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A redshift of the peak emission wavelength was observed in the blue light emitting diodes of

InGaN/GaN grown with a higher temperature interlayer that was sandwiched between the

low-temperature buffer layer and high-temperature unintentionally doped GaN layer. The effect of

interlayer growth temperature on the emission wavelength was probed and studied by optical,

structural, and electrical properties. Numerical studies on the effect of indium composition and

quantum confinement Stark effect were also carried out to verify the experimental data. The results

suggest that the redshift of the peak emission wavelength is originated from the enhanced indium

incorporation, which results from the reduced strain during the growth of quantum wells. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.3694054]

The peak emission wavelength of InGaN/GaN blue light-

emitting diodes (LEDs) is one of the most important parame-

ters for white LED applications.1 For example, to effectively

excite cerium (III)-doped YAG phosphors (yellow phos-

phors), it is required to design an InGaN/GaN blue LED that

emits efficiently at 450–470 nm,2 which corresponds to an in-

dium composition of 15%–20%.3 Typically, there are two

ways to increase the indium incorporation during the quantum

well (QW) growth. One is to lower the quantum well growth

temperature to increase the indium/gallium ratio as indium

has a lower vapor pressure than gallium. Another way is to

suppress the composition pulling effect by prolonging the

growth time and, thus, increasing the quantum well thick-

ness.4 However, the enhancement of indium composition

through the above mentioned methods comes at a high cost of

degradation of layer quality and hence, the device perform-

ance. Therefore, it is still challenging to grow high-quality

quantum wells with a controllable indium incorporation.

On a separate issue, it is generally difficult to differenti-

ate the effect of enhanced indium composition and the quan-

tum confined Stark effect (QCSE) on the emission

wavelength, both of which lead to redshift. QCSE arises

from the polarization charges that are induced by the lattice

mismatch of InGaN well and GaN barrier. The induced inter-

nal electric field shifts electrons and holes to the opposite

sides of the well (i.e., separates the wave function of elec-

trons and holes), in turn resulting in reduced recombination

efficiency. Moreover, with a reduced overlap integral due to

the strong polarization field, the effective bandgap of the

QWs will shrink due to the tilted band edge. When the in-

dium composition in an InGaN/GaN LED is increased, the

QCSE increases as well. QCSE, together with the deteriorat-

ing crystal quality due to high indium composition, causes

the efficiency degradation towards green emission, which is

known as the “green gap” issue.5 Hence, there is a need to

study and understand the effect of the enhanced indium com-

position and QCSE on the LED performance.6

In this work, the redshift of emission wavelength was

investigated in the InGaN/GaN blue LEDs grown under the

same QW growth conditions but with a higher growth tem-

perature of interlayer. The effects of the enhanced indium

composition and QCSE on the performance of these LEDs

were studied both experimentally and theoretically.

InGaN/GaN LEDs studied in this work were grown by

an Aixtron Close Couple Showerhead metal-organic chemi-

cal-vapor deposition (MOCVD) system. Two-inch sapphire

substrates with periodic cone patterns (with a diameter of

2.4 lm, a height of 1.5 lm, and a pitch of 3 lm) were used.

The growth started with a 30 nm thick low-temperature u-

GaN buffer grown at 560 �C, followed by a u-GaN interlayer

(�150 nm thick) grown at different temperatures for differ-

ent samples. Subsequently, a high-temperature u-GaN was

grown at 1050 �C with a thickness of 5 lm and followed by a

2 lm Si-doped n-GaN at 1060 �C. Five pairs of multiple

quantum wells (MQWs) with an undoped barrier were grown

at 727 �C (samples LED I and LED II) and 737 �C (samples

LED III and LED IV), with growth durations of 100 s and

110 s, respectively. The structures were finally covered with

a 200 nm thick p-GaN grown at 950 �C and annealed at

685 �C. The key growth parameters are summarized in

Table I, together with the full width at half maximum

(FWHM) of the (002) and (102) x-ray diffraction (XRD)

peaks. XRD was measured using Philips X’Pert XRD in a

a)Electronic mail: EXWSUN@ntu.edu.sg.
b)Electronic mail: HVDEMIR@ntu.edu.sg.
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single axis scan mode. It can be seen from Table I that the

crystal quality of the samples improves as the interlayer

growth temperature was increased from 930 to 990 �C.

FWHM values of (002) and (102) of the LED III and LED

IV are both close to 200 arc sec, suggesting that the higher

growth temperature of the interlayer could effectively reduce

the dislocation density, especially the edge threading disloca-

tion density.7

Photoluminescence (PL) spectra mapping were per-

formed using a PL mapper (Nanometric RPM2000) equipped

with a 15 mW He-Cd laser (325 nm) as the excitation source.

Electroluminescence (EL) was tested on the epi-wafers using

the 9 points Quick tester (M2442S-9A Quatek Group).

Figs. 1(a)–1(d) show the PL and EL spectra of LEDs I

to IV, together with the PL mapping and 9-point EL data

shown in the inset. The EL characteristics of the LEDs were

performed at 9 points across the wafer with indium as both

the p-type and n-type contacts. It can be seen from Fig. 1

that the LED II and LED IV, which have the same MQW

growth condition but a higher interlayer growth temperature

than LED I and LED III, respectively, show a redshift in

their emission wavelengths for both PL and EL. With the

same MQW growth condition, this redshift could potentially

be due to (1) a higher indium composition in QWs or (2) a

stronger polarization-induced QCSE.

Numerical simulations were carried out using Advanced

Physical Models of Semiconductor Devices (APSYS) to ver-

ify the origin of the emission wavelength redshift. The simu-

lator solves Schrödinger–Poisson equations self-consistently.

The simulation has also taken Coulomb interaction into con-

sideration with a typical dielectric constant of III-nitrides.8

Since QCSE is determined by the internal electric field

induced by both spontaneous polarization and piezoelectric

polarization charge density (rspþpz) in InGaN/GaN MQW

active region, the macroscopic electrostatic field E can be

expressed as follows:

E ¼ � q

ere0

rspþpz; (1)

where rspþpz is the total polarization charge density due to

the dipoles along c-orientation, q is the elementary charge, e0

is the absolute dielectric constant, er ¼ 1þ x is the relative

dielectric constant, and x is the susceptibility for GaN.9

Here, we simulate the LED structures to imitate the

MOCVD-grown LED III and LED IV. A reference structure,

LED S1 with an indium composition of 15% (In0.15Ga0.85N)

and a typical polarization charge density of 4.0� 1012 cm�2

is used as a benchmark for LED III since they have nearly

the same wavelength emission at a low current level. To

account for the QCSE on the shift of the peak emission

wavelength, LED S2 (In0.15Ga0.85 N) has a higher polariza-

tion charge density (6.7� 1012 cm�2) but the same indium

composition as compared to LED S1. On the other hand,

LED S3 (In0.16Ga0.84N with a polarization charge density of

TABLE I. Growth parameters and FWHM values of XRD for LEDs I, II, III, and IV.

LED Interlayer temperature (oC) Quantum well temperature (oC) Quantum well time (s) FWHM (002) (arc sec) FWHM (102) (arc sec)

I 930 727 100 207 291

II 950 727 100 186 230

III 970 737 110 188 192

IV 990 737 110 185 203

FIG. 1. (Color online) PL and EL spectra

and mappings of the LEDs I, II, III, and IV.
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4.0� 1012 cm�2) was designed to account for the effect of

the increased indium composition on the emission wave-

length. The parameters assumed for LEDs S2 and S3 are

based on the same emission wavelength at a low current

injection level as the LED IV. Figs. 2(a) and 2(b) show the

peak emission wavelength versus the injection current of the

simulated LED structures (S1, S2, and S3), and the experi-

mentally characterized LED structures (LED III and LED

IV), respectively. As shown in Fig. 2(a), the rate of the wave-

length change with increasing injection current for LED S2

and LED S3 is different especially in the low injection cur-

rent regime. For LED S3, with a 1% higher indium composi-

tion as compared to LED S1, the emission wavelength

blueshifts steadily with increasing injection current. On the

other hand, LED S2, with a higher polarization charge den-

sity and, hence, a stronger QCSE as compared to LED S1,

has a more drastic blueshift in the emission wavelength with

increasing injection current at low current regime. Judging

from the rate of the wavelength shift with increasing injec-

tion current, we can see that the LED IV (versus LED III)

exhibits the same trend with LED S3 (versus LED S1), as

shown in Figs. 2(a) and 2(b). Correspondingly, LED IV

would have a higher indium composition in QWs as com-

pared to LED III, even though both LEDs were grown under

the same QW growth conditions. The observation for differ-

ent shift rates of the emission wavelength with increasing

injection current in LED S2 and LED S3 could be explained

with the aid of screening effect to QCSE by free carriers or

the band filling effect. It is noteworthy that the current den-

sity is low (<1.0� 104 mA/cm2) in the electroluminescence

measurement. Thus, the band filling effect is negligible and

will not be considered in this case.10 When the injection cur-

rent increases, more free electrons and holes are generated,

and this leads to a free-carrier-induced electric field to com-

pensate with the piezoelectric field. Hence QCSE becomes

smaller, the transition energy will become larger, and this

causes a blue-shift of the emission peak wavelength.11 Since

stronger QCSE shows an obvious screening effect at low cur-

rent level, LED S2 has a faster blue-shift trend in the emis-

sion wavelength at low current injection levels and then

blue-shift slow until saturated even if injection current is fur-

ther increased. However, for LED S3 with a weaker QCSE,

the small screening effect will result in a longer process of

continuous blue-shift with increasing current until the

screening effect is saturated.

Fig. 3 shows the current-voltage and the current-power

characteristics of LED III and LED IV. It is seen that LED

IV has a lower turn-on voltage than LED III. This also sug-

gests that LED IV has a lower built-in potential according to

the diode current-voltage characteristics,

I ¼ IsðeqðV�VbiÞ=kT � 1Þ; (2)

where I is the current, V is the applied voltage, Vbi is the

built-in potential, Is is the saturation current, q is the elemen-

tary charge, k is the Boltzmann constant, and T is the abso-

lute temperature.12 On the other hand, the built-in potential

is proportional to the piezoelectric field and could be

expressed as follows:

Vbi ¼ Eiðdu þ ddÞ þ Epz � NLw; (3)

where Epz is the piezoelectric field and Ei is the internal field

in undoped and depletion regions.13 The thickness of

undoped region and depletion region, the number and the

width of the QWs are represented by du, dd, N, and Lw,

respectively. By correlating Eqs. (2) and (3), it is possible to

see that the turn-on voltage is proportional to the piezoelec-

tric field and, hence, proportional to the QCSE. As a result,

the lower turn-on voltage of LED IV, as compared to LED

III, indicates that LED IV has a weaker or similar QCSE

compared to LED III. In addition, it can also be observed

from Fig. 3 that LED IV holds a higher output power than

LED III, which also supports the argument that the QCSE in

LED IV is weaker than that in LED III as QCSE will facili-

tate electron overflow, leading to reduction in optical

power.14

FIG. 2. (Color online) Peak emission wave-

length versus injection current characteris-

tics of (a) the simulated LEDs S1, S2, and

S3 and (b) the experimentally characterized

LEDs III and IV.

FIG. 3. (Color online) Current-voltage and current-power measurement of

LEDs III and IV.
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Judging from both the experimental and numerical

results, the redshift of the peak emission wavelength in both

LED II and LED IV, as compared to LED I and LED III,

should step from the enhanced indium composition in QWs.

The insertion of an interlayer sandwiched between the buffer

layer and high-temperature u-GaN could generate tensile

strain in the subsequent u-GaN layer. With the increasing

growth temperature of the interlayer, it can further reduce

the composition pulling effect.4 This implies that the inser-

tion of a high-temperature grown interlayer could generate

more tensile strain,15 which in turn compensates for the com-

pressive strain induced by the incorporation of indium in the

QWs.

In summary, the performance of InGaN/GaN LEDs was

probed with optical, structural, and electrical characteriza-

tion. The enhanced indium incorporation during the growth

of quantum wells is found responsible for the redshift of the

peak emission wavelength. The tensile strain generated by

inserting a higher temperature interlayer helps to compensate

for the compressive strain originating from InGaN/GaN,

which in turn favors the incorporation of indium during the

quantum well growth without increasing the QCSE and sac-

rificing the layer quality.
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