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Abstract

A method of integrable discretization of the Liouville type nonlinear partial differential
equations is suggested based on integrals. New examples of discrete Liouville type models

are presented.

1 Introduction

The problem of integrable discretization of the integrable PDE is very complicated and not enough
studied. The same is true for evaluating the continuum limit for discrete models [I]. In the
present paper we undertake an attempt to clarify the connection between Liouville type partial
differential equations and their discrete analogues. One unexpected observation is that there are
pairs of equations, one continuous and the other one semi-discrete, having a common integral.
Inspired by these examples, we introduced a method of discretization of PDE having a nontrivial
integral. Similar ideas are used in [2] where a method of construction of difference scheme for
ordinary differential equations preserving the classical Lie group is suggested. Let us begin with

the necessary definitions.
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We consider discrete equations of the form
vin+1,m+1) = f(v(n,m),v(n+1,m),v(n,m+ 1)) (1)
and semi-discrete chains
tin+1,2) = f(z,t(n,z), t(n + 1,2),t.(n,z)) . (2)
Equations (Il) and (2) are discrete and semi-discrete analogues of hyperbolic equations
Uy = (2, Y, U, ug, uy) - (3)

Functions v = v(n,m), t = t(n,x) and v = u(z,y) depend on discrete variables n and m and

continuous variables x and y. Through the paper we use the following notations:
vij=v(n+i,m—+j);  vi=vo;  U;=vy,;  ti=tn+ix).

For equation (B)) function W (x,y, u, uy, tyy, . .., u/0y*) is called an z-integral of order k if
D,W = 0 and Wk, /g, # 0, and function W (z,y, U, Uy, Ugg, - - ., O™u/Ox™) is called a y-integral
of order m if DyV_V = 0 and W@mu/axm # 0. Here, D, and D, denote the total derivatives with

respect to x and y. Equation (3]) is called Darboux integrable if it possesses nontrivial z- and y-

integrals.
For equation (2)) function F'(z,n,tm, tmi1, tma2, - - -, tyy) is called an x-integral of order m’ —
m+1if D,F =0 and F,, # 0, F}, # 0 and function I(:E,n,t,tx,tm,...,%) is called an n-

integral of order k, if DI = I and [ by # 0. Here, D is the forward shift operator in n, i.e.
Dh(n,z) = h(n+ 1, x). Equation (2) igtcalled Darboux integrable if it possesses nontrivial z- and
n- integrals.

For equation (Il) function I(n,m, U, Ugs1, ..., 0 ) is called an n-integral of order &' — k + 1 if
DI =1 and I, #0, I, # 0, and function I(n,m, vy, Vpy1, Upsa, . .., vp) is called an m-integral of
order v’ —r+1, if DI = I and I, # 0, fvr, # 0. Here, D and D are the forward shift operators in
n and m respectively. Equation () is called Darboux integrable, if it possesses nontrivial n- and
m-integrals (see also [3]).

Continuous equations (B]) are very-well studied. In particular, the question of describing all

Darboux integrable equations (3 is completely solved ( see [4] - [7]). All equations (B]) possessing

x- and y-integrals of order 2 are described by the following theorem.



Theorem 1.1 (see [7]) Any equation (3), for which there exist second order x- and y-integrals,
under the change of variables x — X (z), y = Y (y), v — U(x,y,u), can be reduced to one of the
kind:

(1) upy = e*, W =y, — 0.5u2, W = u,, — 0.5u2;

y}
(2) Ugy = YUy, W =, —e, W =22 — vy,

Uy
= Uyy—u2+4
(3) gy = €\ Ju2 — 4, W = ug, — 0.5u2 — 0.5¢*", W = yyuﬁ;
Y
1 1 Uge _ 2“ 1 — Yyy _ 2“y 1
(4) Ugy = umuy( y) W= uz; -z + u— :(:’ W= Uy + u— y’

(5) sy = ()80 y), (0 = 4%, B = —uy, ' = -y,
W= gt — () Blug), W= 32— (u)(u,);

Bluy)

(6) gy = 20d0) 350 4 08—y, BB + B = —u,
WIUEZ—S;W:%—gj

— \/ufb—u 1/ — Uaz \/_ _u \/_
(7) gy = —2 o W= R 20, W= 220

(S)Umy:m g =p+p% 0 =p+ 3,
W = e B(us) — m; W= uyyﬁ(uy) - (:c+y)17(uy)'

On the contrary, the problem of describing all equations () or (2]) possessing both integrals (so-
called Darboux integrable equations) is very far from being solved (the problem of classification is
solved only for a very special kind of semi-discrete equations [§]), it would be beneficial for further
classification to obtain new Darboux-integrable equations (1) and semi-discrete chains (2)). It was
observed that many chains (2]) and their continuum limit equations (B]) possess the same n- and

y-integrals:

semi — discrete chain n —integral 1 continuous y — integral W
analogue

ti, =1, + O.5t% — 0.5¢? t, — 0.5t Ugy = Ully Uy — 0.5u?

tiy =ty + Ce¥HN) O = Const | ty, — 0.5t Uyy = € Uge — 0.5u2

te =t + Ve £ O 1 e |1, —0.562 — 0.5¢% | uyy = €1+ u2 | uy, — 0.5u3 — 056>

The main aim of the present paper is the discretization of equations (B]) preserving the structure
of y-integrals of order 2: we take y-integral for each of eight classes of Theorem [I.1] and find the
semi-discrete chain (2) possessing the given n-integral (y-integral). The next Theorem presents a
list of semi-discrete models of Darboux integrable equations (B]) from Theorem [[LT] with integrals

of order 2.



Theorem 1.2 Below is the list of equations (2) possessing the given n-integral I :

given n — integral the corresponding chain

I =t,, —0.5t2 tie = t, + CePtH) O = Const (1)

I=t,—¢€ tiy =t, — et +elt (2*a)

I="—t, tie = K(t,11)ta, where KK~ + Ky, = K — 1 (2°)

I =t —05t2—0.5e* |ty =t, +Ve* + Relth + 2t R = Const (3*a)

2 *

[ = s tie = (1 + Re"t)t, + VR22T0) 4 2Ret 1, /12 — 4 | (3°b)

I= fes —(0(t) | Bts) = its and 1, = K(t,0)t,, where (5)

(Ingp)" =42 BB = ~t, | K+ KK, + K*)(t;) — K¢(t) =0

I= Btéi) o B(§I)> ﬁ(tx) = Rt,, and ti, = K(ta tl)tﬂcv where (6*)

. _ RI(tK-—t

ﬁﬁl + Cﬁ = _tm K? + Ktl - (ttl 1)

[ = te 4 2/ te = (V& +5%)°, R = Const, C = Const &
= ot rr lz = x m)a = Lonst, L = Lons (7)

ﬁ, — 53 + 52

It is remarkable that each equation in Theorem [[.2] also admits a nontrivial z-integral. It means
that discretization preserving the structure of y-integrals sends Darboux integrable equations (3))
into Darboux integrable chains (2]).

Note that equation (1*) was found in [9]. Equation (3*a) for R = 2 was found in [3], equations
(2*a) and (3*a) are found in [8]. To our knowledge, the other equations from Theorem [[.2] are
new.

The next theorem lists z-integrals for chains from Theorem

Theorem 1.3 (1) The equations (2*b), (5*) and (6*) from Theorem [I.2 having the form ti, =
K(t, t1)t, admit x-integral F(t,t,), where function F is a solution of Fy + K(t,t1)Fy, = 0 with a
given function K(t,t;).

(11) x-integrals of equations (8*), (1*), (3*a), (3*b), (4%), (7*) and (2*a) are F = (t;—t+C) /(z+y),
F =eti=8/2 4 t=22)/2 P = gresinh(aet ™ + b) + arcsinh(aet ™ + b) with a = 2(4 — R?)71/2,
b= R(4— R*)™Y2 F = \/Re2 + 2eti—1 4 \/Re2 +2eli~12 F = (t; — t)(ta + L)(ta — t) 7L (t; +
L)™', F = (2t —t —)/(2C?) —1/(x + R) and F = (&' — e®2)(eft — ') (el — ef3) (et — ef2)7!

correspondingly.



One can also apply the discretization method preserving the structure of integrals for semi-
discrete chains (2)): take x-integral for a semi-discrete chain and find discrete equation () with
the given m-integral (z-integral).

In spite of the absence of the complete classification for Darboux-integrable semi-discrete chains
(@) there is a large variety of such chains in literature (see, for instance, [3], [8] and [10]). The
procedure of obtaining fully discrete equations for a given integral is a difficult task and requires
further investigation. As a rule it is reduced to a very complicated functional equation. We
illustrate the application of the discretization method on chains (1*), (4*) and (7*) from Theorem

[L2l The discrete analogues of the chains are presented in the next Remark.

Remark 1.4 Below is the list of equations () possessing the given m-integral I :

given m — integral the corresponding equation

T = em—0)/2 | glvi—v2)/2 et = L (1%)
I'= (v —v)(vy + L) (v2 — v) (v + L)7! | vy, = Hlatuuiun (47%)
I=2v —v—1 vig = v + h(0; —v), 2= h(2z — h(z)) | (T*)

The equations (1**), (4**) and (7**) have respectively the following n-integrals I = e™=v)/2 4
e=9)/2 [ — (5, — 0)(0y + L) (0 —t) " (0, + L) and I = v, — v — ™' (0; — v) with h™" being

the inverse function of function h that satisfies the functional equation z = h(2z — h(z)).

Equation (1**) from Remark [[.4] appeared in [I1], equations (4**) and (7**) seem to be new,
unfortunately we failed to answer the question whether equation z = h(2z— h(z)) has any solution
different from linear one h(z) = z + C.

The article is organized as follows. Theorem is proved in Section 2. The proof of Theorem
L3 is omitted. Chains (1*), (2*a) and (3*a) are of the form t, = t, + d(t,t1), and their z-
integrals can be seen in [§]. One can find z-integrals for chains (3*0), (4*), (7*) and (8*) by direct
calculations. In Section 3 the discretization of chains (1*), (4*) and (7*) from Remark [[.4] are
presented and for each obtained discrete equation the second integral is found. In Section 4 the

Conclusion is drawn.



2 Proof of Theorem

Case (1*): Consider all chains (2) with n-integral of the form I = t,, — 1t,%. Equality DI = I
implies

1 1

fm+fttx+ft1f+ftztmm_§f2:tmm_§tm2- (4)

By comparing the coefficients before t,, in ({d) we have f;, = 1. Therefore,
f(zat>t1atx) :tx_l_d(x?tatl) (5)

We substitute (5) into @) and get d, +dit, +dy, t, +dp, d— 2,% — dt, — 2d* = —3t,2, or equivalently,
di+dy, —d=0and d, +dy,d — %dz = 0. We solve the last two equations simultaneously and find
that d = e" K (z,t; — t), where K = Ce 2= and C is an arbitrary constant. Therefore, chain
@) with n-integral I = t,, — %t:f becomes t1, = t, + Celtt9/2,

Case (2*a): Consider all chains (2]) with n-integral I = t, —e'. Equality DI = I implies f — et =
t, — e, which gives the equation t, = f =t, — e’ + e'1.

Case (2*D): Consider all chains (2)) with n-integral I = %= —¢,. Equality DI = I implies

.f:c _l'.fttx +;t1f+ftrtxx _f — tgc_:c _tx~ (6)

By comparing the coefficients before t,, in (@) we have f; /f = 1/t,, that is f = K(x,t,t1)t,.
Substitute f = K(z,t,t;)t, into (6) and have % + %tw + Ky t, — Kt, = —t,, or equivalently (by
comparing the coefficients before t, and ¢,°), we get % + K;, = K — 1 and K, = 0. Therefore,
equations t1, = K(t,t1)t,, where K satisfies % + K;, = K — 1 are the only chains (2) that admit
n-integral I of the form I = ?—; — 1.

Case (3*a): Consider all chains (2) with n-integral I = t,, — 1t,” — 1¢*. Equality DI = I implies

1 1 1 1
fm + fttw + ftlf + ftztmm - §f2 - 56%1 = tmm - itgc2 - 56%- (7>

By comparing the coefficients before t,, in () we have f;, = 1, thatis f(x,t,t1,t,) = t.+d(z,t,t1).
Substitute f(z,t,t1,t,) = t, + d(x,t,t1) into (7]) and have

1 1
do+ dity + dy, (t + d) — 5 (o + d)? — 562“ = —itﬁ — —e*, (8)
Compare the coefficients before ¢, and ¢,° in (8) and get

1 1 1
dt + dtl —d = O, dx + dtld - §d2 — §€2t1 = —§€2t. (9)



The first equation in (@) has a solution d = e K (z,t; — t). Substitution of this expression into
the second equation of (@) gives e ™ K, + K;, K + %KZ — % + %e‘z(tl_t) = 0. Since K depends
on U =t; —t and z, then K, = 0 and the last equation becomes 2K'K + K? =1 — e~ 2V, and

hence, d = "' K = v/e21 + e2 + Rettt1 where R is and arbitrary constant. Therefore, chain (2))

with n-integral I = t,, — 3t,% — 3¢* becomes t, = t, + Ve + €2 + Ret*tt, R = const.

Case (3*b): Consider all chains (2) with n-integral I = fe=te®4  Equality DI = I implies

Vite2—4
fw+fttm+ft1f+ftztxx_f2+4 o tmm_t:c2+4
\/f2—4 tx2_4 )

Stz _ 1

N N

f(zatatlatx):Atx+B\/ tx2_47 (11)

where A(z,t,t1) = coshK, B(x,t,t;) = sinhI{, A> — B* = 1. Note that f = 2cosh((arccosh%) +
K), ie. /f?—4 = 2sinh((arccosh) + K) = 2(\/% — leoshK + %sinhK), or \/f? —4 =
Bt, + Ay/t,* — 4. Substitute () into (I0) and have

toAy + Bo\/to? — 4 + 1,2 A, + t, B\ t,2 — 4+ (t, Ay, + By \Jt.2 — 4)(At, + By/t,2 — 4)
—(Aty + B\/t,2 — 4)> + 4 = —(Bt, + A\/t,2 — )\/t.2 — 4,

that can be written shortly as

(10)

By comparing the coefficients before t,, in (I0) we get , that is arccosh% =

arccosh + K (x,t,t1). Thus,

(t.2 — 4) (o + anty)? = (s + auty + asty?)?, (12)

where oy = By, a0 = By + Ay, B+ By, A—2AB+ B,az = —4B;, B+4B* + 4 —4A, a4 = Ay, a5 =
Ay + Ay A+ By, B — A? — B2 + A. We compare the coefficients before t,, .3, t,%, t,, t in (I2)
and have an? = a5?, 2000 = 20405, 012 — 4an? = au? + 2a30, —8aas = 2a30, —4on? = as?,
that implies oy = as = a3 = a4 = as = 0, which is possible only if A = 1 + Re!™ and
B = VR2e2(t+11)  2Re(t+11)  where R = const. Therefore, by (), the chain (Z) with n-integral
I= % becomes t1, = (14 Re!™™)t, + / R2e2(t+0) 4 2 Re(ttn) /1,2 — 4.

Case (4*): Consider chains (@) with n-integral I = = — 2 4 L Bquality DI = I implies

f ot -1 tl—zzg_t—:ﬂ t—ax
We compare the coefficients before t,, and have f; /f = 1/t,, that is f = t,K(x,t,t;). Substitute
f =t.K into (I3]) and have

Koty + Kit,> + Ky Kt 2Kt, Lot 2t L (14)
Kt, th—x tH—x t—x t—gx

(13)




By comparing the coefficients before t, and ¢,° in (I4]) we get

K, 9K 9 K, 1 1
LK, = — T —_ ) 15
K+ Wy e t—a K tl—x+t—at (15)
We solve two equations of (IH) simultaneously and have K = t:LL t;__;, where L is an arbitrary
constant. Therefore, any chain (2) with n-integral [ = f= — 2=+ - becomes t1, = bbbz
Case (5*) : Consider all chains (2]) with n-integral I = t”?”” — B, where f = B(t,), v = ¢¥(t), 56 =
. We have, 283 = —2t,, i.e. B? = —t,2 4+ M?, or B = \/M? —t,2, where M is an arbitrary
constant. Equality DI = I implies

fx+fttm+ft1f+ft th tmm

— —¢(t)B(f) = — () B(ts). 16

We compare the coefficients before t,, and have f; /8(f) = 1/8(t,) which implies that
either (5*a): M =0, (t,) = it, and t1, = K(x,t,t1)t,,

or (5*b): M # 0 and then arcsin% = arcsints + L(x,t,t,), that is,

f =t Ax, t, ) + /M2 —t,2B(x,t,t,), A> + B> = 1. (17)

In case (5*a) we substitute t;, = f = K(z,t,t)t, into (I6), use that 3(¢,) = it,, and obtain

Km0, Th4 Ko (o) = 00) (18)

Therefore, the chains (2) with n-integral I = %= —it)(t)t, are equations t1, = K(t,t)t,, where
function K satisfies (I]).
Let us consider case (5*b). Note that

M? — f? = M? — A%, — 2ABt,\/M? — t,2 — B°M” + B*,* = (Bt, — A\ M? — t,?)?
and B(f) = £(Bt, — A\/M? — t,2), B(t,) = \/M? —t,. Substitute (I7) into (L) and get

Agty + Bo\/ M2 — 1,2 + Ast,? + Bt/ M2 — t,2 + (Ay ty + By \/ M2 — t,2)(At, + B\ M? —t,?)
+(Bt, — A\ M? —t,?)

= j:(th - A\/ M? — t:c2)w(tl) Y M? — tx2¢(t)

or the same,

(M? — t,%) (o + aoty)? = (a3 + gty + ast,?)?, (19)

where oy = By, ay = Ay, ag = B+ Ay, B+ABy, +2ABY(t1)+Bi(t), as = BBy, M? = A* M) (t,) -
AY(t)M?, a5 = Ay + Ay A — By, B — B*)(t1) + A%Y(t1) + Av(t). We compare the coefficients



before t*, k = 0,1,2,3,4, in (19 and find that a; = ay = a3 = a4 = a5 = 0,which is possible
only if ¢ = R is a constant function, that contradicts to the equation (Inw)” = 2. Therefore,
case (5*b) is not realized.

Case (6*): Consider chains (2) with n-integrals [ = /f(ii 7~ B (zz)’ where 8 = ((t,) and B + ¢ =

—t,. The equality DI = I implies

fo 1
50~ B 20
and
fﬂc + fttm + ft1f . ﬁ(f) _ _B(tr>
p(f) et (21)
Differentiation of (20]) with respect to z, t, t; gives
_ B _ B8 _ B
P =Gy TSRyt e = g T .
First we differentiate (2II) with respect to t,, use (22)), and get
P B 2 1 R B
S B T e T e 29)
Next we differentiate (23)) with respect to t,, use (22)), and arrive to the equality
S\, (BN BB e B
{6(%) 5<f>}f“ R )
There are two possibilities:
either (6*a), when
/L (24)
COB(t) BT
or (6*b), when
__ B(f)B(ta) {—(Cﬁ(f) + Nt B | B) ot | }
TS 18 B AT B AN ST S ) S

Let us first consider case (6*a). It follows from (24) and (20) that f,,/f = 1/t,, that is f =
K(x,t,t))t,. We substitute f = K(z,t,t)t, into @I), use B(f)/t; = (B(t,)f)/(tat1) = 225,
B2 (t,) {K 1}
K, \ = i
* “} t. \t; tf’
that is, K, =0, B(t,) = /R?*t2 + Ct,, R = Const, B = Const, and

and obtain

&+Kt1:R2{___}‘ (26)



Substitution of 8(t,) = /R?*t2 + Ct, into (24) shows that §(t,) = Rt,. Therefore, in case (6*a),

tze _ Rtz
Rt, t

where K satisfies (20).
Let us now study case (6*b). It follows from (25]) and (23)) that

fB(t=)B(f) {CB(f)+f_c ta B (f) 5(f)}'

the n-integral is [ = and the corresponding chain (2)) is of the form ¢, = K(t,t)t,,

fe= (27)

Bt — FA(t) \ 0iB(t) 1(t) | hfB(t)  tf

First we differentiate (25) with respect to t and find f;,4, use the expression for f; from (27

and B'(f) = —(f + cB(f))/B(f) to express fi,; in terms of B(f), B(tz), f, t, t1, t;. Then we
differentiate (27) with respect to ¢; and find fy,, use the expression for f;, from (25 and §'(f) =

—(f +¢B(f))/B(f) to express fy, in terms of B(f), B(t.), [, t, t1, ta

Direct calculations show that

2B(f)cta(B2(f) + cfB(f) + f)(=tf +ti(cB(ta) + 1))

Eawlty fo, = s viekds Bf) + efB() + f2 = 0, ie. B(f) = Af, B(t,) = AL, where
A= =Y o (i) f =1t (eB(ts) + ta).
Let us consider case (i). It follows from (20) that f = K(x,t,t;)t,. The same considerations

fttl - ftlt -

as in part (6*a) show that the chain (2) in this case is t1, = K(t,t1)t,, where function K(t,1;)
satisfies (20]).

Let us consider case (ii). It follows from 20) that S(f) = t1t7'((1 — ¢®)B(t,) — ct,). We
substitute this expression for B(f) into ([2I]) and get ¢*(2 —c?)82(t,) +2¢(1 — )t B(t,) — 22 = 0,
that implies that (I) ¢ = 0, (II) ¢ = 2, (III) B(t,) = 555t,, or (IV) B(t,) = —1t,. Cases (II) and
(IV) are not realized, each of them is incompatible with 53’ +¢f = —t,. Case (III) is realized only
for ¢ = 2 (with 8(t,) = —t,) and ¢ = —2 (with 8(t,) = t,). Therefore, using f = t1t7(cB(t,) +t.)
and the fact that ¢ = 0 (with g(t,) = %it,) or ¢ = £2(8(t,) = — £ t,) we arrive to a chain (2]
of the form t;, = +%¢,. Note that chains t,, = +t,t~'¢, with 5(t,) = £t, or B(t,) = %it, is of
the form t1, = K (t,t,)t,, where K satisfies [26) with R? = 1 (for t;, = —t;t7't,) or R* = —1 (for
te = tit 7).

Case (7*): Consider chains (2) with n-integral I = f/””—tix + 2;/3, y = Const. Equality DI = [
implies

NGi r4+y Vi, Tx+y

By comparing the coefficients before t,, we have f;, /\/f = 1/\/t,, or

(28)

f= Wt + Kt 1)) (29)



Substitute (29) into 28) and get K, + Kit, + Ki, ty + 2K/t K + Ky, K2 + x—fy = 0. We compare
the coefficients before /., t,, t,° and have 2K;, K = 0, i.e. K = L(z,t); K; + K;, = 0, i.e.

K = L(z); and K, + K;, K* + xL-l-y =0, ie. K = m%y, C = const. Therefore, chain (2] with

n-integral [ = tz= 4 2 Vi hecomes t, = (VI + -5-)2, where C and y are arbitrary constants.

Viz Tty T+y
Case (8*): Consider chains (2]) with n-integral I = S(t,)tz. — m, where y is an arbitrary

constant and f'(t,) = $3(t.) + B%(t.). The equality DI = I gives

B fo + fite + fif + frtus) — m = B(ta)tse — m,
that implies
B fr. = Bt) (30)
and
1 1

R A T R T E R

Differentiate (30]) with respect to x, ¢, t; and get

for, = =(BU) + DB(ta) fer  frro = —(BU) + DB fr,  fure = —(BU) + DBE) frr (32)

Now differentiate (31]) with respect to t,, we have

1 z

Differentiate (B3] with respect to t, and get f;, = —m. The last equation together with
(B3), B0) and BI) gives

_ v 1 _ B(ta)

L e N IV MR 77 o
and
1 o 1 b f
= \wn ~ smRm R ) &

Sincea by (Bm) and GZE)? ftlSC_f:L‘tl = W(ﬁ(f)_l_l)? then 6(./:) = _1a and7 therefore, by (@7 we

have f,, = (z+y)~', fi = —(x+y) ™", fi, = 1. Hence, f(z,t,t1,t,) = t,+57 +C(x). We substitute

this expression for f into ([BH) and obtain C'(z) = C(x 4+ y)~!, where C' is an arbitrary constant.

Therefore, with the n-integral I = &= + 293—\/42 the chain ([2) becomes t1, =t, + 2" + C(z +y) ™",

where y is arbitrary constant.



3 Proof of Remark 1.4

U1 —v2

Case 1**: Consider all equations (I]) with m-integral I = e =% +e¢ . Denote by e™% = w;, j =

0,1,2, and e ™ = w,. In new variables [ = ”J;% is an m-integral of equation wy; = g(w, wywy).
DI = I implies
wy +w g1+ W

w1 g

(36)

We differentiate both sides of (36 with respect to w, and apply the shift operator D!, we have

i:glﬂ = D_1<L)ZD_1 M = g :@
g g Yow

w1 wq
Therefore,
wWW w
g = L _'_C(wvwl)? g1 = &—FC(U}I,Q). (37)
w w1
We substitute ([37) into (36]) and get
w _
g— = c(wy, g) + w. (38)
w1y

Substitution of (37) into ([B8) implies that c(w,w;)w = c(wy, g)w, or the same, c(w,w;)w =
D(c(w,w)w). Suppose that equation wy; = g(w,wyw;) does not admit an m-integral of the
first order, then c(w,w;)w = D(c(w,w)w) = C = const. Thus, ¢(w,w;) = C/w. Finally,
g(w,wy, wy) = 22 4 Cwt. Therefore, the equations (1) with m-integral I = €7 + e"1 72
becomes €1+ = (O + e~ (F9))~1 where C is an arbitrary constant. Note that this equation
is symmetric with respect to variables v; and v;. Therefore, n-integral for the equation can be
obtained by simply changing in m-integral variables v; into variables v;, j = 1, 2.

v1—v)(va+L)

Case 4**: Consider equations (I]) with m-integral I = Evz—v)(v1+L)' Equation vy ; = f(v,vy,7;1) can

be rewritten as v_y; = 7(v,v_1, ;). Equality DI = I implies

oAt D) ()t D)
(fi—o)(f+L) (vo—v)(v1+L) (39)

Take the logarithmic derivative of (89) with respect to vy and then apply the shift operator D71,

we get
flUQ . .flUQ _ ]- _ ]- fv1(r+L) _ U—1+L (40)
fl—l—L fl—ljl UQ—I—L Vg — U (f—l—L)(f—’l“) (’Ul—i—L)(Ul—’U_l).
We conclude from the second equation of (40) that
L L
fHL_ utl o). (41)

f—r _Ul—U_l



Take the logarithmic derivative of (4Il) with respect to v_; and get f —r = r,_,(v; — v_q).
Differentiation of the last equality with respect to vy yields f,, = r,_,. We differentiate ([@0]) with

respect to v_; and use the fact that f,, =r,_,, we obtain f,, = i—vlf_;v’;l.
First assume that f,, = —vlf_;vil. We have, f —r = D(v,v_1,9;)(v; —v_1)~ L. Tt follows from
Ty, = =" that f—r = C(v, vy, 0,)(v1—v_1)"", and, therefore, f—r = C(v, ;) (v;—v_1)~". We

V1 —V_1

substitute this expression for f—r into (@Il and see that f+L = C(v, v;) K (v, 01)(v1+L)(v1—v_1) 72

which is impossible since f does not depend on v_j.

Now consider the case when f,, = vlf_;vil We have, f —r = (v; — v_1)D(v,v_1,01). Also,
Ty, = vlf—% implies that f —r = (vy — v_1)C(v,v1,71). One can see that D(v,v_1,0;) =

C(v,v1,v1) =: C(v,v1). Therefore, f —r = C(v,v1)(vy —v_y). It follows from (4I]) that
f=A(,v)v + A(v,0)L — L, (42)

where A = CK. Note that A = A(v,v;) and Ay = A(vy, f(v,v1,01)). Substitute (42) into (39),
get
(AUl + AL — L — 1_)1)(141’02 + AlL)(’UQ — ’U)(Ul + L)

= (A1U2 + AlL —L— @1)(14’111 + AL)('Ul — 'U)(UQ + L),

and compare the coefficients before v3, we have

Al(A’Ul + AL — L — 1_)1)(7)1 + L) = Al(Avl + A)(Ul — U). (43)
It follows from (43]) that A; = 0 or, by comparing the coefficients before vy, one gets A = L;j}

Therefore, by ([42]), we have the equation v;; = f = L(ﬁlﬂi—w Note that the equation is
symmetric with respect to variables v; and v;. This observation allows one to write down an
n-integral I by a given m-integral I by changing in I variables v; into variables v;, j = 1, 2.
Case 7**: Consider all equations () with m-integral F' = 2v —v; —v_; = D7'I, where [ =
201 — v — v9. Equation vy;; = f(v,v1,71) can be rewritten as v_y; = r(v,v_1,71). Equality
DF = F implies

200 — f —r=2v—1v; —v_;. (44)

We apply 8%1 and % to (@) and find that f,, = 1 and r,_, = 1. Therefore, f = v; + h(v,v;)
and 7 = v_1 + q(v,v1). Substitute these expressions for f and r into (44]) and get

q =20, —2v—h. (45)



Equation v ; = f = vy + h(v,v1) can be rewritten as
U1 =v+ h(U_l, U—l,l) =v+ h(’U_l, U_1+ Q(’U, 1_)1)). (46)

First differentiate (@6]) with respect to v_; and then apply the shift operator D=, we get D~1h,, +
D7 'hy, = 0, that is h = h(v; —v). Equations (@) - (8] give v, —v = h(20; —2v — h), or by taking
€ = U1 — v one gets € = h(2¢ — h(e)). Therefore, the equation with m-integral I = 2v; — v — vy
becomes vy 1 = v1 +h(0; —v), where h solves a functional equation € = h(2¢ —h(e)). This equation
v11 = vy + h(0; — v) admits also an n-integral. Since the equation is of the form Dz = h(z) with
z = vy — vy then we have D(z — h™'(2)) = z — h™(2). Actually, D(z — h™'(2)) = D(z) — z =
h(z) —z=2—h"1(2) = 2 — h™(2). Here we use the identity h(z) — 2 = z — h™'(z) which is

equivalent to the functional equation z = h(2z — h(z)).

4 Conclusions

The problem of discretization of Liouville type equations is discussed. Besides purely theoretical
interest as a bridge between two parallel realizations of the integrability theory, this subject has an
important practical significance. There are two-dimensional Toda field equations corresponding to
each semisimple or of Kac-Moody type Lie algebra (see [12], [13]). The question is open whether
there exist integrable discrete versions of these. Different particular cases are studied in [14], [15],
[16]. In the article a step is done towards the solution of the problem. An effective method of
discretization is suggested based on integrals. It is known that the Backlund transform is a kind of
discretization (see [3], [17]). We would like to stress that our method of discretization essentially
differs from that one. Even though for some exceptional cases the semi-discrete equation obtained
realizes the Backlund transformation of the original equation for the other examples it is not the

case.
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