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Abstract

A method of integrable discretization of the Liouville type nonlinear partial differential

equations is suggested based on integrals. New examples of discrete Liouville type models

are presented.

1 Introduction

The problem of integrable discretization of the integrable PDE is very complicated and not enough

studied. The same is true for evaluating the continuum limit for discrete models [1]. In the

present paper we undertake an attempt to clarify the connection between Liouville type partial

differential equations and their discrete analogues. One unexpected observation is that there are

pairs of equations, one continuous and the other one semi-discrete, having a common integral.

Inspired by these examples, we introduced a method of discretization of PDE having a nontrivial

integral. Similar ideas are used in [2] where a method of construction of difference scheme for

ordinary differential equations preserving the classical Lie group is suggested. Let us begin with

the necessary definitions.
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We consider discrete equations of the form

v(n+ 1, m+ 1) = f(v(n,m), v(n+ 1, m), v(n,m+ 1)) (1)

and semi-discrete chains

t(n + 1, x) = f(x, t(n, x), t(n+ 1, x), tx(n, x)) . (2)

Equations (1) and (2) are discrete and semi-discrete analogues of hyperbolic equations

uxy = f(x, y, u, ux, uy) . (3)

Functions v = v(n,m), t = t(n, x) and u = u(x, y) depend on discrete variables n and m and

continuous variables x and y. Through the paper we use the following notations:

vi,j = v(n+ i,m+ j); vi = vi,0; v̄j = v0,j; ti = t(n+ i, x) .

For equation (3) function W (x, y, u, uy, uyy, . . . , ∂
ku/∂yk) is called an x-integral of order k if

DxW = 0 and W∂ku/∂yk 6= 0, and function W̄ (x, y, u, ux, uxx, . . . , ∂
mu/∂xm) is called a y-integral

of order m if DyW̄ = 0 and W̄∂mu/∂xm 6= 0. Here, Dx and Dy denote the total derivatives with

respect to x and y. Equation (3) is called Darboux integrable if it possesses nontrivial x- and y-

integrals.

For equation (2) function F (x, n, tm, tm+1, tm+2, . . . , tm′) is called an x-integral of order m′ −
m + 1 if DxF = 0 and Ftm 6= 0, Ft′m 6= 0 and function I(x, n, t, tx, txx, . . . ,

dkt
dtk

) is called an n-

integral of order k, if DI = I and I dkt

dtk

6= 0. Here, D is the forward shift operator in n, i.e.

Dh(n, x) = h(n+1, x). Equation (2) is called Darboux integrable if it possesses nontrivial x- and

n- integrals.

For equation (1) function I(n,m, v̄k, v̄k+1, . . . , v̄k′) is called an n-integral of order k′ − k + 1 if

DI = I and Iv̄k 6= 0, Iv̄k′ 6= 0, and function Ī(n,m, vr, vr+1, vr+2, . . . , vr′) is called an m-integral of

order r′ − r+1, if D̄Ī = Ī and Īvr 6= 0, Īvr′ 6= 0. Here, D and D̄ are the forward shift operators in

n and m respectively. Equation (1) is called Darboux integrable, if it possesses nontrivial n- and

m-integrals (see also [3]).

Continuous equations (3) are very-well studied. In particular, the question of describing all

Darboux integrable equations (3) is completely solved ( see [4] - [7]). All equations (3) possessing

x- and y-integrals of order 2 are described by the following theorem.



Theorem 1.1 (see [7]) Any equation (3), for which there exist second order x- and y-integrals,

under the change of variables x → X(x), y → Y (y), u → U(x, y, u), can be reduced to one of the

kind:

(1) uxy = eu, W̄ = uxx − 0.5u2x, W = uyy − 0.5u2y;

(2) uxy = eyuy, W̄ = ux − eu, W = uyy

uy
− uy;

(3) uxy = eu
√

u2y − 4, W̄ = uxx − 0.5u2x − 0.5e2u, W =
uyy−u2

y+4√
u2
y−4

;

(4) uxy = uxuy
(

1
u−x

− 1
u−y

)

, W̄ = uxx

ux
− 2ux

u−x
+ 1

u−x
, W = uyy

uy
− 2uy

u−y
+ 1

u−y
;

(5) uxy = ψ(u)β(ux)β̄(uy), (lnψ)
′′ = ψ2, ββ ′ = −ux, β̄β̄ ′ = −uy,

W̄ = uxx

β(ux)
− ψ(u)β(ux), W = uyy

β̄(uy)
− ψ(u)β̄(uy);

(6) uxy =
β(ux)β̄(uy)

u
, ββ ′ + cβ = −ux, β̄β̄ ′ + cβ̄ = −uy,

W̄ = uxx

β
− β

u
, W = uyy

β̄
− β̄

u
;

(7) uxy = −2
√
uxuy

x+y
, W̄ = uxx√

ux
+ 2

√
ux

x+y
, W = uyy√

uy
+ 2

√
uy

x+y
;

(8) uxy =
1

(x+y)β(ux)β̄(uy)
, β ′ = β3 + β2, β̄ ′ = β̄3 + β̄2,

W̄ = uxxβ(ux)− 1
(x+y)β(ux)

, W = uyyβ̄(uy)− 1
(x+y)β̄(uy)

.

On the contrary, the problem of describing all equations (1) or (2) possessing both integrals (so-

called Darboux integrable equations) is very far from being solved (the problem of classification is

solved only for a very special kind of semi-discrete equations [8]), it would be beneficial for further

classification to obtain new Darboux-integrable equations (1) and semi-discrete chains (2). It was

observed that many chains (2) and their continuum limit equations (3) possess the same n- and

y-integrals:

semi− discrete chain n− integral I continuous y − integral W̄

analogue

t1x = tx + 0.5t21 − 0.5t2 tx − 0.5t2 uxy = uuy ux − 0.5u2

t1x = tx + Ce0.5(t+t1), C = Const txx − 0.5t2x uxy = eu uxx − 0.5u2x

t1x = tx +
√
e2t + Cet+t1 + e2t1 txx − 0.5t2x − 0.5e2t uxy = eu

√

1 + u2y uxx − 0.5u2x − 0.5e2u

The main aim of the present paper is the discretization of equations (3) preserving the structure

of y-integrals of order 2: we take y-integral for each of eight classes of Theorem 1.1 and find the

semi-discrete chain (2) possessing the given n-integral (y-integral). The next Theorem presents a

list of semi-discrete models of Darboux integrable equations (3) from Theorem 1.1 with integrals

of order 2.



Theorem 1.2 Below is the list of equations (2) possessing the given n-integral I :

given n− integral the corresponding chain

I = txx − 0.5t2x t1x = tx + Ce0.5(t+t1), C = Const (1∗)

I = tx − et t1x = tx − et + et1 (2∗a)

I = txx
tx

− tx t1x = K(t, t1)tx, where KtK
−1 +Kt1 = K − 1 (2∗b)

I = txx − 0.5t2x − 0.5e2t t1x = tx +
√
e2t +Ret+t1 + e2t1 , R = Const (3∗a)

I = txx−t2x+4√
t2x−4

t1x = (1 +Ret+t1)tx +
√
R2e2(t+t1) + 2Ret+t1

√

t2x − 4 (3∗b)

I = txx
tx

− 2tx
t−x

+ 1
t−x

t1x = (t1+L)(t1−x)
(t+L)(t−x)

tx, L = Const (4∗)

I = txx
β(tx)

− ψ(t)β(tx) β(tx) = itx and t1x = K(t, t1)tx, where (5∗)

(lnψ)′′ = ψ2, ββ ′ = −tx Kt +KKt1 +K2ψ(t1)−Kψ(t) = 0

I = txx
β(tx)

− β(tx)
t
, β(tx) = Rtx, and t1x = K(t, t1)tx, where (6∗)

ββ ′ + cβ = −tx Kt

K
+Kt1 =

R2(tK−t1)
tt1

I = txx√
tx
+ 2

√
tx

x+R
t1x =

(√
tx +

C
x+R

)2
, R = Const, C = Const (7∗)

I = β(tx)txx − 1
(x+R)β(tx)

, β(tx) = −1 and t1x = tx +
t1−t+C
x+R

(8∗)

β ′ = β3 + β2

It is remarkable that each equation in Theorem 1.2 also admits a nontrivial x-integral. It means

that discretization preserving the structure of y-integrals sends Darboux integrable equations (3)

into Darboux integrable chains (2).

Note that equation (1∗) was found in [9]. Equation (3∗a) for R = 2 was found in [3], equations

(2∗a) and (3∗a) are found in [8]. To our knowledge, the other equations from Theorem 1.2 are

new.

The next theorem lists x-integrals for chains from Theorem 1.2.

Theorem 1.3 (I) The equations (2∗b), (5∗) and (6∗) from Theorem 1.2 having the form t1x =

K(t, t1)tx admit x-integral F (t, t1), where function F is a solution of Ft +K(t, t1)Ft1 = 0 with a

given function K(t, t1).

(II) x-integrals of equations (8∗), (1∗), (3∗a), (3∗b), (4∗), (7∗) and (2∗a) are F = (t1−t+C)/(x+y),
F = e(t1−t)/2 + e(t1−t2)/2, F = arcsinh(aet1−t2 + b) + arcsinh(aet1−t + b) with a = 2(4 − R2)−1/2,

b = R(4 − R2)−1/2, F =
√
Re2t1 + 2et1−t +

√
Re2t1 + 2et1−t2, F = (t1 − t)(t2 + L)(t2 − t)−1(t1 +

L)−1, F = (2t1 − t − t2)/(2C
2) − 1/(x + R) and F = (et − et2)(et1 − et3)(et − et3)−1(et1 − et2)−1

correspondingly.



One can also apply the discretization method preserving the structure of integrals for semi-

discrete chains (2): take x-integral for a semi-discrete chain and find discrete equation (1) with

the given m-integral (x-integral).

In spite of the absence of the complete classification for Darboux-integrable semi-discrete chains

(2) there is a large variety of such chains in literature (see, for instance, [3], [8] and [10]). The

procedure of obtaining fully discrete equations for a given integral is a difficult task and requires

further investigation. As a rule it is reduced to a very complicated functional equation. We

illustrate the application of the discretization method on chains (1∗), (4∗) and (7∗) from Theorem

1.2. The discrete analogues of the chains are presented in the next Remark.

Remark 1.4 Below is the list of equations (1) possessing the given m-integral Ī :

given m− integral the corresponding equation

Ī = e(v1−v)/2 + e(v1−v2)/2 ev1,1+v = 1
C+e−(v1+v̄1)

(1∗∗)

Ī = (v1 − v)(v2 + L)(v2 − v)−1(v1 + L)−1 v1,1 =
L(v1+v̄1−v)+v1 v̄1

L+v
(4∗∗)

Ī = 2v1 − v − v2 v1,1 = v1 + h(v̄1 − v), z = h(2z − h(z)) (7∗∗)

The equations (1∗∗), (4∗∗) and (7∗∗) have respectively the following n-integrals I = e(v̄1−v)/2 +

e(v̄1−v̄2)/2, I = (v̄1 − v̄)(v̄2 + L)(v̄2 − t)−1(v̄1 + L)−1 and I = v̄1 − v − h−1(v̄1 − v) with h−1 being

the inverse function of function h that satisfies the functional equation z = h(2z − h(z)).

Equation (1∗∗) from Remark 1.4 appeared in [11], equations (4∗∗) and (7∗∗) seem to be new,

unfortunately we failed to answer the question whether equation z = h(2z−h(z)) has any solution

different from linear one h(z) = z + C.

The article is organized as follows. Theorem 1.2 is proved in Section 2. The proof of Theorem

1.3 is omitted. Chains (1∗), (2∗a) and (3∗a) are of the form t1x = tx + d(t, t1), and their x-

integrals can be seen in [8]. One can find x-integrals for chains (3∗b), (4∗), (7∗) and (8∗) by direct

calculations. In Section 3 the discretization of chains (1∗), (4∗) and (7∗) from Remark 1.4 are

presented and for each obtained discrete equation the second integral is found. In Section 4 the

Conclusion is drawn.



2 Proof of Theorem 1.2

Case (1∗): Consider all chains (2) with n-integral of the form I = txx − 1
2
tx

2. Equality DI = I

implies

fx + fttx + ft1f + ftxtxx −
1

2
f 2 = txx −

1

2
tx

2. (4)

By comparing the coefficients before txx in (4) we have ftx = 1. Therefore,

f(x, t, t1, tx) = tx + d(x, t, t1) . (5)

We substitute (5) into (4) and get dx+dttx+dt1tx+dt1d− 1
2
tx

2−dtx− 1
2
d2 = −1

2
tx

2, or equivalently,

dt + dt1 − d = 0 and dx + dt1d− 1
2
d2 = 0. We solve the last two equations simultaneously and find

that d = et1K(x, t1 − t), where K = Ce−
1
2
(t1−t) and C is an arbitrary constant. Therefore, chain

(2) with n-integral I = txx − 1
2
tx

2 becomes t1x = tx + Ce(t1+t)/2.

Case (2∗a): Consider all chains (2) with n-integral I = tx − et. Equality DI = I implies f − et1 =

tx − et, which gives the equation t1x = f = tx − et + et1 .

Case (2∗b): Consider all chains (2) with n-integral I = txx
tx

− tx. Equality DI = I implies

fx + fttx + ft1f + ftxtxx
f

− f =
txx
tx

− tx. (6)

By comparing the coefficients before txx in (6) we have ftx/f = 1/tx, that is f = K(x, t, t1)tx.

Substitute f = K(x, t, t1)tx into (6) and have Kx

K
+ Kt

K
tx +Kt1tx −Ktx = −tx, or equivalently (by

comparing the coefficients before tx and tx
0), we get Kt

K
+ Kt1 = K − 1 and Kx = 0. Therefore,

equations t1x = K(t, t1)tx, where K satisfies Kt

K
+Kt1 = K − 1 are the only chains (2) that admit

n-integral I of the form I = txx
tx

− tx.

Case (3∗a): Consider all chains (2) with n-integral I = txx− 1
2
tx

2− 1
2
e2t. Equality DI = I implies

fx + fttx + ft1f + ftxtxx −
1

2
f 2 − 1

2
e2t1 = txx −

1

2
tx

2 − 1

2
e2t. (7)

By comparing the coefficients before txx in (7) we have ftx = 1, that is f(x, t, t1, tx) = tx+d(x, t, t1).

Substitute f(x, t, t1, tx) = tx + d(x, t, t1) into (7) and have

dx + dttx + dt1(tx + d)− 1

2
(tx + d)2 − 1

2
e2t1 = −1

2
tx

2 − 1

2
e2t. (8)

Compare the coefficients before tx and tx
0 in (8) and get

dt + dt1 − d = 0, dx + dt1d−
1

2
d2 − 1

2
e2t1 = −1

2
e2t. (9)



The first equation in (9) has a solution d = et1K(x, t1 − t). Substitution of this expression into

the second equation of (9) gives e−t1Kx +Kt1−tK + 1
2
K2 − 1

2
+ 1

2
e−2(t1−t) = 0. Since K depends

on U = t1 − t and x, then Kx = 0 and the last equation becomes 2K ′K + K2 = 1 − e−2U , and

hence, d = et1K =
√
e2t1 + e2t +Ret+t1 , where R is and arbitrary constant. Therefore, chain (2)

with n-integral I = txx − 1
2
tx

2 − 1
2
e2t becomes t1x = tx +

√
e2t1 + e2t +Ret+t1 , R = const.

Case (3∗b): Consider all chains (2) with n-integral I = txx−tx2+4√
tx2−4

. Equality DI = I implies

fx + fttx + ft1f + ftxtxx − f 2 + 4√
f 2 − 4

=
txx − tx

2 + 4
√

tx
2 − 4

. (10)

By comparing the coefficients before txx in (10) we get ftx√
f2−4

= 1√
tx2−4

, that is arccoshf
2
=

arccosh tx
2
+K(x, t, t1). Thus,

f(x, t, t1, tx) = Atx +B
√

tx
2 − 4, (11)

where A(x, t, t1) = coshK, B(x, t, t1) = sinhK, A2 −B2 = 1. Note that f = 2cosh((arccosh tx
2
) +

K), i.e.
√
f 2 − 4 = 2sinh((arccosh tx

2
) + K) = 2(

√

tx2

4
− 1coshK + tx

2
sinhK), or

√
f 2 − 4 =

Btx + A
√

tx
2 − 4. Substitute (11) into (10) and have

txAx +Bx

√

tx
2 − 4 + tx

2At + txBt

√

tx
2 − 4 + (txAt1 +Bt1

√

tx
2 − 4)(Atx +B

√

tx
2 − 4)

−(Atx +B
√

tx
2 − 4)2 + 4 = −(Btx + A

√

tx
2 − 4)

√

tx
2 − 4,

that can be written shortly as

(tx
2 − 4)(α1 + α2tx)

2 = (α3 + α4tx + α5tx
2)2, (12)

where α1 = Bx, α2 = Bt +At1B +Bt1A− 2AB +B, α3 = −4Bt1B + 4B2 + 4− 4A, α4 = Ax, α5 =

At + At1A + Bt1B − A2 − B2 + A. We compare the coefficients before tx
4, tx

3, tx
2, tx, t

0
x in (12)

and have α2
2 = α5

2, 2α1α2 = 2α4α5, α1
2 − 4α2

2 = α4
2 + 2α3α5, −8α1α2 = 2α3α4, −4α1

2 = α3
2,

that implies α1 = α2 = α3 = α4 = α5 = 0, which is possible only if A = 1 + Ret+t1 and

B =
√
R2e2(t+t1) + 2Re(t+t1), where R = const. Therefore, by (11), the chain (2) with n-integral

I = txx−tx2+4√
tx2−4

becomes t1x = (1 +Ret+t1)tx +
√
R2e2(t+t1) + 2Re(t+t1)

√

tx
2 − 4.

Case (4∗): Consider chains (2) with n-integral I = txx
tx

− 2tx
t−x

+ 1
t−x

. Equality DI = I implies

fx + fttx + ft1f + ftxtxx
f

− 2f

t1 − x
+

1

t1 − x
=
txx
tx

− 2tx
t− x

+
1

t− x
. (13)

We compare the coefficients before txx and have ftx/f = 1/tx, that is f = txK(x, t, t1). Substitute

f = txK into (13) and have

Kxtx +Kttx
2 +Kt1Ktx

2

Ktx
− 2Ktx
t1 − x

+
1

t1 − x
= − 2tx

t− x
+

1

t− x
. (14)



By comparing the coefficients before tx and tx
0 in (14) we get

Kt

K
+Kt1 =

2K

t1 − x
− 2

t− x
,

Kx

K
= − 1

t1 − x
+

1

t− x
. (15)

We solve two equations of (15) simultaneously and have K = t1+L
t+L

t1−x
t−x

, where L is an arbitrary

constant. Therefore, any chain (2) with n-integral I = txx
tx

− 2tx
t−x

+ 1
t−x

becomes t1x = t1+L
t+L

t1−x
t−x

tx.

Case (5∗) : Consider all chains (2) with n-integral I = txx
β
−ψβ, where β = β(tx), ψ = ψ(t), ββ ′ =

−tx. We have, 2ββ ′ = −2tx, i.e. β
2 = −tx2 +M2, or β =

√

M2 − tx2, where M is an arbitrary

constant. Equality DI = I implies

fx + fttx + ft1f + ftxtxx
β(f)

− ψ(t1)β(f) =
txx
β(tx)

− ψ(t)β(tx). (16)

We compare the coefficients before txx and have ftx/β(f) = 1/β(tx) which implies that

either (5∗a): M = 0, β(tx) = itx and t1x = K(x, t, t1)tx,

or (5∗b): M 6= 0 and then arcsin f
M

= arcsin tx
M

+ L(x, t, t1), that is,

f = txA(x, t, t1) +
√

M2 − tx2B(x, t, t1), A
2 +B2 = 1. (17)

In case (5∗a) we substitute t1x = f = K(x, t, t1)tx into (16), use that β(tx) = itx, and obtain

Kx = 0,
Kt

K
+Kt1 + ψ(t1)K = ψ(t). (18)

Therefore, the chains (2) with n-integral I = txx
itx

− iψ(t)tx are equations t1x = K(t, t1)tx, where

function K satisfies (18).

Let us consider case (5∗b). Note that

M2 − f 2 =M2 − A2tx
2 − 2ABtx

√

M2 − tx
2 −B2M2 +B2tx

2 = (Btx −A
√

M2 − tx
2)2

and β(f) = ±(Btx − A
√

M2 − tx
2), β(tx) =

√

M2 − tx
2. Substitute (17) into (16) and get

Axtx +Bx

√

M2 − tx
2 + Attx

2 +Bttx
√

M2 − tx
2 + (At1tx +Bt1

√

M2 − tx
2)(Atx +B

√

M2 − tx
2)

±(Btx −A
√

M2 − tx
2)

= ±(Btx − A
√

M2 − tx
2)ψ(t1)−

√

M2 − tx
2ψ(t),

or the same,

(M2 − tx
2)(α1 + α2tx)

2 = (α3 + α4tx + α5tx
2)2, (19)

where α1 = Bx, α4 = Ax, α2 = Bt+At1B+ABt1+2ABψ(t1)+Bψ(t), α3 = BBt1M
2−A2M2ψ(t1)−

Aψ(t)M2, α5 = At + At1A − Bt1B − B2ψ(t1) + A2ψ(t1) + Aψ(t). We compare the coefficients



before tkx, k = 0, 1, 2, 3, 4, in (19) and find that α1 = α2 = α3 = α4 = α5 = 0,which is possible

only if ψ = R is a constant function, that contradicts to the equation (lnψ)′′ = ψ2. Therefore,

case (5∗b) is not realized.

Case (6∗): Consider chains (2) with n-integrals I = txx
β(tx)

− β(tx)
t

, where β = β(tx) and ββ
′ + cβ =

−tx. The equality DI = I implies
ftx
β(f)

=
1

β(tx)
(20)

and
fx + fttx + ft1f

β(f)
− β(f)

t1
= −β(tx)

t
. (21)

Differentiation of (20) with respect to x, t, t1 gives

fxtx =
β ′(f)

β(tx)
fx, ftxt =

β ′(f)

β(tx)
ft, ftxt1 =

β ′(f)

β(tx)
ft1 . (22)

First we differentiate (21) with respect to tx, use (22), and get

1

β(f)
ft +

1

β(tx)
ft1 = −(cβ(f) + f)

t1β(tx)
+
c

t
+

tx
tβ(tx)

. (23)

Next we differentiate (23) with respect to tx, use (22), and arrive to the equality

{

tx
β(tx)

− f

β(f)

}

ft1 = −(cβ(f) + f)tx
t1β(tx)

− β(f)

t1
+
β(tx)

t
+
ctx
t

+
t2x

tβ(tx)
.

There are two possibilities:

either (6∗a), when

A :=
tx

β(tx)
− f

β(f)
= 0, (24)

or (6∗b), when

ft1 =
β(f)β(tx)

txβ(f)− fβ(tx)

{

−(cβ(f) + f)tx
t1β(tx)

− β(f)

t1
+
β(tx)

t
+
ctx
t

+
t2x

tβ(tx)

}

. (25)

Let us first consider case (6∗a). It follows from (24) and (20) that ftx/f = 1/tx, that is f =

K(x, t, t1)tx. We substitute f = K(x, t, t1)tx into (21), use β(f)/t1 = (β(tx)f)/(txt1) = β(tx)K
t1

,

and obtain

Kx + tx

{

Kt

K
+Kt1

}

=
β2(tx)

tx

{

K

t1
− 1

t

}

,

that is, Kx = 0, β(tx) =
√

R2t2x + Ctx, R = Const, B = Const, and

Kt

K
+Kt1 = R2

{

K

t1
− 1

t

}

. (26)



Substitution of β(tx) =
√

R2t2x + Ctx into (24) shows that β(tx) = Rtx. Therefore, in case (6∗a),

the n-integral is I = txx
Rtx

− Rtx
t

and the corresponding chain (2) is of the form t1x = K(t, t1)tx,

where K satisfies (26).

Let us now study case (6∗b). It follows from (25) and (23) that

ft =
fβ(tx)β(f)

β(f)tx − fβ(tx)

{

cβ(f) + f

t1β(tx)
− c

t
− tx
tβ(tx)

+
β2(f)

t1fβ(tx)
− β(f)

tf

}

. (27)

First we differentiate (25) with respect to t and find ft1t, use the expression for ft from (27)

and β ′(f) = −(f + cβ(f))/β(f) to express ft1t in terms of β(f), β(tx), f , t, t1, tx. Then we

differentiate (27) with respect to t1 and find ftt1 , use the expression for ft1 from (25) and β ′(f) =

−(f + cβ(f))/β(f) to express ftt1 in terms of β(f), β(tx), f , t, t1, tx.

Direct calculations show that

ftt1 − ft1t =
2β(f)ctx(β

2(f) + cfβ(f) + f 2)(−tf + t1(cβ(tx) + tx))

tt21(β(tx)f − β(f)tx)2
.

Equality ftt1 = ft1t yields (i) β2(f) + cfβ(f) + f 2 = 0, i.e. β(f) = Af , β(tx) = Atx, where

A = −c±
√
c2−4

2
, or (ii) f = t1t

−1(cβ(tx) + tx).

Let us consider case (i). It follows from (20) that f = K(x, t, t1)tx. The same considerations

as in part (6∗a) show that the chain (2) in this case is t1x = K(t, t1)tx, where function K(t, t1)

satisfies (26).

Let us consider case (ii). It follows from (20) that β(f) = t1t
−1((1 − c2)β(tx) − ctx). We

substitute this expression for β(f) into (21 ) and get c2(2−c2)β2(tx)+2c(1−c2)txβ(tx)−c2t2x = 0,

that implies that (I) c = 0, (II) c2 = 2, (III) β(tx) =
c

2−c2
tx, or (IV) β(tx) = −1

c
tx. Cases (II) and

(IV) are not realized, each of them is incompatible with ββ ′+cβ = −tx. Case (III) is realized only

for c = 2 (with β(tx) = −tx) and c = −2 (with β(tx) = tx). Therefore, using f = t1t
−1(cβ(tx)+ tx)

and the fact that c = 0 (with β(tx) = ±itx) or c = ±2(β(tx) = − ± tx) we arrive to a chain (2)

of the form t1x = ± t1
t
tx. Note that chains t1x = ±t1t−1tx with β(tx) = ±tx or β(tx) = ±itx is of

the form t1x = K(t, t1)tx, where K satisfies (26) with R2 = 1 (for t1x = −t1t−1tx) or R
2 = −1 (for

t1x = t1t
−1tx).

Case (7∗): Consider chains (2) with n-integral I = txx√
tx

+ 2
√
tx

x+y
, y = Const. Equality DI = I

implies
fx + fttx + ft1f + ftxtxx√

f
+ 2

√
f

x+ y
=

txx√
tx

+ 2

√
tx

x+ y
. (28)

By comparing the coefficients before txx we have ftx/
√
f = 1/

√
tx, or

f = (
√
tx +K(x, t, t1))

2. (29)



Substitute (29) into (28) and get Kx+Kttx+Kt1tx+2Kt1

√
txK+Kt1K

2+ K
x+y

= 0. We compare

the coefficients before
√
tx, tx, tx

0 and have 2Kt1K = 0, i.e. K = L(x, t); Kt + Kt1 = 0, i.e.

K = L(x); and Kx + Kt1K
2 + K

x+y
= 0, i.e. K = C

x+y
, C = const. Therefore, chain (2) with

n-integral I = txx√
tx
+ 2

√
tx

x+y
becomes t1x = (

√
tx +

C
x+y

)2, where C and y are arbitrary constants.

Case (8∗): Consider chains (2) with n-integral I = β(tx)txx − 1
(x+y)β(tx)

, where y is an arbitrary

constant and β ′(tx) = β3(tx) + β2(tx). The equality DI = I gives

β(f){fx + fttx + ft1f + ftxtxx} −
1

(x+ y)β(f)
= β(tx)txx −

1

(x+ y)β(tx)
,

that implies

β(f)ftx = β(tx) (30)

and

β(f){fx + fttx + ft1f} =
1

(x+ y)β(f)
− 1

(x+ y)β(tx)
. (31)

Differentiate (30) with respect to x, t, t1 and get

fxtx = −(β(f) + 1)β(tx)fx, fttx = −(β(f) + 1)β(tx)ft, ft1tx = −(β(f) + 1)β(tx)ft1 . (32)

Now differentiate (31) with respect to tx, we have

β(f)ft + β(tx)ft1 =
1

x+ y
− β(tx)

(x+ y)β(f)
. (33)

Differentiate (33) with respect to tx and get ft1 = − 1
(x+y)β(f)

. The last equation together with

(33), (30) and (31) gives

ft1 = − 1

(x+ y)β(f)
, ft =

1

(x+ y)β(f)
, ftx =

β(tx)

β(f)
(34)

and

fx =
1

x+ y

{

1

β2(f)
− 1

β(f)β(tx)
− tx
β(f)

+
f

β(f)

}

. (35)

Since, by (34) and (35), ft1x−fxt1 = 1
β2(f)(xy)2

(β(f)+1), then β(f) = −1, and, therefore, by (34), we

have ft1 = (x+y)−1, ft = −(x+y)−1, ftx = 1. Hence, f(x, t, t1, tx) = tx+
t1−t
x+y

+C(x). We substitute

this expression for f into (35) and obtain C(x) = C(x + y)−1, where C is an arbitrary constant.

Therefore, with the n-integral I = txx√
tx
+ 2

√
tx

x+y
the chain (2) becomes t1x = tx +

t1−t
x+y

+C(x+ y)−1,

where y is arbitrary constant.



3 Proof of Remark 1.4

Case 1∗∗: Consider all equations (1) with m-integral Ī = ev1−v + ev1−v2 . Denote by e−vj = wj, j =

0, 1, 2, and e−v̄1 = w̄1. In new variables Ī = v+v2
v1

is an m-integral of equation w1,1 = g(w,w1w̄1).

D̄Ī = Ī implies
w2 + w

w1
=
g1 + w̄1

g
. (36)

We differentiate both sides of (36) with respect to w2 and apply the shift operator D−1, we have

1

w1

=
g1w2

g
⇒ D−1

(

1

w1

)

= D−1

(

g1w2

g

)

⇒ gw1 =
w̄1

w
.

Therefore,

g =
w̄1w1

w
+ c(w, w̄1), g1 =

gw2

w1
+ c(w1, g). (37)

We substitute (37) into (36) and get

g
w

w1
= c(w1, g) + w̄1. (38)

Substitution of (37) into (38) implies that c(w, w̄1)w = c(w1, g)w1, or the same, c(w, w̄1)w =

D(c(w, w̄1)w). Suppose that equation w1,1 = g(w,w1w̄1) does not admit an m-integral of the

first order, then c(w, w̄1)w = D(c(w, w̄1)w) = C = const. Thus, c(w, w̄1) = C/w. Finally,

g(w,w1, w̄1) = w̄1w1

w
+ Cw−1. Therefore, the equations (1) with m-integral Ī = ev1−v + ev1−v2

becomes ev1,1+v = (C + e−(v1+v̄1))−1, where C is an arbitrary constant. Note that this equation

is symmetric with respect to variables v1 and v̄1. Therefore, n-integral for the equation can be

obtained by simply changing in m-integral variables vj into variables v̄j , j = 1, 2.

Case 4∗∗: Consider equations (1) with m-integral Ī = (v1−v)(v2+L)
(v2−v)(v1+L)

. Equation v1,1 = f(v, v1, v̄1) can

be rewritten as v−1,1 = r(v, v−1, v̄1). Equality D̄Ī = Ī implies

f − v̄1)(f1 + L)

(f1 − v̄1)(f + L)
=

(v1 − v)(v2 + L)

(v2 − v)(v1 + L)
. (39)

Take the logarithmic derivative of (39) with respect to v2 and then apply the shift operator D−1,

we get

f1v2
f1 + L

− f1v2
f1 − v̄1

=
1

v2 + L
− 1

v2 − v
⇒ fv1(r + L)

(f + L)(f − r)
=

v−1 + L

(v1 + L)(v1 − v−1)
. (40)

We conclude from the second equation of (40) that

f + L

f − r
=

v1 + L

v1 − v−1
K(v, v̄1). (41)



Take the logarithmic derivative of (41) with respect to v−1 and get f − r = rv−1(v1 − v−1).

Differentiation of the last equality with respect to v1 yields fv1 = rv−1 . We differentiate (40) with

respect to v−1 and use the fact that fv1 = rv−1 , we obtain fv1 = ± f−r
v1−v−1

.

First assume that fv1 = − f−r
v1−v−1

. We have, f − r = D(v, v−1, v̄1)(v1 − v−1)
−1. It follows from

rv−1 = − f−r
v1−v−1

that f−r = C(v, v1, v̄1)(v1−v−1)
−1, and, therefore, f−r = C(v, v̄1)(v1−v−1)

−1. We

substitute this expression for f−r into (41) and see that f+L = C(v, v̄1)K(v, v̄1)(v1+L)(v1−v−1)
−2

which is impossible since f does not depend on v−1.

Now consider the case when fv1 = f−r
v1−v−1

. We have, f − r = (v1 − v−1)D(v, v−1, v̄1). Also,

rv−1 = f−r
v1−v−1

implies that f − r = (v1 − v−1)C(v, v1, v̄1). One can see that D(v, v−1, v̄1) =

C(v, v1, v̄1) =: C(v, v̄1). Therefore, f − r = C(v, v̄1)(v1 − v−1). It follows from (41) that

f = A(v, v̄1)v1 + A(v, v̄1)L− L, (42)

where A = CK. Note that A = A(v, v̄1) and A1 = A(v1, f(v, v1, v̄1)). Substitute (42) into (39),

get

(Av1 + AL− L− v̄1)(A1v2 + A1L)(v2 − v)(v1 + L)

= (A1v2 + A1L− L− v̄1)(Av1 + AL)(v1 − v)(v2 + L),

and compare the coefficients before v22, we have

A1(Av1 + AL− L− v̄1)(v1 + L) = A1(Av1 + A)(v1 − v). (43)

It follows from (43) that A1 = 0 or, by comparing the coefficients before v1, one gets A = L+v̄1
L+v

.

Therefore, by (42), we have the equation v1,1 = f = L(v̄1+v1−v)+v1 v̄1
L+v

. Note that the equation is

symmetric with respect to variables v1 and v̄1. This observation allows one to write down an

n-integral I by a given m-integral Ī by changing in Ī variables vj into variables v̄j , j = 1, 2.

Case 7∗∗: Consider all equations (1) with m-integral F = 2v − v1 − v−1 = D−1Ī, where Ī =

2v1 − v − v2. Equation v1,1 = f(v, v1, v̄1) can be rewritten as v−1,1 = r(v, v−1, v̄1). Equality

D̄F = F implies

2v̄1 − f − r = 2v − v1 − v−1. (44)

We apply ∂
∂v1

and ∂
∂v−1

to (44) and find that fv1 = 1 and rv−1 = 1. Therefore, f = v1 + h(v, v̄1)

and r = v−1 + q(v, v̄1). Substitute these expressions for f and r into (44) and get

q = 2v̄1 − 2v − h. (45)



Equation v1,1 = f = v1 + h(v, v1) can be rewritten as

v̄1 = v + h(v−1, v−1,1) = v + h(v−1, v−1 + q(v, v̄1)). (46)

First differentiate (46) with respect to v−1 and then apply the shift operator D−1, we get D−1hv+

D−1hv̄1 = 0, that is h = h(v̄1−v). Equations (44) - (46) give v̄1−v = h(2v̄1−2v−h), or by taking

ǫ = v̄1 − v one gets ǫ = h(2ǫ − h(ǫ)). Therefore, the equation with m-integral Ī = 2v1 − v − v2

becomes v1,1 = v1+h(v̄1−v), where h solves a functional equation ǫ = h(2ǫ−h(ǫ)). This equation
v1,1 = v1 + h(v̄1 − v) admits also an n-integral. Since the equation is of the form Dz = h(z) with

z = v̄1 − v1 then we have D(z − h−1(z)) = z − h−1(z). Actually, D(z − h−1(z)) = D(z) − z =

h(z) − z = z − h−1(z) = z − h−1(z). Here we use the identity h(z) − z = z − h−1(z) which is

equivalent to the functional equation z = h(2z − h(z)).

4 Conclusions

The problem of discretization of Liouville type equations is discussed. Besides purely theoretical

interest as a bridge between two parallel realizations of the integrability theory, this subject has an

important practical significance. There are two-dimensional Toda field equations corresponding to

each semisimple or of Kac-Moody type Lie algebra (see [12], [13]). The question is open whether

there exist integrable discrete versions of these. Different particular cases are studied in [14], [15],

[16]. In the article a step is done towards the solution of the problem. An effective method of

discretization is suggested based on integrals. It is known that the Bäcklund transform is a kind of

discretization (see [3], [17]). We would like to stress that our method of discretization essentially

differs from that one. Even though for some exceptional cases the semi-discrete equation obtained

realizes the Bäcklund transformation of the original equation for the other examples it is not the

case.
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