14� on �0,1�. Note that the Poisson brackets are given by

�K,N	 = 

−�

� 
	K/	u

	K/	v
�B�n�
	N/	u

	N/	v
� , �61�

where n=−1,0. �

V. INTEGRABLE BOUNDARY CONDITIONS FOR THE THREE FIELD SYSTEMS

Let us consider a three field hydrodynamic type system on the algebra �2�. We take a Lax
function

L = p2 + Sp + P + Qp−1. �62�

We can construct two integrable hierarchies with this Lax function.
The first hierarchy is given by

Lt = ��Ln+1/2��0,L	, n = 0,1,2, . . . , �63�

the first equation of the hierarchy is

St = Px − 1
2SSx,
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Pt = Qx, �64�

Qt = 1
2QSx.

The second hierarchy is given by

Lt = ��Ln��0,L	, n = 1,2,3 . . . , �65�

the first equation of the hierarchy is

St = 2Qx,

Pt = SQx + QSx, �66�

Qt = QPx.

We also have a recursion operator15 of the hierarchies �63� and �65�,

�P − 1
4S2 + � 1

2 Px − 1
4SSx�Dx

−1 1
2S 3 + 2QxDx

−1Q−1

3
2Q + 1

2QxDx
−1 P 2S + �SQ�xDx

−1Q−1

1
4SQ + 1

4SxQDx
−1 3

2Q P + QPxDx
−1Q−1 � . �67�

The bi-Hamiltonian representation of Eqs. �64� and �66� is obtained by restricting the Poisson
structure �37� with n=−1 and n=0 on the submanifold M = �L�A :L= p2+Sp+ P+Qp−1	. So we
have Hamiltonian operators

C−1 = �2Dx 0 0

0 0 QDx + Qx

0 QDx 0
� �68�

and

C0 =�
�2P − 1

2S2�Dx + Px − 1
2SSx 3QDx + 2Qx

1
2QDx + 1

2SQx

QDx + Qx 2SQDx + SQx + QSx PQDx + PDx

1

2
SQDx + 1

2QSx PDx + PxQ
3
2Q2Dx + 3

2QQx
� . �69�

Equation �64� can be written as

� S

P

Q
�

t

= C−1� 	H−1/	S

	H−1/	P

	H−1/	Q
� = C0� 	H0/	S

	H0/	P

	H0/	Q
� , �70�

where

H−1 =
2

3
tr L3/2, that is, H−1 = 


−�

� 
Q +
1

2
SP −

1

24
S3�dx �71�

and

H0 = 2 tr L1/2, that is, H0 = 

−�

�

Sdx . �72�

Equation �66� can be written as
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� S

P

Q
�

t

= C−1� 	H̃−1/	S

	H̃−1/	P

	H̃−1/	Q
� = C0� 	H̃0/	S

	H̃0/	P

	H̃0/	Q
� , �73�

where

H̃−1 =
1

2
tr L2, that is, H̃−1 = 


−�

� 
SQ +
1

2
P2�dx �74�

and

H̃0 = tr L, that is, H̃0 = 

−�

�

Pdx . �75�

We can give both hierarchies in modified variables, writing the Lax function �62� as L
= p−1�p−u��p−v��p−w�, that is,

S = u + v + w ,

P = uv + uw + vw , �76�

Q = uvw .

It is quite difficult to find integrable boundary condition directly for three field systems. For
example, consider hierarchy �63�. In the following lemmas, we use P ,Q ,R variables since sym-
metries and recursion operator have a simple form in these variables.

Lemma 6: Let x=0 be the boundary. The boundary conditions of the form P=F�S� and Q
=G�S� are compatible with the first symmetry of the hierarchy(63) if the functions F and G satisfy
the following differential equations:

3
2S�F��2 + 3F�G� − 3

4F�S2 − 3G�S − 3
2G = 0, �77�

3
2SF�G� + 3�G��2 − 3

2F�G − 3
4G�S2 − 3

4SG = 0. �78�

Proof: The first symmetry of the hierarchy �63� is

St1
= 3

2�P − 1
4S2��Px − 1

2SSx� + 3
2SQx + 3

2SxQ ,

Pt1
= 3

2 PQx + 3
2 PxQ

3
4QSSx + 3

8S2Qx, �79�

Qt1
= 1

4SQ�Px − 1
2SSx� + 1

4Q�P − 1
4S2� + 3

2QQx + 1
2QPSx + 1

2QSPx.

Differentiating the boundary conditions P=F�S� and Q=G�S� with respect to the above symmetry
and expressing all the x derivatives in terms of t derivatives using Eq. �64�, we obtain Eqs. �77�
and �78�. �

Lemma 7: Let x=0 be the boundary. The boundary condition of the form S=F�P ,Q� is
compatible with the first symmetry of the hierarchy (63) if function F satisfies the following
differential equations:

3
2�P − 1

4F2�FP + 3
2F = 3

2 PFP + 3
2QFP

2 + 3
8QFP

2 + 3
8F2FP + 1

4QFFQ + 3
2QFQ + 1

2FFPFQ, �80�
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3
2�P − 1

4F2�FQ + 3
2 = 3

2QFPFQ + 3
2FFP + 1

2�P − 1
4S2�FQ + PFQ + 1

2QFFQ
2 + 1

2F2FQ. �81�

Proof: We differentiate the boundary condition S=F�P ,Q� with respect to the symmetry �63�
and express all the x derivatives in terms of t derivatives using Eq. �64�. Then separating terms
containing Pt and Qt, we obtain Eqs. �80� and �81�. �

The differential equations obtained in the above lemmas are nonlinear partial differential
equations which are rather complicated. So, to obtain integrable boundary conditions it is easy to
use integrable reductions discussed in Sec. III. Let x=0 be a boundary.

�a� Integrable reduction u=v gives integrable boundary condition u �x=0=v �x=0 or �S3Q−S2P2

+4Q3−18SPQ+27Q2� �x=0=0 �condition on coefficients of cubic equation to have two equal
roots� in S , P ,Q variables.

�b� Integrable reduction u=v=w gives integrable boundary conditions u �x=0=v �x=0=w �x=0 or
P �x=0= 1

3S2 �x=0, Q �x=0= 1
27S3 �x=0 �condition on coefficients of cubic equation to have all roots

equal�.
�c� Integrable reduction u=0 gives integrable boundary condition u �x=0=0 or Q �x=0=0.
�d� Integrable reduction u=0, v=0 gives integrable boundary conditions u �x=0=0, v �x=0=0 or

P �x=0=0, Q �x=0=0.

To obtain boundary value problems that admit bi-Hamiltonian representation we modify
Hamiltonian functions, as in the case of Toda system. We use S , P ,Q variables, the Hamiltonian
operators have simpler form in this variables.

For Eq. �64� we have the following.
Theorem 4: Equation (64) on a segment �0,1� with boundary conditions


P −
1

4
S2��x=0 = 0, Q�x=0 = 0 and 
P −

1

4
S2��x=1 = 0, Q�x=1 = 0 �82�

admits the bi-Hamiltonian representation with Hamiltonian operators (68) and (69), and Hamil-
tonians

H� −1 = 

−�

� 
Q +
1

2
SP −

1

24
S3�
�x�
�1 − x�dx �83�

and

H� 0 = 

−�

�

S
�x�
�1 − x�dx , �84�

respectively, where 
�x� is the Heaviside step function.
Proof: The Hamiltonian equations

� S

P

Q
�

t

= Cn� 	H� n/	S

	H� n/	P

	H� n/	Q
�, n = − 1,0 �85�

are for n=−1
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St = Px − 1
2SSx + �P − 1

4S2��	�x� − 	�1 − x�� ,

Pt = Qx + 1
2SQ�	�x� − 	�1 − x�� , �86�

Qt = 1
2QSx + Q�	�x� − 	�1 − x��

and for n=0

St = Px − 1
2SSx + �2P − 1

2S2��	�x� − 	�1 − x�� ,

Pt = Qx + Q�	�x� − 	�1 − x�� , �87�

Qt = 1
2QSx + 1

2SQ�	�x� − 	�1 − x�� ,

where x� �0,1�. Under the boundary conditions �82� we have Eq. �64� on �0,1�. �

The boundary conditions �82� are symmetry integrable.
Lemma 8: All the symmetries of the hierarchy (63) are compatible with the boundary condi-

tion (82).
Proof: The boundary condition �82� is compatible with an evolution symmetry

� S

P

Q
�

�

= ��

�

�
� �88�

if �= 1
2S� and �=0 for P= 1

4S2 and Q=0 on the boundary x=0. That is, under the conditions �82�
the symmetry �88� should take the form

� S�
1
2SS�

0
� = � �

1
2S�

0
� . �89�

One can check that the first symmetry of the hierarchy �63� has such a form. Let us show that the
recursion operator �67� preserves the form �89�. On the boundary x=0, we rewrite the recursion
operator �67� in terms of t derivatives using Eq. �64� as follows:

�
P − 1

4S2 − 1
4StDt

−1S 1
2S + 1

2StDt
−1 3 + PtDt

−1

3
2Q − 1

4 PtDt
−1S P + 1

2 PtDt
−1 2S + � 1

2SPt + Qt�Dt
−1

1
4SQ − 1

4QtDt
−1S

3

2
Q + 1

2QtDt
−1 P + 1

2QPtDt
−1 � . �90�

Applying the recursion operator �90� to a symmetry �89� we obtained a symmetry

�S�̃

1
2SS�̃

0
� = ��̃

1
2S�̃

0
� . �91�

�

For Eq. �66� we have the following.
Theorem 5: Equation (66) on a segment �0,1� with boundary conditions

Q�x=0 = 0 and Q�x=1 = 0 �92�
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admits the bi-Hamiltonian representation with Hamiltonian operators (68) and (69), and Hamil-
tonians

H̃̃−1 = 

−�

� 
SQ +
1

2
P2�
�x�
�1 − x�dx �93�

and

H̃̃0 = 

−�

�

P
�x�
�1 − x�dx , �94�

respectively, where 
�x� is the Heaviside step function.
Proof: The Hamiltonian equations

� S

P

Q
�

t

= Cn� 	H̃̃n/	S

	H̃̃n/	P

	H̃̃n/	Q
�, n = − 1,0 �95�

are for n=−1

St = 2Qx + 2Q�	�x� − 	�1 − x�� ,

Pt = SQx + QSx + PQ�	�x� − 	�1 − x�� , �96�

Qt = QPx + SQ�	�x� − 	�1 − x��

and for n=0

St = 2Qx + Q�	�x� − 	�1 − x�� ,

Pt = SQx + QSx + 2SQ�	�x� − 	�1 − x�� , �97�

Qt = QPx + PQ�	�x� − 	�1 − x�� ,

where x� �0,1�. Under the boundary conditions �92� we have Eq. �66� on �0,1�. �

In the same way as in Lemma 8, one can show that the boundary condition �92� is symmetry
integrable. This case is similar to the case of Toda system �the boundary condition Q ��=0 in
modified variables is uvw ��=0�.

VI. CONCLUSION

In this article we studied the problem of integrable boundary conditions for hydrodynamic
type integrable systems. To our knowledge, the problem has never been discussed in literature
before. Since the term integrability has various meanings, the notion of integrable boundary
conditions has also several definitions. As basic ones we take three definitions, namely, consis-
tency with infinite set of symmetries, consistency with infinite set of conserved quantities, and
consistency with the Hamiltonian integrability �or bi-Hamiltonian structure�. Comparison of these
three kinds of integrable boundary conditions shows that the consistency with the bi-Hamiltonian
structure is a very severe restriction. Only very special kind of boundary conditions passes this
test. The class of symmetry consistent boundary conditions seems to be relatively larger. As an
example we studied the dispersionless Toda system. We found all symmetry compatible boundary
conditions of this system and showed that only a subclass of these boundary conditions is com-
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patible with the Hamiltonian formulation of the system. We pointed out that the integrable reduc-
tions in the N-system of hydrodynamical type of equations are directly related to the integrable
boundary conditions of the same systems. Using this property, a method for constructing exact
solutions satisfying the integrable boundary conditions is given. We considered also an N=3
system. Integrable boundary conditions compatible with symmetries and compatible with the
Hamiltonian formulation of this system were found.
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