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Motivated by applicability to quantum operations, quantum information, and quan-
tum probability, we investigate the notion of absolute continuity for operator valued
completely positive maps on C�-algebras, previously introduced by Parthasarathy
�in Athens Conference on Applied Probability and Time Series Analysis I �Springer-
Verlag, Berlin, 1996�, pp. 34–54�. We obtain an intrinsic definition of absolute
continuity, we show that the Lebesgue decomposition defined by Parthasarathy is
the maximal one among all other Lebesgue-type decompositions and that this maxi-
mal Lebesgue decomposition does not depend on the jointly dominating completely
positive map, we obtain more flexible formulas for calculating the maximal Le-
besgue decomposition, and we point out the nonuniqueness of the Lebesgue de-
composition as well as a sufficient condition for uniqueness. In addition, we con-
sider Radon–Nikodym derivatives for absolutely continuous completely positive
maps that, in general, are unbounded positive self-adjoint operators affiliated to a
certain von Neumann algebra, and we obtain a spectral approximation by bounded
Radon–Nikodym derivatives. An application to the existence of the infimum of two
completely positive maps is indicated, and formulas in terms of Choi’s matrices for
the Lebesgue decomposition of completely positive maps in matrix algebras are
obtained. © 2009 American Institute of Physics. �DOI: 10.1063/1.3072683�

I. INTRODUCTION

Modern quantum theory intensively uses the notion of operator valued completely positive
maps on C�-algebras as a mathematical model for quantum operations �e.g., see, Davies12 and
Kraus24�. In quantum probability, operator valued completely positive maps on C�-algebras play
the role of transition probability mappings for quantum Markov processes �e.g., see Meyer26 and
Parthasarthy27�. An essential role in the comparison of operator valued completely positive maps
on C�-algebras is played by the Radon–Nikodym derivative for completely positive maps, first
introduced and studied by Arveson.6 Slightly more general Radon–Nikodym derivatives have been
considered by Belavkin and Stazsewski,9 while Raginsky31 illustrated the importance of these
results and related ideas to some special problems in quantum information theory, and Belavkin et
al.8 applied this Radon–Nikodym derivative to define and investigate a minimax fidelity for
quantum channels.

From the point of view of quantum measurements, the natural setting is that of open quantum
systems for which admissible devices are modeled by quantum operations, that is, completely
positive maps on the C�-algebra of observables of the physical system. The cone of completely
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positive maps defines a natural partial order relation. The main tool to deal with completely
positive maps is the minimal Stinespring representation that produces a “larger” Hilbert space K
and a representation � of the C�–algebra A of observables on K.

An intrinsic deficiency of the Radon–Nikodym derivative is the requirement that the two
completely positive maps should be somehow comparable, otherwise the Radon–Nikodym deriva-
tive may not exist. Recalling the classical Lebesgue decomposition, which represents a measure �
as the superposition of the “good” �absolutely continuous� part and the “bad” �singular� part, with
respect to another measure �, the next step in the comparison theory for operator valued com-
pletely positive maps on C�-algebras was naturally pointing toward investigations on Lebesgue-
type decompositions. This requires first the clarification of absolute continuity and singularity in
this noncommutative setting. Motivated by quantum probability, this further step was done by
Parthasarthy28 who exhibited, for two unital completely positive maps � ,� :A→B�H�, where A
is a C�-algebras and H is a Hilbert space, a construction inspired by the classical Lebesgue
decomposition theorem that can be used in order to produce a decomposition �=�ac+�s, where
�ac and �s are again completely positive and they are called, respectively, the absolutely continu-
ous part and, respectively, the singular part, of � with respect to �. Consequently, � is called
�-absolutely continuous if �s=0. However, natural questions on intrinsic characterizations of
absolute continuity and singularity, uniqueness of Lebesgue decompositions, as well as more
flexible formulas for calculating them are left unanswered.

Further, Radon–Nikodym derivative as a bounded operator can be obtained only when com-
parable completely positive maps are used, while for relatively absolutely continuous completely
positive maps that are not comparable �with respect to the natural order relation� the Radon–
Nikodym derivative can be defined as an unbounded operator only. This raises other questions on
approximation properties, e.g., in the spectral sense, of this unbounded Radon–Nikodym deriva-
tive.

Our approach to the aforementioned questions, from the perspective of quantum measure-
ments theory, is based on the observation that the minimal Stinespring representation of a quantum
operation � is a dilation to a larger ambient Hilbert space K, in which Radon–Nikodym derivatives
can be considered as a transcription of the information carried by the quantum operations domi-
nated by � to quantum effects mathematically modeled by contractive positive operators on K.
Thus, given two operator valued completely positive maps � and �, on the same C�-algebra, what
we first do is to make the dilation by means of the minimal Stinespring representation correspond-
ing to a completely positive map � that dominated both � and �, and then to find Lebesgue-type
decompositions for the corresponding Radon–Nikodym derivatives. In this way, we can generally
reduce most of the obstructions to the known theories of Ando in Ref. 3 of Lebesgue decompo-
sitions for positive contractions and that of Simon33 on canonical forms for non-negative quadratic
forms �Jøorgensen19 considered similar canonical forms for unbounded operators�, combined with
the observations of Kosaki �cf. Refs. 21 and 22� on the connections between these noncommuta-
tive Lebesgue-type decompositions, as well as his refinements of the Ando’s theory. However, in
doing this there is a price we have to pay: the representation is living within a certain von
Neumann algebra, the commutant of the representation of the C�-algebra on K, which can be
rather narrow when compared to the ambient B�K�. This constraint yields a series of additional
obstructions especially in connection with uniqueness.

Following this chain of ideas, we actually show that, to a certain extent, the above mentioned
results of Ando, Simon, and Kosaki can be streamlined to the case of operator valued completely
positive maps on C�-algebras in such a way that the construction of the Lebesgue decomposition,
as well as the underlying notion of absolute continuity employed by Parthasarthy, fitted into this
general framework. Moreover, even though the relations between the existing comparison theories
for non-negative bounded operators, for operator valued completely positive maps on C�-algebras,
and that for non-negative quadratic forms look rather intricate, at least at the first glance, we can
show that one can smoothly translate concepts and results between them once the dictionary is
available. In this paper the point of view is to place the comparison theory for non-negative
bounded operators in the center and derive the connections starting from here, but we also indicate
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that, to a certain extent, the three noncommutative comparison theories, for completely positive
maps, for non-negative bounded operators, and for non-negative quadratic forms, are equivalent.

The article is organized as follows. In Sec. II we first briefly review the construction and the
main results on the Radon–Nikodym derivatives for completely positive maps which enables us to
apply the results within the aforementioned theories of Ando, Kosaki, and Simon. The main
ingredient is the minimal Stinespring representation for operator valued completely positive maps
on C� algebras. From here, it becomes natural to get the intrinsic definition of absolute continuity
for operator valued completely positive maps on C�-algebras. Then we reformulate the chain rule
in a more natural setting, we extend the Radon–Nikodym derivative to absolutely continuous
positive definite maps, and get a spectral approximation of it by bounded Radon–Nikodym de-
rivatives.

The main results are contained in Sec. III in which we first show, see Theorem 3.1, that the
Lebesgue-type construction of Parthsarathy in Ref. 28 produces actually the maximal Lebesgue
decomposition, such that the maximality property makes it unique, and in which absolute conti-
nuity and singularity are exactly the natural concepts considered in Sec. II. Then, in Theorem 3.3,
we show that the maximal Lebesgue decomposition does not depend on the jointly dominating
completely positive map and, hence, that more flexible formulas become available.

The question on the uniqueness of the Lebesgue decomposition for operator valued com-
pletely positive maps is much more difficult than the corresponding results for operators. Some
sufficient conditions for uniqueness are considered in Proposition 3.8 but here the results are less
complete, at this level of generality, because they require a more detailed investigation of Le-
besgue decompositions for positive operators in an ambient von Neumann algebra that may be
different of B�H�, and hence, different techniques may be needed. Some of these difficulties,
especially in connection with dealing with dense operator ranges relative to von Neumann alge-
bras and a still open problem of Dixmier, are apparent from the investigations of Kosaki in Ref.
22. By considering the recovering of the comparison theory for non-negative operators we reduce
the question of providing examples of nonuniqueness to the known results of Ando in Ref. 3, but
the general uniqueness problem remains for later investigations.

In Sec. IV we illustrate the applicability of the Radon–Nikodym derivative and Lebesgue-type
decomposition to the infimum problem for completely positive maps, cf. Theorem 4.2. Other
applications to known special similarity problems for operator valued completely bounded maps
on C�-algebras will be published elsewhere.

In Sec. V we specialize in completely positive maps in matrices and indicate how to calculate
the Radon–Nikodym derivatives and Lebesgue decompositions in terms of the Choi matrices that
might be interesting for applications to quantum information theory, e.g., see Ref. 25. In this finite
dimensional setting, a key role is played by the tracial completely positive map that is maximal in
a certain sense, cf. Raginsky31 and the bibliography cited there.

Appendix A contains a review of the Radon–Nikodym derivative and Lebesgue decomposi-
tions for bounded non-negative operators on a Hilbert space, where the most important ingredients
are two binary operations called parallel sum and shorted operator. This Appendix, hopefully, will
make our article more readable. In this operator setting, the notions of absolute continuity and
singularity appear naturally, formulas to calculate the Radon–Nikodym derivative and Lebesgue
decompositions are available, and questions like uniqueness of Lebesgue decompositions can be
answered in more concrete terms.

Appendix B contains the technicalities related to the extension of the Radon–Nikodym de-
rivatives for two relatively absolutely continuous completely positive maps as well as an attempt
to a better understanding of the bad part, that is, singular part �from a different perspective, an
even more general theory of Lebesgue decompositions for “linear relations,” that offers a better
understanding of the singular part, was recently considered in Ref. 18�. In this respect, it appears
to be quite natural to first consider a comparison theory for non-negative quadratic forms on vector
spaces and so we do. Then we show that this contains as a special case the comparison theory for
completely bounded maps, and hence, it allows us to establish the connection with certain canoni-
cal decompositions investigated previously by Simon33 for quadratic forms and, respectively, by
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Jørgensen19 for unbounded operators, and, consequently, we get also a spectral approximation
property of the Radon–Nikodym derivatives of two relatively absolutely continuous completely
positive maps by bounded Radon–Nikodym derivatives, as in Theorem 2.11.

Finally, in Appendix C, we indicate the interdependencies of the three existing noncommuta-
tive comparison theories by showing how the one for bounded positive operators and the one for
quadratic forms can be obtained from the comparison theory of operator valued completely posi-
tive maps on C�-algebras.

Radon–Nikodym derivatives for different types of non-negative forms on either von Neumann
algebras or C�-algebra have been investigated for a long time and a very general theory for
�-algebras has been considered by Gudder16 �a good source of literature on this type of questions
as well�. For the special case of normal positive forms on von Neumann algebras, a comparison
theory was performed by Kosaki.22 From a certain perspective, these are special cases of operator
valued completely positive maps, but we consider this as a different direction of investigation that
we do not pursue in this article.

II. RADON–NIKODYM DERIVATIVES OF COMPLETELY POSITIVE MAPS

A. Completely positive maps

Assume A is a unital C�-algebra and let H be a Hilbert space. A linear mapping � :A
→B�H� is positive if ��A+��B�H�+, that is, it maps positive elements into positive operators

For n�N let Mn denote the C�-algebra of n�n complex matrices, identified with the
C�-algebra B�Cn�. The C�-algebra A � Mn identified with the C�-algebra Mn�A� of n�n matrices
with entries in A has natural norm and order relation for self-adjoint elements, induced by the
embedding Mn�A��B�H � Cn�=B�Hn�, where Hn denotes the Hilbert space direct sum of n
copies of H. Using these considerations, a linear mapping � :A→B�H� is completely positive if
for any n�N the mapping �n=� � In :A � Mn→B�Hn� is positive. Note that, with respect to the
identification A � Mn=Mn�A�, the mapping �n is given by

�n��aij�i,j=1
n � = ���aij��i,j=1

n , �aij�i,j=1
n � Mn�A� . �2.1�

A linear map � :A→B�H� is called positive definite if for all n�N, �aj� j=1
n �A, and �hj� j=1

n

�H, we have

�
i,j=1

n

���aj
�ai�hi,hj� � 0. �2.2�

Since for any �aj� j=1
n �A the matrix �aj

�ai�i,j=1
n is a non-negative element in Mn�A�, if � is positive

definite then it is completely positive. Conversely, because any positive element in Mn�A� can be
written as a sum of elements of type �aj

�ai�i,j=1
n , it follows that complete positivity is the same with

positive definiteness.
CP�A ;H� denotes the set of all completely positive maps from A into B�H�. If � ,�

�CP�A ;H� one writes �	� if �−��CP�A ;H�; this is the natural partial order �reflexive,
antisymmetric, and transitive� on the cone CP�A ;H�. With respect to the partial order relation 	,
CP�A ;H� is a strict convex cone.

Given ��CP�A ;H� we consider its minimal Stinespring representation ��� ;K� ;V�� �cf.
Stinespring34�. Recall that K� is the Hilbert space quotient completion of the algebraic tensor
product of the linear space A � H endowed with the inner product,

�a � h,b � k�� = ���b�a�h,k� for all a,b � A, h,k � H . �2.3�

�� is defined on elementary tensors by ���a��b � h�= �ab� � h for all a ,b�A and h�H, and then
extended by linearity and continuity to a �-representation �� :A→K�. Also, V�h= �1 � h���K�

for all h�H, where �a � h�� denotes the equivalence class in the factor space A � H /N�, and N�

is the isotropic subspace corresponding to the inner product �· , ·��. The minimal Stinespring rep-
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resentation ��� ;K� ;V�� of � is uniquely defined, modulo unitary equivalence, subject to the
following conditions.

�i� K� is a Hilbert space and V��B�H ,K��.
�ii� �� is a �-representation of A on K� such that ��a�=V�

����a�V� for all a�A.
�iii� ���A�V�H is total in K�.

In case � is unital, the linear operator V� is an isometry and hence, due to the uniqueness, one
usually replaces V with the canonical embedding H�K. This is explains why the Stinespring
representation theorem is considered to be a “dilation-type result,” and the minimal Stinespring
representation is sometimes called the minimal Stinespring dilation, cf. Ref. 29 and the bibliog-
raphy cited there.

We record briefly the well-known example of non-negative Borel measures on compact Haus-
dorff spaces, for later use.

Example 2.1: Let X be a compact Hausdorff space and let C�X� denote the unital Abelian
C�-algebra of complex valued continuous functions on X. If � is a finite non-negative Borel
measure on X then it can be viewed as a bounded linear map � :C�X�→C,

��f� = �
X

f�x�d��x�, f � C�X� . �2.4�

Consider the Hilbert space K�=L2�X ;�� and the canonical representation �� of C�X� on L2�X ;��
defined by ���f�=Mf, where Mf �B�L2�X ;��� is the operator of multiplication with f . Let
V� :C→L2�X ;�� be the linear operator that maps each complex number z to the constant function
on X with value z. Then ��� ;K� ;V�� is the minimal Stinespring representation of �, in particular,
� is completely positive.

B. Radon–Nikodym derivatives

Let � ,��CP�A ;H� be such that �	� and consider the minimal Stinespring representation
��� ;K� ;V�� of �, and similarly for �. Then the identity operator J�,� :A � H→A � H has the
property that J�,�N��N�, hence it can be factored to a linear operator J�,� : �A � H� /N�→ �A
� H� /N� and then can be extended by continuity to a contractive linear operator J�,�

�B�K� ,K��. It is easy to see that

J�,�V� = V�, �2.5�

and that

J�,����a� = ���a�J�,� for all a � A . �2.6�

Thus, letting

D���� ª J�,�
� J�,� �2.7�

we get a contractive linear operator in B�K��. In addition, as a consequence of �2.6�, D����
commutes with all operators ���a� for a�A, briefly, D��������A�� �given a subset T of B�H�
we write T �= 	B�B�H� 
AB=BA for all A�T � for the commutant of T � and

��a� = V�
�D�������a�V� = V�

�D����1/2���a�D����1/2V� for all a � A . �2.8�

The property �2.8� uniquely characterizes the operator D����. The operator D���� is called the
Radon–Nikodym derivative of � with respect to �.

It is immediate from �2.8� that, for any n�N, �aj� j=1
n �A, and �hj� j=1

n �H, the following
formula holds:
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�
i,j=1

n

���aj
�ai�hi,hj� = �D����1/2�

j=1

n

���aj�V�hj�2

. �2.9�

This shows that for any � ,��CP�A ;H� with � ,�	�, we have �	� if and only if D����
	D����.

In addition, if � ,��CP�A ;H� are such that � ,�	� then for any t� �0,1� the completely
positive map �1− t��+ t� is 	� and

D���1 − t�� + t�� = �1 − t�D���� + tD���� . �2.10�

The above considerations can be summarized in the following.
Theorem 2.2: �Arveson �Ref. 6�� Let ��CP�A ;H�. The mapping ��D���� defined in �2.7�,

with its inverse given by �2.8�, is an affine and order-preserving isomorphism between the convex
and partially ordered sets �	��CP�A ;H� 
�	�� ;	� and �	A����A�� 
0	A	 I� ;	�.

One says that � uniformly dominates �, and we write �	u�, if for some t
0 we have �
	 t�. This is a partial preorder relation �only reflexive and transitive�. The associated equivalence
relation �we can call it uniform equivalence� is denoted by u, that is, for � ,��CP�A ;H� we
have �u� if and only if �	u�	u�. It is immediate from Theorem 2.2 the following.

Corollary 2.3: For a given ��CP�A ;H� , the mapping ��D���� defined in �2.7�, with its
inverse given by �2.8�, is an affine and order-preserving isomorphism between the convex cones
�	��CP�A ;H� 
�	u�� ;	� and �	A����A�� 
0	A� ;	�.

We also record the example of the classical Radon–Nikodym derivative, from the perspective
of Arveson’s Radon–Nikodym derivative.

Example 2.4: Let � be a finite non-negative Borel measure on the compact Hausdorff space
X and consider its minimal Stinespring representation ��� ;K� ;V�� as in Example 2.1. Let � be
another finite non-negative Borel measure on X such that, when viewing these measures as
bounded linear functional on C�X� as in �2.4�, we have �	u�, that is, for some t
0 we have

�
X

h�x�d��x� 	 t�
X

h�x�d��x�, h � C�X� , �2.11�

equivalently, ��E�	 t��E� for all E Borel subsets of X. Note that the commutant ���C�X���
coincides with the maximal Abelian von Neumann algebra M= 	Mg 
g�L��X ;���, where Mg is
the bounded operator of multiplication on L2�X ;�� with the function g in the C�-algebra �actually,
a W�-algebra� L��X ;�� of �-essentially bounded functions on X.

By Corollary 2.3, D����, the Radon–Nikodym derivative of ��CP�C�X� ;C� with respect to
��CP�C�X� ;C�, is a non-negative operator in the von Neumann algebra M and hence, there
exists uniquely f �L��X ;�� such that D����=Mf.

On the other hand, the classical Radon–Nikodym derivative d� /d� is originally a
�-absolutely integrable function on X such that d�= fd�, but it is actually �-essentially bounded,
with the �-essential supremum �f��	 t, because of �2.11�. It is easy to see that f =d� /d� �-a.e.,
due to the uniqueness of both Radon–Nikodym derivatives.

C. Absolute continuity

Given � ,��CP�A ;H�, we say that � is �-absolutely continuous, and we write ���, if there
exists a sequence �n�CP�A ;H� subject to the following conditions.

�acp1� The sequence ��n� is nondecreasing, that is, �n	�n+1 for all n�N.
�acp2� SO–lim �n�a�=��a� for all a�A.
�acp3� �n	u� for all n�N, more precisely, for each n�N there exists tn
0 such that �n

	 tn�.
This definition is inspired from the definition of absolute continuity for positive definite

functions on �-semigroups given by Ando and Szymański in Ref. 5.
The following lemma is the analog of Proposition 2.5 in Ref. 5.
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Lemma 2.5: For a given ��CP�A ;H� , let �n ,��CP�A ;H�, �n	�	u�, and �n	�n+1 for
all n�N. Then the following are equivalent.

�i� SO–limn→� D���n�=D����.
�ii� For all a�A SO–limn→� �n�a�=��a� , that is,

lim
n→�

��n�a�h − ��a�h� for all a � A, h � H .

�iii� For all a�A, WO–limn→� �n�a�=��a� , that is,

lim
n→�

��n�a�h,k� = ���a�h,k� for all a � A, h,k � H .

Proof: If D���n� converges SO to D���� then, by �2.8�, for all a�A and h�H, we have

lim
n→�

��n�a�h − ��a�h� = lim
n→�

�V�
��D���n� − D�������a�V�h� = 0,

hence �ii� holds.
Since, clearly, �ii� implies �iii�, it remains to prove that �iii� implies �i�. To see this, note first

that, by considering the sequence of completely positive maps �−�n, it is enough to prove the
implication in case �=0. Then, by �2.9� we get that the sequence �D���n�1/2� converges strongly
on the subspace generated by ��A�V�H, which by minimality is dense in K� and, taking into
account that all the operators D���n� are contractions, it follows by a standard argument in
operator theory that �D���n�� converges strongly to 0. �

In the following we use the definition of absolute continuity of non-negative operators as in
the paragraph below Theorem 6.2 in Appendix A 2. From Corollary 2.3 and Lemma 2.5 one gets
the following analog of Proposition 2.7 in Ref. 5.

Proposition 2.6: For a given ��CP�A ;H� , let � ,��CP�A ;H� be such that � ,�	u�. Then
� is �-absolutely continuous if and only if D���� is D����-absolutely continuous.

We also record the following basic properties of the relation of absolute continuity.
Proposition 2.7: Let ��CP�A ;H�.

�i� If � ,�CP�A ;H� are � -absolutely continuous, then the same is t�+s for all t ,s�0.
�ii� Assume that ��n� is a sequence in CP�A ;H� subject to the following properties.

�1� The sequence ��n� is nondecreasing.
�2� There exists ��CP�A ;H� such that ��a�=SO limn→� �n�a� for all a�A.
�3� For all n�N , �n is �-absolutely continuous.

Then � is � -absolutely continuous.
�iii� If �u then � is �-absolutely continuous if and only if  is �-absolutely continuous.

The notion of absolute continuity for operator valued completely positive maps is a generali-
zation of the notion of absolute continuity for positive measures. Among the different ways of
proving this fact, one may choose the way passing through Example 2.4 and Proposition 2.6.

Proposition 2.8: Let X be a Hausdorff compact space and � ,� be two non-negative finite
Borel measures on X , considered as completely positive maps � ,� :C�X�→C as in �2.4�. Then the
following assertions are equivalent.

�1� ���.
�2� For every Borel subset A�X such that ��A�=0 it follows ��A�=0 �that is, the classical

notion of absolute continuity�.
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D. Recovering the minimal Stinespring representation

Let � ,��CP�A ;H� be such that �	u� and, as in Sec. II C, let ��� ;K� ;V�� be the minimal
Stinespring representation for �. Let D���� be the Radon–Nikodym derivative of � with respect to
� as in �2.7�. Then, with respect to the decomposition K�=Ker�D����� � �K� � Ker�D����x��,

V� = �V�,1

V�,2
�, ���a� = ���,1�a� 0

0 ��,2�a� � for all a � A ,

where the diagonal form of ��a� follows because it commutes with D����. Clearly,

��a� = �D����1/2PK��Ker�D�����V�,2����,2�a�PK��Ker�D�����D����1/2V�,2, a � A ,

and from here it follows that the triple ���,2 ;K� � Ker�D����� ; PH�Ker�D�����D����1/2V�,2� is a
Stinespring representation for �. The minimality follows from the observation that the set
��,2�A�V�,2H is total in H � Ker�D�����. Thus, we have the following.

Theorem 2.9: Under the previous assumptions, the triple

�PK��Ker�D�������PK��Ker�D�����;K� � Ker�D�����;PK��Ker�D�����D����1/2PK��Ker�D�����V��

is the minimal Stinespring representation for �.
When � and � are also unital then the above theorem coincides with Theorem 4.1 in Ref. 28.

E. Chain rule

Let � ,� ,� be B�H�-valued completely positive maps on the C�-algebra A such that �	u�
	u�. Let us consider the minimal Stinespring representations ��� ;K� ;V��, ��� ;K� ;V��, and
��� ;K� ;V��, of �, �, and, respectively, �. By the definition of the bounded linear operators J�,�,
J�,�, and J�,� �see Sec. II B� it follows that

J�,� = J�,� J�,�,

hence

D���� = J�,�
� J�,� = J�,�

� J�,�
� J�,� J�,� = J�,�

� D���� J�,�.

The formula �2.12� is called the chain rule in. Ref. 8.
We now consider all the Radon–Nikodym derivatives D����, D����, and D���� and ask for

the relation between them, an analog of the chain rule for the Radon–Nikodym derivatives of
functions. In order to simplify the notation, let P= PK��Ker�D�����. By Theorem 2.9, we have the
following identifications:

K� = K� � Ker�D�����, �� = P��P, V� = PD����1/2V�. �2.12�

By �2.8�, for any a�A we have

��a� = V� D����1/2���a�D����1/2V� = V�
� PD����1/2PD����1/2P���a�PD����1/2PV�

= V�
� PD����1/2PD����D����1/2P���a�PV�.

From these calculations and taking into account the uniqueness of the Radon–Nikodym derivative
it follows:

Theorem 2.10: Let � ,� ,��CP�A ;H� be such that �	u�	u�. Then, modulo the identifica-
tion of K� as in �2.13�, we have

D���� = D����1/2PK��Ker�D�����D����PK��Ker�D�����D����1/2. �2.13�

Actually, the chain rule in Theorem 2.10 can be obtained directly from �2.12�, as follows. By
the definition of the Radon–Nikodym derivative as in �2.7�, it follows that J�,�=WD����1/2, where
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W�B�K� ,K�� is a partial isometry with Ker�W�=Ker�D����� and surjective �because J�,� has
dense range�. But, the meaning of the identification as in �2.12� is that there exists a unitary
operator U�B�K� ,K� � Ker�D������ such that W�= PK��Ker�D�����U. Thus, from �2.12�, modulo
the identification as in �2.12�, we get �2.13�.

F. Radon–Nikodym derivatives for absolutely continuous completely positive maps

The first task of this subsection is to consider the extension of Radon–Nikodym derivatives to
relatively absolutely continuous completely positive maps that will be, in general, unbounded
operators. This can be defined in two ways, as shown in Ref. 9 and, respectively, Ref. 28, and we
show that, actually, these two methods produce the same definition.

We derive the main result from a comparison theory for quadratic forms, whose details are
given in the Appendix B. In our opinion, we consider this as the natural framework to deal with
this kind of questions. One of the advantages is that, in this way, a spectral approximation of the
Radon–Nikodym derivative is also obtained: this is the second task of this subsection.

Thus, recalling that our setting is that of B�H�-valued completely positive maps on a
C�-algebra A, consider the vector space V=A � H, the algebraic tensor product. To any �
�CP�A ;H� we associate the quadratic form q� with

q���
j=1

n

aj � hj� = �
i,j=1

n

���aj
�ai�hi,hj� , �2.14�

which is non-negative by �2.2�. Thus, the formula �2.14� establishes an affine and order-preserving
embedding of CP�A ;H� into Q�V�+ �see Appendix B 1 for notation�.

To this end, we recall the following definition: given a von Neumann algebra M�B�H�, a
densely defined linear operator T in H is affiliated to M, and we write T�M, if for any operator
X�M� we have XT�TX, more precisely, Dom�T� is invariant under X and XTh=TXh for all
h�Dom�T�. If T is a �unbounded� self-adjoint operator in H, then T�M if and only all the
spectral projections of T are in M.

Also, given a closable operator T in the Hilbert space, a subspace D�Dom�T� is called a core
for T if the closure of T 
D coincides with the closure of T.

Theorem 2.11: Let � ,��CP�A ;H� and let ��� ;K� ;V�� be the minimal Stinespring repre-
sentation of �. Then, � is �-absolutely continuous if and only if there exists a (generally un-
bounded) linear operator D���� , uniquely determined by the following properties.

�i� D���� is a positive selfadjoint operator in K� and it is affiliated with ���A��.
�ii� Lin	���A�V�H� is a core for D����1/2 and D����1/2V� is bounded.
�iii� ��a�= �Dp�q�1/2V�����a�Dp�q�1/2V� for all a�A.

Proof: The technicalities of the proof have been deferred to Appendix B. Briefly, if for
arbitrary ��CP�A ;H� we consider its Stinespring representation ��� ;K� ;V�� then �K� ;��� is a
Hilbert space induced by q�, with the definition in Appendix B 1, where

����
j=1

n

aj � hj� = �
j=1

n

��aj�hj . �2.15�

These observations show that we can first consider the underlying comparison theory for non-
negative quadratic forms as in Appendix B with the important difference that, for the case of
completely positive maps, everything concerning the Radon–Nikodym derivatives should corre-
spond to operators in the von Neumann algebra ���A��. Having this in mind, we thus can apply
Theorem 7.13�a� in Appendix A. �

Theorem 2.11 is essentially Corollary 4.2 in Ref. 28. Theorem 7.7 shows that the cited
corollary is equivalent with the main result in Ref. 9.
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Since the Radon–Nikodym derivative of absolutely continuous positive definite maps is, in
general, an unbounded operator, there is a natural need for its approximation with bounded
Radon–Nikodym derivatives. Let �An� be a sequence of �generally, unbounded� positive self-
adjoint operators in a Hilbert space H. One says that �An� converges in the strong resolvent sense
to the positive self-adjoint operator A in H if SO–limn→��I+An�−1= �I+A�−1. The name is justified
by the known fact that, in this case, we also have SO–limn→���I−An�−1= ��I−A�−1 for all �
�C∖R �e.g., see Corollary VIII.1.4 in Ref. 20�. The same approach as in the proof of Theorem
2.11 can be used in order to apply Theorem 7.13�b� and get the following.

Theorem 2.12: Let � ,��CP�A ;H� and let ��� ;K� ;V�� be the minimal Stinespring repre-
sentation of �.

Assume that � is �-absolutely continuous. Then, for any sequence ��n� of maps in CP�A ;H�
that is nondecreasing, SO–limn→� �n�a�=��a� for all a�A, and �n	u� for all n�N , it follows
that D���n� converges to D���� in the strong resolvent sense.

III. LEBESGUE DECOMPOSITIONS FOR COMPLETELY POSITIVE MAPS

A. The maximal Lebesgue decomposition

Let � and � be two completely positive maps from A into B�H�. � is called � -singular if the
only map �CP�A ;H� such that 	� ,� is 0. Note that � is �-singular if and only if � is
�-singular and, in this case, we call � and � mutually singular.

A decomposition �=�1+�0, where �1 ,�0�CP�A ;H�, �1 is �-absolutely continuous and �0

is �-singular, is called a �-Lebesgue decomposition of �.
Theorem 3.1: Let � ,��CP�A ;H�. There exists a �-Lebesgue decomposition of �=�ac+�s

such that �ac is maximal among all �-absolutely continuous maps �CP�A ;H� with 	�.
We will get the proof of Theorem 3.1 after proving the following lemma.
Lemma 3.2: Let F�B�K� be such that 0	F	 I. Then, with the notation as in �A4�,

�F��I − F� = PH�Ker�F��I − F� .

Proof: It is easy to see that

Ran�F� � 	h � K
�I − F�1/2h � Ran�F1/2�� � H � Ker�F� ,

hence, by Theorem 6.1 it follows that PF,I−F= PK�Ker�F� and then

�F��I − F� = �I − F�1/2PK�Ker�F��I − F�1/2 = �I − F�PK�Ker�F�.

�

Proof of Theorem 3.1: To simplify the notation, let �� ,K ,V� be the minimal Stinespring
representation for �ª�+�. Then the Radon–Nikodym derivatives D���� and D���� in B�K�
satisfy the following relation:

D���� + D���� = I . �3.1�

Define the linear mappings �ac ,�s :A→B�H� by

�ac�a� = V�D����PK�Ker�D�������a�V and �s�a� = V�PKer�D�������a�V . �3.2�

Note that for any a�A the operators ��a�, D����, and PK�Ker�D�����, mutually commute. It is
straightforward to check that �ac and �s are completely positive and that �=�ac+�s.

Clearly, �ac ,�s	�. We claim that

D���ac� = �D�����D���� . �3.3�

To see this, we use �3.1� and Lemma 3.2 in order to get
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�D�����D���� = D����PK�Ker�D�����.

Then �3.3� follows by the uniqueness of the Radon–Nikodym derivative, as explained in Sec. II B.
Now, in view of Theorem 2.2, Proposition 2.6, and the definition of �ac as in �3.2�, in order to

prove that �ac is �-absolutely continuous we have to prove that D���ac� is D����-absolutely
continuous. In view of �3.3�, the latter is a consequence of Theorem 6.4 part �i�.

In addition, again by Theorem 2.2 and Proposition 2.6, in order to prove that �ac is maximal
among all �-absolutely continuous �CP�A ;H� such that 	�, we have to prove that D���ac� is
maximal among all D����-absolutely continuous operators C�B�K� such that C	D����. In view
of �3.3�, the latter is a consequence of Theorem 6.4 part �ii�.

Similarly we have

D���s� = D���� − �D�����D���� = PKer�D�����. �3.4�

Then, an argument as before, using Theorem 2.2, Proposition 2.6, �3.4�, and finally Theorem 6.4,
proves that �s is �-singular. �

The �-Lebesgue decomposition �=�ac+�s constructed during the proof of Theorem 3.1 is
called the maximal �-Lebesgue decomposition of � and, clearly, it is unique with this property.

A natural question with respect to this maximal Lebesgue decomposition is: to which extent
does it depend on the choice of �=�+�? Thinking in terms of quantum measurements, the choice
of � and the minimal Stinespring representation, the dependency should not occur. Indeed, we can
get the analog of the formulas �3.3� and �3.4�, when � is replaced by an arbitrary completely
positive map such that both � and � are uniformly dominated by �, and then we can show that the
construction of the maximal Lebesgue decomposition does not depend on the choice of �.

Theorem 3.3: Let � ,� and  be in CP�A ;H� such that  uniformly dominates � and �. Let
�=�ac+�s be the �-Lebesgue decomposition of � defined at �3.2�. Then, the Radon–Nikodym
derivatives of �ac and �s, with respect to  , can be calculated as follows:

D��ac� = �D����D��� and D��s� = D��� − �D����D��� . �3.5�

In particular, letting �� ;K ;V� be the minimal Stinespring representation for  , we have

�ac�a� = V
���D����D������a�V, a � A , �3.6�

and

�s�a� = V
��D��� − �D����D������a�V, a � A . �3.7�

Before proving this theorem we prove the following.
Lemma 3.4: If C�B�K ,H� has dense range and A ,B�B�H�+ , then, with the notation as in

�A1� and �A4�, we have

�C�AC�:�C�BC� = C��A:B�C and �C�AC��C�BC� = C���A�B�C .

Proof: Indeed, for arbitrary k�K, according to �A3�,

�C��A:B�Ck,k� = ��A:B�Ck,Ck� = inf	�Af , f� + �B�Ck − f�,Ck − f�
f � H� ,

and, taking into account that C has dense range, this is

=inf	�ACg,Cg� + �B�Ck − Cg�,Ck − Cg�
g � K�

=inf	�C�ACg,g� + �C�B�Ck − Cg�,k − g�
g � K�

=��C�AC�:�C�BC�k,k� .

Then

022102-11 Absolute continuity for completely positive maps J. Math. Phys. 50, 022102 �2009�

Downloaded 17 May 2011 to 139.179.14.104. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



�C�AC��C�BC�k = lim
n→�

�nC�AC:C�BC�k = lim
n→�

C��nA:B�Ck = C� lim
n→�

�nA:B�Ck = C���A�B�Ck .

�

Proof of Theorem 3.3: We use the notation as in Sec. II. Let �� ;K ;V� be the minimal
Stinespring representation for . To simplify the notation, let

A = D���, B = D��� .

Clearly, the Radon-–Nikodym derivative of �=�+� with respect to  is D���+D���=A+B. Let
K,1=Ker�A+B� and K,2=K � Ker�A+B�, subspaces in K. With respect to the decomposition
K=K1 � K2 we have

A + B = �0 0

0 C
�, ��a� = ��,1�a� 0

0 �,2�a� � for all a � A, and V = �V1

V2
� ,

where C is an operator in B�K2�+, necessarily one to one, and commutes with �,2�a�, for all a
�A. By Theorem 2.9, the triple ��,2 ;K,2 ;C1/2V� is the minimal Stinespring representation for
�=�+�. In order to simplify the notation, let F=D����, hence I−F=D���� �see the proof of
Theorem 3.1�. Also, by Lemma 3.2 we have D���ac�= �F��1−F�. Then, for all a�A,

��a� = �C1/2V,2��F�,2�a��C1/2V,2� = V,2
� C1/2FC1/2�,2�a�V,2

= �V1
� V,2

� ��0 0

0 C1/2FC1/2���,1�a� 0

0 �,2�a� ��V,1

V,2
�

= V
��0 0

0 C1/2FC1/2���a�V.

In a similar way,

��a� = V
��0 0

0 C1/2�1 − F�C1/2���a�V

and

�ac�a� = V
��0 0

0 C1/2�F��1 − F�C1/2���a�V.

By the uniqueness of the Radon–Nikodym derivative we obtain that

A = �0 0

0 C1/2FC1/2� and B = �0 0

0 C1/2�1 − F�C1/2� .

Note that C1/2 must also be one to one and hence, as a non-negative operator, it has dense range.
Thus, by Lemma 3.4,

�A�B = ��0 0

0 C1/2FC1/2���0 0

0 C1/2�1 − F�C1/2� = �0 0

0 �C1/2FC1/2��C1/2�1 − F�C1/2� �
= �0 0

0 C1/2�F��1 − F�C1/2� = D��ac� .

Since �−�ac=�s, we also have that D��s�=B− �A�B.
Finally, the formulas �3.6� and �3.7� can be obtained easily from �3.5�, Theorem 6.4, Theorem

2.2, and Theorem 3.1. �

The constructions of �ac and �s performed during the proof of Theorem 3.1 can be given in
terms of any �=s�+ t�, for s , t
0, with minor modifications, similar to those in �3.2�, and, as a
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consequence of Theorem 3.3, they produce the same maximal Lebesgue decomposition. If both �
and � are unital, then �= 1

2�+ 1
2� is a unital completely positive map as well. In this case,

Parthasarthy28 gave the definitions as in �3.2� and the decomposition �=�ac+�s was called the �
-Lebesgue decomposition of �, while �ac and �s were called the absolutely continuous part and,
respectively, the singular part of � with respect to �. Further, in Ref. 28 � was called �-absolutely
continuous if �s=0. As a consequence of Theorems 3.1 and 3.3 it follows that this notion of
absolute continuity is the same with that introduced in Sec. II C.

Corollary 3.5: Let � ,��CP�A ;H�.

�a� � is �-absolutely continuous if and only if �s=0.
�b� � is �-singular if and only if �ac=0.

Another consequence of the results we got so far refers to other characterizations of singular-
ity for completely positive maps. The equivalence of �iii�–�vi� is contained in Corollary 1.4.4 of
Ref. 6.

Corollary 3.6: With the notation as before, the following assertions are equivalent.

�i� � is �-singular.
�ii� � is �-singular.
�iii� The Radon–Nikodym derivative D�+���� is a projection.
�iv� The Radon–Nikodym derivative D�+���� is a projection.
�v� � is an extremal element of the convex set 	�CP�A ;H� 
	�+��.
�vi� � is an extremal element of the convex set 	�CP�A ;H� 
	�+��.

Proof: Due to the symmetry of the relation of singularity, it is sufficient to prove that �i�, �iii�,
and �v� are mutually equivalent.

If � is �-singular, by the above corollary it follows that �=�s and hence, by �3.4� it follows
that the Radon–Nikodym derivative D�+���� is a projection.

Conversely, if the Radon–Nikodym derivative D�+���� is a projection then, by �3.3�, it fol-
lows that D���ac�=0 and hence �ac=0, that is, � is �-absolutely continuous. Thus, �i� is equivalent
with �iii�.

In order to prove the equivalence of �iii� with �v�, we use Theorem 2.2 and the well-known
fact that, given a Hilbert space H, the set of extremal elements of the set 	B�B�H� 
0	B	 I�
coincides with the set of orthogonal projections in H �e.g., see Lemma 3.2 in Ref. 12�. �

In view of Proposition 2.7, another consequence of Theorem 3.1 is the following.
Corollary 3.7: Let � ,� ,�CP�A ;H� and consider the maximal -Lebesgue decompositions

�=�ac+�s and �=�ac+�s.

�i� For any t�0 we have �t��ac= t�ac.
�ii� �ac+�ac	 ��+��ac.

�ii� If �	� then �ac	�ac.

B. Uniqueness

The maximal �-Lebesgue decomposition �=�ac+�s defined at �3.2� is unique by its maxi-
mality property but, if the condition of maximality is dropped, then the uniqueness may be
affected. We examine first some sufficient conditions of uniqueness of Lebesgue decompositions.

Proposition 3.8:

�i� If � ,��CP�A ;H� and �ac	u� , that is, there exists t
0 such that �ac	 t� , then � admits
a unique �-Lebesgue decomposition.

�ii� If ��CP�A ;H� is such that the property of �-absolute continuity is hereditary then, for
any ��CP�A ;H� there exists a unique �-Lebesgue decomposition of �.

Proof:
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�i� Without loss of generality we can assume that �ac	�. Consider the maximal �-Lebesgue
decomposition of �=�ac+�s as well as another �-Lebesgue decomposition �=�1+�0,
where �1 ,�0�CP�A ;H�, �1 is �-absolutely continuous and �0 is �-singular. Then, taking
into account the maximality of �ac it follows that �0=�−�1��ac−�1�0, hence �ac−�1 is
�-singular. Since �ac−�1 is �-absolutely continuous, it follows that �ac=�1, and hence
�s=�0.

�ii� Similar to the proof of �i�.

�

When comparing with the results on uniqueness of the Lebesgue decomposition in Appendix
A 3, the above proposition looks very weak. The difficulty of transposing Theorem 6.5 and its
Corollary 6.6 to the setting of completely positive maps comes from the fact that, in this case, the
Radon–Nikodym derivatives live in the von Neumann algebra ��A�� that can be “very small.”
This is illustrated in the following.

Example 3.9: Let A be the C�-algebra L��0,1� and H=L2�0,1�. Let � ,� :A→B�H� be
defined by ���f�g��g�= tf�t�g�t� and ���f�g��g�= �1− t�f�t�g�t�, for f �L��0,1� and g�L2�0,1�.
Then both � and � are completely positive and �+�=� is the map ���f�g��t�= f�t�g�t�, for f
�L��0,1� and g�L2�0,1�. Then the minimal Stinespring representation of � is ��� ;K� ;V��
where, K�=L2�0,1�, ���f�=Mf, the operator of multiplication with f �L��0,1�, and V� is the
identity operator on L2�0,1�. We have that ���A��= 	Mf 
 f �L��0,1�� is a maximal Abelian von
Neumann algebra in B�L2�0,1��. On the other hand, � is �-absolutely continuous and there exists
only one Lebesgue decomposition of � with respect to �. However, there exists no k such that
�	k�.

For the case of H=C, the difficulties on the uniqueness, and an example of nonuniqueness, see
Kosaki.22

Finally, we observe that when considering the complete isomorphism CP�C ;H������1�
�B�H�+, as explained at the end of Sec. III A, an application of Theorem 6.5 gives the nonu-
niqueness of the Lebesgue decomposition for some operator valued completely positive maps.

IV. AN APPLICATION TO THE INFIMUM PROBLEM FOR QUANTUM OPERATIONS

Let H be a Hilbert space and B�H�+ the cone of bounded non-negative operators in H. Given
A ,B�B�H�+, the infimum of A and B, denoted by A∧B, is the greatest lower bound of the set
	A ,B� in the ordered set B�H�+, that is, A∧B	A ,B and, if C�B�H�+ is such that C	A ,B, then
C	A∧B. Questions on characterization of the existence and computation of the infimum operator
are related to the lattice properties of quantum effects, cf. Gudder.17 First, let us note that B is
A-singular if and only if A∧B=0, hence, it is expected that this kind of questions should be related
with the Radon–Nikodym derivatives and Lebesgue decompositions. The complete answer to this
question, when considering only quantum effects, is given by the following theorem. For the
notation on the shorted operator �A�B see Appendix A.

Theorem 4.1: �Ando �Ref. 4�� Let A ,B�B�H�+. Then A∧B exists if and only if the Radon–
Nikodym derivatives �A�B and �B�A are comparable, that is, either �A�B	 �B�A or �B�A	 �A�B.
In this case, A∧B=min	�A�B , �B�A�.

For other �more restrictive� formulas of calculating the infimum A∧B, see also Ref. 15 and the
bibliography cited there.

When considering open quantum systems, quantum operations take the place of the quantum
effects, and in connection with their lattice properties the infimum problem for quantum operations
can be stated in similar terms: for � ,��CP�A ;H� we write �∧��CP�A ;H� �if it exists� for the
infimum of � and �, that is, �∧�	� ,� and for any �CP�A ;H� such that 	� ,�, it follows
	�∧�. With this definition, � is �-singular if and only if �∧�=0. As an application of our
results on the Lebesgue decomposition, we can show that the picture for quantum operations is
similar to that for quantum effects.

Theorem 4.2: Let � ,��CP�A ;H� and consider �=�ac+�s , the �-Lebesgue decomposition
of �, as well as �=�ac+�s , the �-Lebesgue decomposition of �. Then the infimum �∧� exists if
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and only if �ac and �ac are comparable and, in this case,

� ∧ � = min	�ac,�ac� . �4.1�

We need an auxiliary result.
Lemma 4.3: Let A�B�H�+ be a contraction and let M be a von Neumann algebra in B�H�

such that A�M. Then the following are equivalent.

�i� The infimum of A and I−A with respect to M+ exists.
�ii� The infimum of A and I−A with respect to B�H�+ exists.
�iii� ��A�, the spectrum of A , is contained either in 	0��� 1

2 ,1� or in �0, 1
2
�� 	1�.

Moreover, in the case when any of the assertions (i), (ii), or (iii) holds, then the two infima
at (i) and, respectively, (ii) coincide and, letting g�C��0,1�� be the function,

g�t� = min	t,1 − t� = �t , 0 	 t 	 1/2,

1 − t , 1/2, 	 t 	 1,
� �4.2�

we have, by continuous functional calculus, A∧ �I−A�=g�A� .

Proof: The equivalence of �ii� and �iii� is proven in Theorem 3.1 in Ref. 15. Clearly �ii�
implies �i�.

In order to prove �i� implies �iii�, we observe that the proof of the corresponding implication
�ii� implies �iii� in Theorem 3.1 in Ref. 15 is done in such a way that all the constructions are kept
within the von Neumann algebra generated by A, and hence in M. �

Proof of Theorem 4.2: Let �=�+� and consider the Radon–Nikodym derivatives D���� and
D����, as in the proof of Theorem 3.1. Then �3.1� holds. By Theorem 2.2, it follows that �∧�
exists in CP�A ;H� if and only if D����∧D���� exists with respect to the von Neumann algebra
��A��. By Lemma 4.3, it follows that the latter is equivalent with the fact that D����∧D����
exists with respect to B�H�+ and then, by Theorem 4.1, this is equivalent with the fact that the
shorted operators �D�����D���� and �D�����D���� are comparable. But, in view of �3.3�, these
shorted operator are, respectively, D���ac� and D���ac�. Using once again Theorem 2.2, it follows
that �∧� exists if and only if D���ac� and D���ac� are comparable, and �4.1� holds. �

Let us observe that, by the assertion �iii� in Lemma 4.3 and with the notation as in the
preceding proof, a formula for computing �∧� that is more explicit than �4.1�, can be given in
terms of the infimum of the Radon–Nikodym derivatives D����∧D����.

V. THE LEBESGUE DECOMPOSITION FOR COMPLETELY POSITIVE MAPS
ON MATRICES

In this section we focus on completely positive maps from Mn, the C�-algebra of n�n
matrices, to Mk, for which we describe the Lebesgue decomposition in terms of the Choi matrices.
This situation corresponds to applications to quantum information theory in the sense that in order
to make the Lebesgue–Radon–Nikodym decomposition available to quantum information theorists
this should be described in terms of the Choi’s matrix, cf. Leung.25 In this final dimensional case
an additional and very helpful fact is that there exists a completely positive map that uniformly
majorizes all the others, namely, the tracial completely positive map. To this end, we first recall, in
a slightly different formulation, known results on the structure of completely positive maps,
cf.11,7,24,31 and the bibliography cited there. Because of this, we will skip most of the proofs.

First note that, in this finite dimensional case, there exists only one Lebesgue decomposition,
as explained in Sec. III B.

For n�N let 	ei
�n��i=1

n be the canonical basis of Cn. For n ,k�N we consider the matrix units
	Ei,j

�n,k� 
 i=1, . . . ,n , j=1, . . . ,k��Mn,k of size n�k �as usually, the space Mn,k of n�k matrices is
identified with B�Ck ,Cn��, that is, Ei,j

�n,k� is the n�k matrix with all entries 0 except the �i , j�th entry
which is 1. In case n=k, we denote simply Ei,j

�n�=Ei,j
�n,n�.
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Here and in the following we use the tensor notation for rank one operators, that is, if H and

K are Hilbert spaces and h�H and k�K are nontrivial vectors, then the rank 1 operator h � k̄

�B�K ,H� is defined by �h � k̄�x= �x ,k�h for all x�H. With this notation we have

Ei,j
�n,k� = ei

�n�
� ēj

�k�, i = 1, . . . ,n, j = 1, . . . ,k . �5.1�

We also record the following direct consequences of the definitions: for all j=1, . . . ,n and i
=1, . . . ,k we have

Ei,j
�n,k��

= Ej,i
�k,n�, �5.2�

and if, in addition, p�N, r=1, . . . ,k, and s=1, . . . , p, then

Ei,j
�n,k�Er,s

�k,p� = � j,rEi,s
�n,p�. �5.3�

We also use the lexicographic reindexing of 	Ei,j
�n,k� 
 i=1, . . . ,n , j=1, . . . ,k�, more precisely

�E1,1
�n,k�, . . . ,E1,k

�n,k�,E2,1
�n,k�, . . . ,E2,k

�n,k�, . . . ,En,1
�n,k�, . . . ,En,k

�n,k�� = �E1,E2, . . . ,Enk� . �5.4�

An even more explicit form of this reindexing is the following:

Er = Ei,j
�n,k� where r = �j − 1�k + i, for all i = 1, . . . ,n, j = 1, . . . ,k . �5.5�

Lemma 5.1: The formula

��m−1�k+i,�l−1�k+j = ���Ei,j
�n��el

�k�,em
�k��, m,l = 1, . . . ,k, i, j = 1, . . . ,n , �5.6�

and its inverse

��C� = �
r,s

nk

�r,sEr
�CEs, C � Mn, �5.7�

establish a linear and bijective correspondence,

B�Mn,Mk� � � � � = ��r,s�r,s=1
nk � Mnk. �5.8�

Given ��B�Mn ,Mk� the matrix � as in �5.8� is called the Choi matrix of �.
Remark 5.2: With respect to the identification CnkCn � Ck, any matrix �= ��r,s�r,s=1

nk �Mnk

=B�Cnk� is identified with a linear operator ��B�Cn � Ck�, in such a way that the formula �5.6�
becomes

��m−1�k+i,�l−1�k+j = ���ej
�n�� � el

�k�,ei
�n�

� em
�k��, m,l = 1, . . . ,k, i, j = 1, . . . ,n . �5.9�

Remark 5.3: In the correspondence in Lemma 5.1, � is unital if and only if

�
i=1

n

��m−1�k+i,�l−1�m+i = �l,m for all l,m � 	1, . . . ,k� .

In the following, to a certain extent, our arguments and calculations will be parallel to those
performed by Raginsky in Sec. V.A of Ref. 31 but we will go further in exploiting the explicit
formulas for the Lebesgue decomposition obtained in Theorem 3.3.

Let  :Mn→Mk be the linear map defined by

�C� =
1

n
tr�C�Ik, C � Mn. �5.10�

Let the linear mapping
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V:Ck → Cn2k  Cn
� Cnk  Cn

� Cn
� Ck

be defined by

Vh =
1
�n�

E1h

E2h

]

Enkh
�, h � Ck, �5.11�

or, equivalently, with the identification Cn2kCn � Cn � Ck and the reindexing defined at �5.4�,

Vh = �
i=1

n

�
j=1

k

Ei,j
�n,k�h � ei

�n�
� ej

�k�. �5.12�

We consider also the map

�:Mn → Mn2k  B�Cn2k�  B�Cn
� Cnk� ,

defined by

��C� = C � Ink, C � Mn. �5.13�

Lemma 5.4: With the notation as in �5.10�–�5.13�, �� ;Cn2k ;V� is the minimal Stinespring
representation of  , in particular, �CP�Mn ,Mk�.

In addition,  uniformly dominates any map ��CP�Mn ,Mk�.
Lemma 5.4 can be used to obtain the following result of Kraus23 and Choi:11 Let � :Mn

→Mk be a completely positive map. Then there are n�k matrices V1 ,V2 , . . . ,Vm with m	nk such
that

��A� = V1
�AV1 + V2

�AV2 + ¯ + Vm
� AVm for all A � Mn. �5.14�

We also record the following fact: if H and K are Hilbert spaces and � ,��B�K�+, then it is
easy to see, from �A2� and �A4�, that

�IH � ��:�IH � �� = IH � ��:��, �IH � ���IH � �� = IH � ���� . �5.15�

The main result of this section is the following description of the Lebesgue decomposition for
completely positive maps between matrices, in terms of Choi matrices. For the definition of the
“shorted matrix” ����, see Appendix A.

Theorem 5.5: The formula �5.6� and its inverse �5.7� establish an affine and order-preserving
isomorphism,

CP�Mn,Mk� � � � � � Mnk
+ . �5.16�

Moreover, if � ,��CP�Mn ,Mk�, � ,��Mnk
+ are the positive nk�nk matrices corresponding

by �5.8� to � and, respectively, � , and the positive matrices A ,B�Mnk are defined by

A = ��i,j�i,j=1
nk = ����, B = ��i,j�i,j=1

nk = � − ���� , �5.17�

then, the absolutely continuous part �ac and the singular part �s of � with respect to � are given
by the following formulas:

�ac�C� = �
r,s=1

nk

�r,sEr
�CEs, �s�C� = �

r,s=1

nk

�r,sEr
�CEs, for all C � Mn. �5.18�

Proof: Consider the completely positive map  :Mn→Mk defined at �5.10�, as well as its
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minimal Stinespring representation �� ;Cn2k ;V�, as proven in Lemma 5.4. We combine the facts
contained in Lemma 5.1 and Lemma 5.4 with those in Corollary 2.3 in order to get that the
Radon–Nikodym derivative with respect to  establishes an affine and order-preserving isomor-
phism between the cones,

CP�Mn,Mk� � � � D��� � ��Mn��+. �5.19�

Since

��Mn�� = �Mn � Ink�� = In � Mnk,

and this identification induces an affine and order-preserving isomorphism between the corre-
sponding cones of positive elements, it follows that the Radon–Nikodym derivative with respect to
 establishes an affine and order-preserving isomorphis,

CP�Mn,Mk� � � � � � Mnk
+ ,

more precisely

D��� = In � �, � � CP�Mn,Mk� . �5.20�

It remains to prove that the isomorphism �5.20� coincides with that defined at �5.16�, which, by the
uniqueness of the Radon-Nikodym derivative, is equivalent with proving that

��C� = V��In � ���C � Ink�V = V��C � ��V . �5.21�

To see this, it is sufficient to prove that for all i , j� 	1, . . . ,n� and all l ,m� 	1, . . . ,k� we have

���Ei,j
�n�el

�k�,em
�k��� = �V��Ei,j

�n�
� ��Vel

�k�,em
�k�� . �5.22�

First, we note that

Vel
�k� = �

r=1

n

�
s=1

k

�Er,s
�n,k�el

�k�� � er
�n�

� es
�k� = �

r=1

n

�
s=1

k

�l,ser
�n�

� er
�n�

� es
�k� = �

r=1

n

er
�n�

� er
�n�

� el
�k�.

Then

�V��Ei,j
�n�

� ��Vel
�k�,em

�k�� = ��Ei,j
�n�

� ��Vel
�k�,Vem

�k�� = �
r=1

n

�
p=1

n

��Ei,j
�n�

� ���er
�n�

� er
�n�� � el

�k�,ep
�n�

� ep
�n�

� em
�k�� = �

r=1

n

�
p=1

n

��r,jei
�n�

� �er
�n�

� el
�k��,ep

�n�
� ep

�n�
� em

�k�� = �
p=1

n

�ei
�n�

� ���ej
�n�

� el
�n���,ep

�n�
� ep

�n�
� em

�k�� = �
p=1

n

�ei
�n�,ep

�n������ej
�n�

� el
�n�,ep

�n�

� ep
�n�

� em
�k���� = �

p=1

n

� j,p����ej
�n�

� el
�n�,ep

�n�
� ep

�n�
� em

�k���� = ���ej
�n�

� el
�k�,ei

�n�
� em

�k��� = ���Ei,j
�n��el

�k�,em
�k�� ,

where, at the last step, we used �5.9� and �5.6�. Thus, �5.22� is proven, and hence �5.21� is proven.
Finally, in order the get the second part of the statement, we use �5.15� and �5.20� and

Theorem 3.3. �
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APPENDIX A: LEBESGUE DECOMPOSITIONS OF POSITIVE OPERATORS

In this section we review the Radon–Nikodym derivatives and Lebesgue decompositions for
bounded non-negative operators on a Hilbert space.

1. Parallel sum

Let H be a Hilbert space and let B�H� denote the C�-algebra of bounded linear operators on
H. If A ,B�B�H� are self-adjoint we write A	B if �Ah ,h�	 �Bh ,h� for all h�H, the natural
order relation �reflexive, antisymmetric, and transitive�. We also denote by B�H�+ the convex strict
cone of non-negative operators

Given A ,B�B�H�+ the parallel sum of A and B �originally defined by Anderson and Duffin1

for matrices and then extended to bounded positive operators by Fillmore and Williams13� is

A:B = A1/2C�DB1/2, �A1�

where C and D are the minimal bounded operators that produce the factorizations A1/2= �A
+B�1/2C and B1/2= �A+B�1/2D �in fact, C and D can be characterized as certain pseudoinverses�.
The following formula holds:

A:B = SO-lim
�↘�

��A + �I�−1 + �B + �I�−1�−1, �A2�

where SO means that the limit should be taken with respect to the strong operator topology.
Ando,3 and independently Pekarev and Shmulyan,30 obtained probably the most versatile formula,

��A:B�h,h� = inf	�Ag,g� + �B�h − g�,h − g�
g � H�, h � H . �A3�

Note that this binary operation is symmetric, more precisely, A :B=B :A, separately nondecreasing
with respect to each argument, that is, if A1	A2 then A1 :B	A2 :B, and that 0	A :B	A ,B, but
it is not �separately� additive.

2. Shorted operators as Radon–Nikodym derivatives

Given A ,B�B�H�+, the shorted operator �A�B�B�H�+ is by definition �cf. Ando,3 who
generalized the previous definition introduced by Anderson and Trapp2�,

��A�B�h ª SO − lim
n→�

�nA�:B , �A4�

where the SO limit exists because �nA� :B	B and �nA� :B	 ��n+1�A� :B for all n�N. Note that
�A�B	B but �A�B may not be comparable with A.

Another formula to calculate �A�B is available. Namely, let PA,B denote the orthogonal pro-
jection of H onto the closure of the subspace 	h�H 
B1/2h�Ran�A1/2��, where Ran�C� denotes
the range of the operator C.

Theorem 6.1: �Kosaki �Ref. 21�� If A ,B�B�H�+ then �A�B=B1/2PA,BB1/2.
For given A ,B�B�H�+ one says that A uniformly dominates B, in brief B	uA, if any of the

following equivalent conditions holds.

�i� There exists t
0 such that B	 tA, that is, �Bh ,h�	 t�Ah ,h� for all h�H.
�ii� Ran�B1/2��Ran�A1/2�.
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�iii� There exists X�B�H� such that B1/2=A1/2X.

This is a partial preorder relation �only reflexive and transitive� on B�H�+.
Theorem 6.2: �Ando �Ref. 3�� Given A ,B�B�H�+ , the following assertions are equivalent:

�a� There exists a sequence �Bn� in B�H�+ subject to the following conditions.

�aco1� �Bn� is nondecreasing, in the sense that B1	B2	 ¯ 	Bn	Bn+1	¯.
�aco2� SO-limn→� Bn=B.
�aco3� For all n�N, Bn	uA �i.e., for every n�N there exists tn
0 such that Bn	 tnA�.

�b� B= �A�B , that is, SO-limn→��nA� :B=B.
�c� The linear manifold 	h�H 
B1/2h�Ran�A1/2�� is dense in H.

For given A ,B�B�H�+ one says that B is A -absolutely continuous, and we write B�A, if
any of the equivalent assertions �a�, �b�, or �c� in Theorem 6.2 holds. The A-absolute continuity is
additive in the sense that, if B and C are A-absolutely continuous then B+C is A-absolutely
continuous, but, in general, it is not hereditary, in particular, it is not a transitive relation. Clearly,
if B	uA then B�A. For the converse implication, the following result, that is implicit in Ref. 3,
holds.

Proposition 6.3: Let A�B�H�+. The following assertions are equivalent.

�i� Ran�A� is closed.
�ii� For arbitrary B�B�H�+, B	uA if and only if B�A.

Because of Theorem 6.2, and in analogy with the comparison theory for scalar valued positive
measures, it is natural to call �A�B the Radon–Nikodym derivative of B with respect to A.

3. Lebesgue decompositions

In this subsection we review results obtained by Ando.3 If A ,C�B�H�+, one says that C is A
-singular if the only operator D�B�H�+ satisfying D	A and D	C is D=0. Clearly, C is
A-singular if and only if A is C-singular, so in this case we can call A and C mutually singular.

Given A ,B�B�H�+, a decomposition B=B1+B0 such that B0 ,B1�B�H�+, B1 is A-absolutely
continuous and B0 is A-singular, is called an A -Lebesgue decomposition of B.

Theorem 6.4: If A ,B�B�H�+ then the decomposition

B = �A�B + �B − �A�B�

has the following two properties.

�i� �A�B is A-absolutely continuous and B− �A�B is A-singular.
�ii� �A�B is the maximum of all A-absolutely continuous operators C�B�H�+ such that C

	B.

The Lebesgue-type decomposition in Theorem 6.4 is unique due to its maximality property
but, in general, Lebesgue-type decompositions for positive operators are not unique.

Theorem 6.5: Given A ,B�B�H�+, B admits a unique A-Lebesgue decomposition if and only
if �A�B	uA , that is, there exists t
0 such that �A�B	 tA.

Corollary 6.6: Given A�B�H�+, the following assertions are equivalent.

�a� Ran�A� is closed.
�b� A-absolute continuity is a hereditary property.
�c� Any operator B�B�H�+ has a unique A-Lebesgue decomposition.
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APPENDIX B: ABSOLUTE CONTINUITY FOR NON-NEGATIVE QUADRATIC FORMS

In this Appendix we consider a comparison theory for quadratic forms on general �complex�
vector spaces. This way actually puts the comparison theory of completely positive maps in a
more natural context and offers an efficient framework to deal with approximation properties �e.g.,
in spectral sense� and establish connections with the existing theories of canonical forms consid-
ered by Simon33 and Jørgensen.19

1. Radon–Nikodym derivatives for non-negative quadratic forms

Let V be a complex vector space. For a non-negative �that is, positive semidefinite� Hermitian
form p :V�V→C, recall that the Schwarz Inequality holds,


p�u,v�
2 	 p�u,u�p�v,v�, u,v � V , �B1�

and, consequently,

Ker�p� = 	u � V
p�u,u� = 0� = 	u � V
p�u,v� = 0 for all v � V� . �B2�

The polarization formula

p�u,v� =
1

4�
k=0

3

ikp�u + ikv,u + ikv�, u,v � V , �B3�

shows that p is uniquely determined by the quadratic form V�u� p�u�= p�u ,u�. Thus, one uses
freely the notion of non-negative quadratic form instead of the notion of positive semidefinite
Hermitian form.

A pair �K ;�� is called a Hilbert space induced by p if �cf. Ref. 10�

�ih1� �K ; �· , ·�� is a complex Hilbert space;
�ih2� � :V→K is a linear operator with dense range;
�ih3� p�u ,v�= ��u ,�v� for all u ,v�V.

The existence of an induced Hilbert space associated with any positive semidefinite Hermitian
form follows by the well-known quotient-completion method: consider the factor space V /Ker�p�
onto which p is positive definite and complete it to a Hilbert space K. The canonical mapping �
is the composition of the canonical surjection V→V /Ker�p� with the embedding V /Ker�p��K.
In addition, the induced Hilbert space is unique, modulo a Hilbert space isomorphism, in the sense
that if �K� ;��� is another Hilbert space induced by p, the linear mapping U, defined by U�u
=��u for all u�V, extends uniquely to a unitary operator U�B�K ,K��, such that U�=��.

Let p and q be two positive semidefinite Hermitian forms on V. By definition, q is dominated
by p, denoted p	q, if p�u ,u�	q�u ,u� for all u�V. This is the natural partial order on Q�V�+, the
set of all non-negative Hermitian forms on V. Also, for any numbers s , t	0 the mapping sp
+ tq :V�V→C defined by �sp+ tq��u ,v�=sp�u ,v�+ tq�u ,v� for all u ,v�V is a positive semidefi-
nite Hermitian form on V. Thus, Q�V�+ is a convex cone.

Fix p�Q�V�+ and �Kp ;�p� its induced Hilbert space. If q	 p then, letting �Kq ;�q� be the
Hilbert space induced by q, it follows that Ker�p��Ker�q� and that the linear mapping
Jp,q :�pV→�qV defined by

Jp,q�pu = �qu, for all u � V , �B4�

is correctly defined and extends uniquely to a contraction Jp,q�B�Kp ,Kq�. Thus, letting

Dp�q� = Jp,q
� Jp,q �B5�

we get a contraction Dp�q��B�Kp�, such that
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q�u,v� = �Dp�q��pu,�pv�p for all u,v � V . �B6�

The condition �B6� uniquely determines the non-negative operator Dp�q�. It is now easy to see that
the following holds.

Proposition 7.1: Let p�Q�V�+. The mapping q�Dp�q� defined in �B5� and its inverse �B6�
establish an affine and order-preserving isomorphism between the convex and partially ordered
sets �	q�Q�V�+ 
q	 p� ;	� and �	A�B�Kp� 
0	A	 I� ;	�.

The operator Dp�q� is called the Radon–Nikodym derivative of the quadratic form q with
respect to p. Let us also observe that, similarly as Theorem 2.9, we get the following.

Lemma 7.2: Let p ,q�Q�V�+ be such that q	 p , let �Kp ;�p� be the Hilbert space induced by
p , and Dp�q� the Radon–Nikodym derivative of q with respect to p. Then

�Kp � Ker�Dp�q��;Dp�q�1/2PKp�Ker�Dp�q���p�

is the Hilbert space induced by q.
Further, for p ,q�Q�V�+, one says that p uniformly dominates q, denoted q	up, if for some

t
0 we have q	 tp. This is a partial preorder relation �reflexive and transitive� on Q�V�+. It is
immediate from Proposition 7.1 that we get the following.

Corollary 7.3: For any given p�Q�V�+, the mapping q�Dp�q� defined in (B5) and its
inverse �B6� establish an affine and order-preserving isomorphism between the partially ordered
cones �	q�Q�V�+ 
q	up� ;	� and �B�Kp�+ ;	�.

The analog of the chain rule in Theorem 2.10 is the following.
Theorem 7.4: Let p ,q ,r�Q�V�+ be such that p	uq	ur. Then, modulo the identification of

the Hilbert space induced by q as in Lemma 7.2, we have

Dr�p� = Dr�q�1/2PKr�Ker�Dr�q��Dq�p�PKr�Ker�Dr�q��Dr�q�1/2.

2. Closable non-negative quadratic forms

Let H be a Hilbert space. In this subsection we consider the set Q�H�+, of all nonnegative
�positive semidefinite� quadratic forms p, defined on some densely defined linear subspace
Dom�p� of H, more precisely, with the notation as in Appendix B 1,

Q�H�+ = � 	Q�V�+
V dense in H� . �B7�

The natural partial order relation on Q�H�+ is defined in the following way: given p ,q�Q�H�+

one says that p dominates q, and we write q	 p, if Dom�p��Dom�q� and q�h ,h�	 p�h ,h� for all
h�Dom�p�. Another partial order is given by extensions: given p ,q�Q�H� one says that p
extends q, and we write q� p, if Dom�q��Dom�p� and q�u ,v�= p�u ,v� for all u ,v�Dom�q�.

A form p�Q�H�+ is called closed if any of the following equivalent conditions holds.

�i� Dom�p� endowed with the norm Dom�p��h� �p�h�+ �h ,h��1/2 is a Hilbert space.
�ii� For any sequence �hn� of vectors in Dom�p� that converges in norm to h�H and p�hn

−hm�→0 as n ,m→�, it follows that h�Dom�p� and p�hn−h�→0 as n→�.

Further, p is called closable if any of the following equivalent conditions holds �see Theorem
VI.1.17 in Ref. 20�.

�i� There exists a closed quadratic form q that extends p.
�ii� For any sequence �hn� of vectors in Dom�p� that converges in norm to 0 and p�hn−hm�

→0 as n ,m→�, it follows that p�hn�→0 as n→�.

If p is closable there exists the smallest closed extension of p, denoted by p̄ and called the
closure of p, which can be calculated in the following way: Dom�p̄� consists of all h�H with the
property that there exists a sequence �hn� of vectors in Dom�p� such that �hn−h�→0 as n→� and
p�hn−hm ,hn−hm�→0 as n ,m→�, and p̄�h ,h�=lim p�hn ,hn� for any such h and �hn� as before.
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The importance of closed quadratic forms for spectral theory is partially justified by the
following representation theorem �cf. Friedrichs,14 see Kato20 and Reed and Simon32�.

Theorem 7.5: There exists a bijective correspondence A� pA , between the set of all positive
self-adjoint operators A in H and the set of all closed densely defined positive semidefinite
quadratic forms p in H , given by

Dom�pA� = Dom�A1/2�, pA�h,k� = �A1/2h,A1/2k�, h,k � Dom�A1/2� . �B8�

In the correspondence at �B8�, the following assertions are equivalent.

�i� pB	 pA.
�ii� �A+ I�−1	 �B+ I�−1.

�See Theorem S.17 in Ref. 32.�

3. Absolute continuity of non-negative quadratic forms

Let V be a complex vector space. For p ,q�Q�V�+, we say that q is p-absolutely continuous,
and we write q� p, if there exists a sequence �qn��Q�V�+ subject to the following conditions.

�acf1� The sequence �qn� is nondecreasing, that is, qn	qn+1 for all n�N;
�acf2� limn→� qn�u ,v�=q�u ,v� for all u ,v�V;
�acf3� qn	up for all n�N, that is, there exists a sequence �tn� of positive numbers such that
qn	 tnp for all n�N.

The analog of Lemma 2.5 holds and then it is immediate from Proposition 7.1 the following.
Lemma 7.6: Let p ,q ,r�Q�V�+ be such that p ,q	ur. Then q is p-absolutely continuous if and

only if Dr�q� is Dr�p�-absolutely continuous.
We are now in a position to show the connection of absolute continuity with closability of

non-negative quadratic forms.
Theorem 7.7: Let p ,q�Q�V�+ and let �Kp ,�p� be the Hilbert space induced by p. Then q is

p-absolutely continuous if and only if Ker�p��Ker�q� and the densely defined non-negative qua-
dratic form q̃ , with domain �pV in the Hilbert space Kp and defined by �pv�q�v ,v� , is
closable.

Proof: If q is p-absolutely continuous, let the sequence �qn� in Q�V�+ have the properties
�acf1�–�acf3�, and it is easy to see from here that

Ker�p� � �
n�1

Ker�qn� � Ker�q� .

Therefore, since Ker�p�=Ker��p�, it follows that the non-negative quadratic form q̃, with
domain �pV dense in the Hilbert space Kp, is correctly defined by �pv�q�v ,v�.

Let r= p+q�Q�V�+ and consider its induced Hilbert space �Kr ;�r�, as well as the Radon–
Nikodym derivatives Dr�p� and Dr�q�. Then

Dr�p� + Dr�q� = I , �B9�

where I denotes the identity operator on Kr. Moreover, by Lemma 7.2 it follows that
�Kr � Ker�Dr�p�� ; PKr�Ker�Dr�p��Dr�p�1/2�r� is the Hilbert space induced by p. In order to simplify
the notation, let us observe that, without loss of generality, we can assume that Dr�p� is injective,
and hence that, modulo a unitary equivalence, Kp=Kr and �p=Dr�p�1/2�r. Thus, with this as-
sumption, the quadratic form q̃ has Dom�q̃�=Dr�p�1/2�rV dense in the Hilbert space Kr and

q̃�Dr�p�1/2�ru,Dr�p�1/2�rv� = �Dr�q�1/2�ru,Dr�q�1/2�rv�r, u,v � V . �B10�

Let us consider the operator T densely defined in Kr by
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T = Dr�q�1/2Dr�p�−1/2:Ran�Dr�p�1/2� → Kr, �B11�

and note that q̃�qT, where qT is the non-negative quadratic form represented by T,

Dom�qT� = Dom�T� and qT�h,k� = �Tu,Tv�r for all h,k � Dom�T� . �B12�

Since Dr�q�1/2 is bounded, it follows that the adjoint operator of T is

T� = Dr�p�−1/2Dr�q�1/2, Dom�T�� = 	h � Kr
Dr�q�1/2h � Ran�Dr�p�1/2�� , �B13�

which, by Lemma 7.6 and Theorem 6.2, is dense in Kr, and hence T is closable. Therefore, its
associated quadratic form qT is closable, so q̃ is closable.

Conversely, assume that Ker�p��Ker�q� and that q̃ is closable. We make the construction of
the operator T as in �B11� and claim that it is closable. Basically, this is a consequence of the fact
that �r has dense range, but here are the details. Let �hn� be a sequence in Dom�T�
=Ran�Dr�p�1/2� such that

hn = Dr�p�1/2kn → 0 and Thn = Dr�q�1/2kn → y as n → � , �B14�

and the convergences are to be understood in the norm � · �r of Kr, where �kn� is a sequence of
vectors in Kr. We have to prove that y=0. To see this, since the range of �r is dense in Kr, there
exists a sequence �un� of vectors in V such that �kn−�run�r→0 as n→�. Then, due to the
continuity of Dr�p�1/2 and Dr�q�1/2 it follows that

lim
n→�

�Dr�p�1/2kn − Dr�p�1/2�run�r = 0 = lim
n→�

�Dr�q�1/2kn − Dr�q�1/2�run�r, �B15�

and hence, by �B14� it follows that

lim
n→�

�Dr�p�1/2�run�r = 0, lim
n,m→�

q̃�Dr�p�1/2�r�un − um�� = 0. �B16�

Taking into account of the second equality in �B15�, these imply

�y�r = lim
n→�

�Dr�q�1/2�run�r
2 = lim

n→�
�Dr�q�1/2�run,Dr�q�1/2�run�r = lim

n→�
q̃�Dr�p�1/2�run� = 0,

where, at the last step, we used the assumption that q̃ is closable. Thus, y=0 and hence T is
closable and, consequently, its adjoint T� is densely defined.

Finally, taking into account the formula for Dom�T�� as in �B13�, by Theorem 6.2 and Lemma
7.6 it follows that q is p-absolutely continuous. �

A form q�Q�V�+ is called p-singular if p∧q=0, that is, the only r�Q�V�+ satisfying r
	 p ,q is the 0 quadratic form on V.

Given p ,q�Q�V�+, a p-Lebesgue decomposition of q is a decomposition q=q1+q0, where
q0 ,q1�Q�V�+, q1 is p-absolutely continuous and q0 is p-singular.

Theorem 7.8: Given any p ,q�Q�V�+ , there exists a p-Lebesgue decomposition of q=qac

+qs such that qac is maximal among all forms s�Q�V�+ that are p-absolutely continuous and s
	q.

The proof is perfectly similar with that of Theorem 3.1. We only write explicitly the construc-
tions of qac and qs, namely, for any u ,v�V,

qac�u,v� = �Dr�q�PKr�Ker�Dr�p���ru,�rv�r, qs�u,v� = �PKer�Dr�p���ru,�rv�r, �B17�

where, �Kr ;�r� is the Hilbert space induced by the nonnegative quadratic form r= p+q.
If we combine Theorem 7.8 with Theorem 7.7 we get the following.
Corollary 7.9: �Simon �Ref. 33� Theorem 2.5� Let p ,q�Q�V�+ , let �Kp ;�p� be the Hilbert

space induced by p and q=qac+qs the decomposition as in �B17�. Then qac is maximal among all
forms s�Q�V�+ subject to the following conditions.
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�i� s	q.
�ii� Ker�s��Ker�p�.
�iii� The non-negative quadratic form s̃ , with Dom�s̃�=�pV dense in the Hilbert space Kp and

defined by �pv�q�v ,v� , is closable.

In addition, in a similar fashion with Theorem 3.3 we get the following.
Theorem 7.10: Let p ,q ,r�Q�V�+ be such that r uniformly dominates p and q. Let q=qac

+qs be the p-Lebesgue decomposition of q defined by �B17�. Then, the Radon–Nikodym deriva-
tives of qac and qs , with respect to r , can be calculated as follows:

Dr�qac� = �Dr�p��Dr�q� and Dr�qs� = Dr�q� − �Dr�p��Dr�q� . �B18�

In particular, letting �Kr ;�r� be the Hilbert space induced by r , we have

qac�u,v� = ���Dr�p��Dr�q���ru,�rv�r, u,v � V , �B19�

and

qs�u,v� = ��Dr�q� − �Dr�q��Dr�q���ru,�rv�, u,v � V . �B20�

The analog of Corollary 3.5 holds as well.
Corollary 7.11: Let p ,q�Q�V�+. Then the following holds.

�i� q is p-absolutely continuous if and only if qs=0.
�ii� q is p-singular if and only if qac=0.

The transcription of Corollary 3.6 to the actual setting is clear as well.
Concerning the uniqueness of Lebesgue decompositions we have the following.
Theorem 7.12: Let p�Q�V�+ be fixed.

�1� An arbitrary q�Q�V�+ admits a unique p-Lebesgue decomposition if and only if qac , the
p-absolutely part of q , is uniformly dominated by p , that is, qac	 tp for some t
0.

�2� The following assertions are equivalent.

�a� The property of p-absolute continuity is hereditary, that is, if q ,r�Q�V�+ are such that r
	q� p then r� p.

�b� Any form q�Q�V�+ admits a unique p-Lebesgue decomposition.
�c� The property of p-absolute continuity coincides with the property of p-uniform dominance,

that is, for any q�Q�V�+ , we have q� p if and only if q	up.

Proof:

�1� Let r= p+q. Since for any p-Lebesgue decomposition of q=q1+q0 we have q1 ,q2	q	r, it
follows that the Radon–Nikodym derivative provides an order-preserving bijective corre-
spondence between the set of all p-Lebesgue decompositions of q and the set of all
Dr�p�-Lebesgue decompositions of Dr�q�. Hence, the statement follows from Theorem 6.5.

�2� �a�⇒ �b�. This implication follows as in the proof of Proposition 3.8.
�b�⇒ �c�. Let q�Q�V�+ be such that q� p. Then, on the one hand q=qac and, on the other
hand, from �1� it follows that qac	up, hence q	up. Since p-uniform domination always
implies p-absolute continuity, the proof is complete.
�c�⇒ �a�. Clear.

�

An analog of Theorem 4.2 for the infimum of non-negative quadratic forms can be also
obtained without any difficulty.
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4. Radon–Nikodym derivatives for absolutely continuous non-negative quadratic
forms

We consider the same framework as before: V is a complex vector space and Q�V�+ denotes
the set of non-negative quadratic forms on V. In the following we use the notion of convergence
in the strong resolvent sense �e.g., see Ref. 32�: let �An� be a sequence of �generally, unbounded�
positive self-adjoint operators in a Hilbert space H. One says that �An� converges in the strong
resolvent sense to the positive self-adjoint operator A in H if SO–limn→��I+An�−1= �I+A�−1. The
name is justified by the known fact that, in this case, we also have SO–limn→���I−An�−1= ��I
−A�−1 for all ��C \R �e.g., see Corollary VIII.1.4 in Ref. 20�. Also, given a closable operator T in
the Hilbert space, a subspace D�Dom�T� is called a core for T if the closure of T 
D coincides
with the closure of T

Theorem 7.13: Let p ,q�Q�V� and let �Kp ;�p� be the Hilbert space induced by p.

�a� q is p-absolutely continuous if and only if there exists a (generally unbounded) linear
operator Dp�q� , uniquely determined by the following properties.

�i� Dp�q� is a positive self-adjoint operator in Kp.
�ii� �pV is a core for Dp�q�1/2.
�iii� q�u ,v�= �Dp�q�1/2�pu ,Dp�q�1/2�pv�p for all u ,v�V.

�b� Assume that q is p-absolutely continuous. Then, for any sequence �qn� of quadratic forms in
Q�V�+ that is nondecreasing, qn�u�→q�u� for all u�V, and qn	up for all n�N , it follows
that Dp�qn� converges to Dp�q� in the strong resolvent sense.

Before approaching the proof of Theorem 7.13 we record a result of Simon,33 including its
proof not only for the readers convenience but also as an illustration of the applicability of
Lebesgue-type decompositions for non-negative quadratic forms. Recall that for two positive
self-adjoint operators A and B acting in the same Hilbert space H, one writes A	B if
Dom�B1/2��Dom�A1/2� and �A1/2h ,A1/2h�	 �B1/2h ,B1/2h� for all h�Dom�B1/2�, that is, the natu-
ral order relation coming out from the order relation of the corresponding quadratic forms.

Lemma 7.14: �Simon �Ref. 33�� Let �An�n�1 be a sequence of (generally unbounded) positive
self-adjoint operators in a Hilbert space H subject to the following properties.

�i� �An�n�1 is nondecreasing in the associated quadratic forms order relation.
�ii� There exists a positive self-adjoint operator A0 in H such that An	A0 for all n�1.

Then, letting

Dom�q� = 	h � �
k�1

Dom�Ak
1/2�
sup

n�1
�An

1/2h� � ��, q�h� = sup
n�1

�An
1/2h�2, �B21�

q is a closed non-negative quadratic form on H and letting A denote the positive self-adjoint
operator in H that represents the non-negative quadratic form q , the sequence �An� converges in
the strong resolvent sense to A.

Proof: Note that Dom�q��Dom�A0
1/2� and hence it is dense in H. We let p= � · �2 be the

quadratic form associated with the scalar product on H and, for the moment, consider all the
quadratic forms restricted to V=Dom�q�. For all n�1 let qn= �An

1/2·�2 denote the quadratic form
corresponding to An and restricted to V as well. Let q=qac+qs be the p-Lebesgue decomposition
of q and observe, by the maximality property of qac, that for all n�1 we have qn	qac because qn

is closable. Therefore, q	qac hence q=qac is closable.
We claim that q is closed. To see this, let h�H and �hn� a sequence of vectors in Dom�q� such

that �hn−h�→0 and q�hn−hm ,hn−hm�→0 as m ,n→�. Since for arbitrary k�1 we have qk	q
and qk is closable, it follows that h�Dom�hk�, hence h��k�1Dom�hk�. On the other hand, by the
triangle inequality for the seminorm q1/2,
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q�hn,hn�1/2 − q�hm,hm�1/2
 	 
q�hm − hn,hm − hn�
 for all m,n � 1,

hence supn�1q�hn ,hn���. Then

sup
n�N

qn�h,h� = sup
n�N

lim
m→�

qn�hm,hm� = sup
n�N

sup
m�N

qn�hm,hm� = sup
m�N

sup
n�N

qn�hm,hm� = sup
m�N

q�hm,hm� � � ,

and hence h�Dom�q�, by definition. Now observe that the sequence �hn−h� is Cauchy in the
seminorm q1/2 and, since �hn−h�→0 as n→�, taking into account that q is closable, it follows
that q�hn−h ,hn−h�→0 as n→�. We conclude that q is closed.

Finally, by Theorem 7.5 and hypotheses, the sequence of positive bounded operators �An

+ I�−1 is nondecreasing and bounded from below by �A0+ I�−1, hence it converges strongly to a
positive bounded operator B� �A0+ I�−1 and hence, there exists a unique positive self-adjoint
operator A in H such that �A+ I�−1=B. Clearly, the quadratic form pA corresponding to A satisfies
q	 pA. Since pAn

	q for all n�1 it follows that pA=q. �

Proof of Theorem 7.13:

�a� Let us first assume that q is p-absolutely continuous. By the first part of the proof of
Theorem 7.7 it follows that, without loss of generality, we can assume that Ker�Dr�p�
= 	0�� and then, letting Jp,q denote the closure of the operator T defined at �B11�, we have
�see �B13��

Jp,q
� = Dr�p�−1/2Dr�q�1/2, Dom�Jp,q

� � = 	h � Kr
Dr�q�1/2 � Ran�Dr�p�1/2�� . �B22�

Thus, letting

Dp�q� = Jp,q
� Jp,q, �B23�

by the celebrated theorem of von Neumann it follows that Dp�q� is a positive selfadjoint
operator in Kp and Dom�Jp,q� is a core of Dp�q�. On the other hand, with the notation as in
the proof of Theorem 7.7, from �B9�, and by Borelian functional calculus we get

Dp�q� = Dr�p�−1/2Dr�q�Dr�p�−1/2, Dom�Dp�q�� = Ran�Dr�p�1/2� , �B24�

and that �pV is a core for Dp�q�1/2. In addition, for arbitrary u ,v�V we have

�Dp�q�1/2�pu,Dp�q�1/2�pv�p

= �Dp�q�1/2Dr�p�1/2�ru,Dp�q�1/2Dr�p�1/2�rv�r

= �Jp,qDr�p�1/2�ru,Jp,qDr�p�1/2�rv�r = �Dr�q�1/2�ru,Dr�q�1/2�rv�r = q�u,v� .

The uniqueness part is clear.
�b� Let �qn� be a sequence in Q�V�+ as in the statement. Then the sequence of Radon–Nikodym

derivatives �Dp�qn�� satisfies the assumptions in Lemma 7.14, with A0=Dp�q�. It remains to
observe that h�Kp satisfies supn�N�Dp�qn�1/2h��� if and only if h�Dom�Dp�q�1/2� and
apply Lemma 7.14.

�
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APPENDIX C: UNIFICATION OF THE THREE COMPARISON THEORIES

1. Recovering the maximal Lebesgue decomposition for non-negative operators

So far we indicated how the maximal Lebesgue decomposition for completely positive maps
�and, as shown in Appendix B, the whole comparison theory for nonnegative quadratic forms� can
be derived from the comparison theory for non-negative bounded operators on a Hilbert space.
Now we show that the converse way is also possible.

We first indicate the recovering of the maximal Lebesgue decomposition. If A is a
C�-subalgebra of B�H� and A�B�H�+, we define the map

�A:A → B�H�, by X � �A�X� = A1/2XA1/2. �C1�

It is easy to observe that �A�CP�A ;H� and that, if A�A��B�H�, then �A is the map of
multiplication with A �left is the same with right, in this case�.

Theorem 8.1: Let A ,B�B�H�+ and let A=C��I ,A ,B�� be the commutant of the C�-algebra
generated by I, A , and B in B�H�. Let �A, �B , and �I be the completely positive maps defined as
in �C1�. Then �I uniformly dominates �A and �B , and

D�I
��A� = A and D�I

��B� = B .

If �B=�B,ac+�B,s is the maximal �A-Lebesgue decomposition of �B , then

�B,ac = ��A�B and �B,s = �B−�A�B.

Proof: Note that �� ;H ;V�, where � :A�B�H� is the canonical embedding and V :H→H is
the identity operator, is the minimal Stinespring representation for �I. Moreover,

�A = V�A��·�V and �B = V�B��·�V .

Since 0	A ,B���A��, they are the Radon–Nikodym derivatives of �A and, respectively, �B with
respect to �I. Since �ac=V��A�B��·�V and �s=V��B− �A�B���·�V the result follows. �

Next we show how the whole comparison theory for non-negative operators can be recovered.
Letting H be a Hilbert space we observe that there exists a bijective correspondence between
CP�C ;H� and B�H�+, given by CP�C ;H������1��B�H�+, with its inverse B�H�+�A� ·A
�CP�C ;H�. It is easy to see that this mapping is affine and order preserving and hence a complete
isomorphism.

2. Recovering the comparison theory for non-negative bounded operators on Hilbert
space

Let H be a Hilbert space and consider the convex strict cone Q�H�+ of non-negative quadratic
forms on H, as in Appendix B 1. Let

Qb�H�+ = 	p � Q�H�+
p is bounded� , �C2�

where the boundedness condition for p means that p�h�	C�h�2 for some C
0 and all h�H. The
Riesz representation theorem shows that pA�h�= �Ah ,h�, h�H, establishes an affine and order-
preserving isomorphism between the convex strict cones,

B�H�+ � A � pA � Qb�H�+. �C3�

On the other hand, since � · �2= pI, where I is the identity operator on H, it follows that

Qb�H�+ = 	p � Q�H�
p	upI� . �C4�

An inspection of the definitions of absolute continuity and Lebesgue decompositions shows that
these notions are preserved by the above mentioned isomorphism between Qb�H�+ and B�H�+.
Thus, at least at the formal transcription of results, everything that can be proven in the compari-
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son theory of non-negative quadratic forms implies a corresponding result in the comparison
theory of non-negative bounded operators on a Hilbert space. Moreover, the identification in �C3�
can, alternatively, be viewed by means of the Radon–Nikodym derivative, that is, after observing
that �H ; I� is the Hilbert space induced by pI, it follows that in �C3� we actually have A
=DpI

�pA�.
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