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Boundary value problems for integrable equations
compatible with the symmetry algebra
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Boundary value problems for integrable nonlinear partial differential equations are
considered from the symmetry point of view. Families of boundary conditions
compatible with the Harry-Dym, KdV, and mKdV equations and the Volterra chain
are discussed. We also discuss the uniqueness of some of these boundary
conditions. ©1995 American Institute of Physics.

I. INTRODUCTION

In our previous papérwe have briefly discussed a method to construct boundary value
problems of the form

u=f(u,us,u,,...,u,), (1)

p(uiul!UZ!"'vuk)|X:0:O! (2)

completely compatible with the integrability property of Etj). Hereu=u(x,t), u;=d'u/dx' and
f is a scalaror vecto) field. The aim of the present paper is to expound in detail our scheme and
also extend it to the integrable differential-difference equations.

Let the equation

U=g(U,ug,....Um), )

for a fixed value ofm, be a symmetry of Eq(l). Let us introduce some new set of dynamical
variables, consisting of the variabbe= (u,uq,u,,...,u,_4), and itst-derivativesv,, vy,... . One
can express the highgrderivatives ofu, i.e.,u; for i=n and theirt-derivatives, by using Ed1),

in terms of the dynamical variableand theirt-derivatives. Here is the order of Eq(1). In these
terms the symmetry3) may be written as

vT:G(v!Ut!vtl"'ivtt"'t)' (4)

We call the boundary value problem, Eq$) and (2), as compatible with symmetr{8) if the
constraintp(v)=0 [or constraintsp®(v)=0, wherea=1,2,...N and N is the number of con-
straintg is consistent with the~-evolution,

w_ dp=0 5

5.0 (modp=0). ©)
Equation(5), by virtue of the equations it¥), must be automatically satisfied. In fats) means
that the constrainp=0 defines an invariant surface in the manifold with local coordinat&his
definition of consistency of the boundary value problem with symmetry is closer to the one
introduced in Ref. 2, but not identical.

0022-2488/95/36(12)/6809/13/$6.00
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6810 Gurel, Gurses, and Habibullin: Boundary conditions for integrable equations

We call the boundary conditio(2) compatible with the equation if it is compatible at least
with one of its higher-order symmetries.

Our main observation is that if the boundary condition is compatible with one higher sym-
metry, then it is compatible with an infinite number of symmetries that form 8 séth an infinite
elements. Her& may or may not contain the whole symmetries(bf. For instanceS contains
the even-ordered time-independent symmetries for the Burgers’ equation.

We note that all the known boundary conditions of the fd@yconsistent with the inverse
scattering method are indeed compatible with the infinite series of generalized symmetries. On the
other hand, stationary solutions of the symmetries compatible (®jthllow one to construct an
infinite-dimensional set of “exactfinite gap solutions of the corresponding boundary value
problem(1) and(2). However, in this work we do not discuss analytical aspects of this problem.
We note also that, in this paper we shall deal with boundary conditions of the form giv@h in
An effective investigation of boundary conditions involving an expligitependence is essentially
more complicated. Such a problem has been studied, for instance, in Ref. 3.

The paper is organized as follows. In Sec. Il we present some propositions related to the
boundary conditions compatible with the infinite number of higher symmetries and prove them. As
an illustrative example we find all possible boundary conditions discussed in Sec. Il of the Bur-
gers’ equation in Sec. Ill. In Sec. IV we consider the nonlinear Stihger, Harry-Dym,
Korteweg de Vries, and modified KdV equations. Using the symmetry approach we find a bound-
ary condition compatible with the symmetry algebra of the Harry-Dym equation,

Ur=U%U4y, Ug=cu, x=0, uy=c?u/2, x=0, (6)

wherec is an arbitrary real constant. Actually one has here two constraints. Although we are
taking the boundary conditions at=0, one can shift this point to an arbitrary poit X, without
losing any generality. We conjecture that the boundary value problem givé) is compatible
with the Hamiltonian integrability and solvable by the inverse scattering technique. In addition, we
conjecture thatusing the idea in Ref.)done can prove that on the finite interval<x<x, the
Harry-Dym equation with the boundary conditiong=cou, u,,=c3u/2 for x=x; andu,=c,u,
Uy,=C2u/2 for x=x, is a completely integrable Hamiltonian system.

Section V is devoted to the differential-difference equations. In the last section we propose a
further generalization of the compatibility and discuss some open questions.

II. BOUNDARY CONDITIONS COMPATIBLE WITH SYMMETRIES

In the sequel we suppose that Efj) admits a recursion operator of the fofsee Refs. 57
i1 Ky
R=> D'+, a_ 1D ta_,;, i;=0, k=0, 7
=0 i=o0

whereq;, a_q;, a_,; are functions of the dynamical variabld3, is the total derivative with
respect tax, andD ~!is defined through the relation

©e100- | eerde

Recursion operators when applied to a symmetry produce new symmetries. Passing to the new
dynamical variables, v, vy ,..., One can obtain, frort¥), the recursion operatdr of the system

of equations(4) (we do not prove that every recursion operator may be rewritten in the matrix
form, but we will give below the matrix forms of the recursion operators for the Burgers’, KdV,
mKdV, and Harry-Dym equations
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Gurel, Gurses, and Habibullin: Boundary conditions for integrable equations 6811

M K
R=2 a(d) + 2> a_1,(dHa_,;, M>0, K=0, 8
i=0 i=0

where the coefficient matrices;, a_,;;, a_,; depend onv and on a finite number of its
t-derivatives, andj, is the operator of the total derivative with respectttdf (1) is a scalar
equation,R is a scalar operator, theR is ann X n matrix valued operator. Our further consider-
ations are based on the following proposition, which really affirms that if an equation admits an
invariant surface, then an infinite number of its higher symmetries admits also the same invariant
surface.

Proposition 2.1:Let Eq.(4) be of the formv .= T(R)v, whereR is the recursion operatd8)
andT is a polynomial function with scalar constant coefficients. If this equation is consistent with
the constrainp(v) =0, where rank op equalsn—1 (heren is the dimension of the vectar), then
every equation of the form _=L(T(R))v,, whereL is arbitrarily chosen polynomial with scalar
constant coefficients, is also compatible with this constraint.

Proof: Introduce new variablesv=(w!w?,...w") in the following way: w'=p?,
w?=p?,...w" 1=p""1 andw"=p" is a function ofv; herep' are the components of the vector
p for i<n—1. Then one obtains the equation.=Pw; from (5), where P=AT(R)A"! and
A=ow/dv is the Jacobi matrix of the mapping—w. Notice that under this change of variables
the constrainp(v) =0 turns into the equatiow'=0 fori=1,2,...n— 1. Imposing this constraint
reduces the equation,=Pw; to the form

0 Piu - Pap 0
On Pn—l,l I:)n—l,n On
Wr Pn,l F>n,n Wi

Let us show that elements of the last column of the mdtrare equal to zero except mayBg . :

Pi n=0 for 1<i<n—1. Really, by lettingP; ,#0 for somegj<n—1 the equatioerynw{‘zo gives

a connection between variable$,wy,..., which are supposed to be independent. The set of such
operator valued matrices with

n—-1

> P;(0)=0, Vi=1,2,.n-1
i=1

constitutes a subalgebM* in the algebra of all square matrices; hence one can easily conclude
that the operatok (P) (modw'=0,i<n—1) is in M*, so the equatiomw =L(P)w, is consistent
with the constraintv'=0, i<n—1. It completes the proof of Proposition 2.1.

Proposition 2.2:Suppose thap(v) =0 is set of constraints of rank—1 and that there exists
a positive integem, such that the coefficient matrik,, in the expressiorR™ = by,(d)M
+ by_1(d)M~t + --- is proportional to the identity matrix. Ther(v) =0 is compatible with the
symmetryv . = Ry, if and only if it is compatible with the symmetrey, = H(R™)v,, whereH is
a polynomial with scalar constant coefficients.

Proof: Assumep(v)=0 is compatible withv, = H(R")v,. In terms of the variablev we
have introduced proving the previous proposition, the equation H(R")v, takes the fornw,.
= H(RQO)Wt. Owing to the fact that the point transformation preserves the commutativity property
of flows, the operatoR, = ARA ™! is the recursion operator in the new variables. Again, just in the
previous proposition one has that the oper&ﬁ:(RZO) under the substitutiop=0 (or really,
w'=0, i=n—1) belongs to the subalgebid*. Our aim now is to prove that the operatQr
= R}® (modw'=0, i<n—-1) is in M*. SettingH(Q) = @,Q"+a,_,Q" *+---+a, and repre-
sentingQ as formal serie§l|'2":_xck(9't‘ using the famous Campbell-Hausdorff formula, one ob-
tains that

J. Math. Phys., Vol. 36, No. 12, December 1995
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6812 Gurel, Gurses, and Habibullin: Boundary conditions for integrable equations

H(Q):an[CRA(at)nM'i”ncrl\l/l_ch—l(at)nM_l"'"']+"'+a0-

One has thaH(Q) belongs to the subalgebid*. By looking at the coefficients of different
power of the operatop,, one can show that the matrices, i=M -1, M—2,..., satisfy the
equations

CRA?lCi‘FSEM*,

whereS; are polynomials with scalar coefficients on varialdes,, ¢;, »,...,Cy and their deriva-
tives. So, because of assumptians=b,, € My, whereM, is the set of all matrices proportional
to the identity matrix, and déty,#0, it is easy to prove by induction thafe M, for all i<M.

Assumep(v) =0 is compatible withy . = R"y,. Now let the polynomial in Proposition 2.1
beT(z) = z". So the proof is completed.

IIIl. BOUNDARY CONDITIONS OF THE BURGERS' EQUATION

For the application of the propositions given in the previous section, in particular Proposition
2.2, we study the Burgers’ equation in detail as an example. It has some special importance. We
can find all possible boundary conditions compatible with the even-ordered generalized symme-
tries. The Burgers’ equation and its recursion operator are, respectively, given by, e.g., in Ref. 8,

U= Uy, + 2U Uy, (9)
R=D+u+u,D (10)

The simplest symmetry of this equationus=u, . In terms of the new dynamical variables, this
symmetry equation takes the form

u,=u;, U =U—2UU;. (11

This equation does not admit any invariant surface of the fofmu,)=0. Really, differentiating
this constraint with respect tq one obtains

Jd
®

p
ey — (u;—2uuy)=0. (12

au,

Because of independence of the variahleandu,, we have

ap _&p_

U'?_Ul_%_ ) (13)

which leads to a trivial solutiop=const. As a conclusion we do not have any invariant surface
(curve in the (u,u;) plane. Similarly, the third-order symmetry, =u+ 3uu,+ 3u?+3u?u;
rewritten in the new variableau(u,) gives the following system of two equations:

U,= Uy +Uu+ (U?+up)uy,
(14)
U ,=Uy—UUy (+ (U?+Up)u—2uug(u?+uy).

This system also does not admit any invariant surface of the foumu,)=0. It may be easily
proved that the same is true for every symmetry of the odd orderyje.usm1+h(Usm,--.,U).
Because the correspondent system of equations has different orders in the tiggresitives,

u=dlup+--, U =a ut (15)

J. Math. Phys., Vol. 36, No. 12, December 1995
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Unlike the symmetries of odd order, for the symmetries of even order the correspondent system of
equations has the same orders in the highatgrivatives. This fact leads us to show that the
symmetries of even order admit an invariant surfa¢e,u;)=0, depending upon two arbitrary
parameters.

Proposition 3.1:If the boundary conditiomp(u,u,)|.-o=0 is compatible with a higher sym-
metry of the Burgers’ equation, then it is of the fofsee Ref. 2c(u;+u?)+c,u+c,=0, and is
compatible with every symmetry of the form = P(R?u,, whereP denotes polynomials with
scalar constant coefficients.

Proof: The Frechet derivative dPB) gives the symmetry equation of the Burgers’ equation,

dyo=(D?+2uD+2w)a, (16)

wherew stands foiu,. Our aim is to express the recursion operator in termg of, 1. To this end
we rewrite(16) in the formd,c=D(D +2u) o, which is equivalent to

D to=4, Y (D+2u)o.
Since the operators are acting on the symmetries, we may take
D =g, Y(D+2u) 17
in the recursion operatdd0). Consequently, the recursion formuir;xi+l = Ru, becomes
U, =(u+2w g tuju, +(1+wa Hw,. (18
Differentiating it with respect toax and replacingv,=u,=u,—2uw, one obtains
W, =[d+2(u—2uw)d; *ulu, +[—u+(u—2uw)d, w,, (19

fori=1,2,.... Thus the matrix form of the recursion operdRois given by

u+2w 4; tu 1+wa;t ) 0
: 20

d+2(ui—2uw)d; t'u —u+(ui—2uw)e;

It is well known that every higher-order local polynomial symmetry may be represented as a
polynomial operatoPy(R) applied to the simplest classical symmetry=u, . It is more conve-
nient to use the following equivalent representation:

(21

ut—2uw>’

u u
W)T: P(R?)|, t+ Pl(RZ)(

whereP andP, are polynomials with scalar constant coefficients Bganentioned above may be
taken as
Po(R)=P(R?)R+P;(R?).

Note that one could not apply immediately Proposition 2.2 to this because the coefficigri of
the representatiof20) is not diagonal. On the other hand, the operd&drhas a scalar leading
part. First, we will prove that if the symmeti{21) admits an invariant surface thé®, in this
equation vanishes. Let us take the invariant surfaae=ag(w). Suppose that the functiar(w) is
differentiable at some poin=wy. Linearizingq around the pointv, (or asw—wg), we obtain

u—q(wg) =9’ (Wg)(W—Wg)+0(W—Wp).

J. Math. Phys., Vol. 36, No. 12, December 1995
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6814 Gurel, Gurses, and Habibullin: Boundary conditions for integrable equations

It follows from (20) that in this caséR? reduces to a scalar operat®?—[d,—wqy+g*(Wy)]! as
w—Wg, wherel is the unit matrix. Thus, in the linear approximation Egl) takes the form

o) (22

u _ 2 u P w
w/ = P[di—wg+Qq=(Wp) ] W t+ P1[di—wo+g=(wp) ]

where nowP[d,—wy+q%(W,)] and P,[ d,—wq+ q%(w,)] are scalar operators. It is clear that the
linearized equation is consistent with the linearized boundary condition
u—q(wg)=q’(wp)(w—wg), provided P;=0. Supposing that Eq21) is compatible with the
constraintw=c wherec is a constant and then linearizing about the p@irt0, w=c), one can
easily obtain thaP; vanishes in this case also.

It is evident now that in Proposition 2.2 one should pgit:2, becaus®?=14,+--- . With this
choice the constrair(u,w) describes an invariant surface for the following system:

Y —re Y 23
w 7__ W t! ( )

which is exactly the coupled Burgers’ type integrable sys(see Ref. §
U,=Uy+2(W+U?)u;, W, =W+ 2uZ+2(W+u?)w,. (24)

It is straightforward to show that the above systéPd) is compatible with the constraint
p(u,w)=0 only if p=w-+u?+c,u+c, or u=const.

The above uniqueness proof of the boundary condifierw+u?+c,u+c, can be more
easily shown if we use a new property of the Burgers’ hierarchy. We have the following proposi-

tion.
Proposition 3.2:The functionu(t,x,r,), for n=—1, satisfy infinitely many Burgers'-like
equations,
u, ,—u, =—2u,Dtu_, (25
IR 112i+2 1 1
foralli=-1,0,1,2,... .

Burgers’ equation correspondsite —1 (7_;=x and 7,=t). All u, for i>—1 correspond to

higher symmetries. Using this relation it is straightforward to determine the even numbered sym-
metries of the Burgers equation frof@5). It is very interesting thati satisfies the Burgers'-like
equations with respect to the variables (;,,) for all i=-1,0,1,2,... .

The proof of this proposition depends crucially on definition of the higher symmetries of the
Burgers’ equation. They are defined through the equation

u, =R"*u,, (26)

whereR is the recursion operator given in E§.0) andn=—1. Equation(26) can also be written
asu, = Ru, . Differentiating this equation once by and using(26), one arrives at25).

If we let the most general boundary condition of the fqum f (u,u,) =0 atx=Xx, and taker;
and ; , », derivatives fori=0 of the functionp and use Eq(25), we obtain

fﬁxf,u,u+f3f,ux,ux_2 f,gux_2 f,uf,uxfu,uxzo- 27
Letting u=x,; andu,+u?+c,u+c,=Xx,, then Eq.(27) becomes
f?XZf +f,2xlf,X2,X2—2 f o f s, f g, =0- (28

1 X1.Xq

J. Math. Phys., Vol. 36, No. 12, December 1995
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Gurel, Gurses, and Habibullin: Boundary conditions for integrable equations 6815

Assumingfx2 # 0 and lettingg = f,Xl/f,Xz we find that

Q,xlzqqxz- (29)

This is a very simple equation and its general solution can be found. We shall not follow this

direction to determiné(x,,X,) rather than change the form of equatjfu,u,) =0 atx=X,. This

equation(in principle) implies either(a) u,=h(u), which impliesf=u,—h(u) at x=x,, or (b)

u=g(u,), which impliesf=u—g(u,) atx=Xx,. It is now very easy to show that with the casas

and (b), when the correspondinfjs are inserted in27), we, respectively, obtaifa) h”"+2=0,

which impliesu,+u?+c,u+c,=0 atx=x,; and(b) g”+2(g’)*=0, which impliesu=constant

(for g'=0) and a special case @) (for g’ #0). Hence we found all possible boundary conditions.
Remark 3.1:0n the invariant surfacp(u,w) =0 the systen{24) turns into the Burgers'-like

equationu,= u,— 2(c,u+ C,)u,, which is also integrabl@.

IV. APPLICATIONS TO OTHER PARTIAL DIFFERENTIAL EQUATIONS

In this section we shall apply our method to obtain compatible boundary conditions of some
nonlinear partial differential equations. Let us start with the following system of equations:

Ui=Up+2u%, —vi=v,+2un2 (30)

Lettingv —u* andt—it, the above system becomes the well-known nonlinear Satger equa-
tion, wherex is the complex conjugation. It has the following recursion operator:

D+2u D 1 2u D™ lu
—2vD% —-D-2vD W

For the nonlinear Schdinger equationR takes the form

—2ud; vy 1+2ud;w  2u a9 tu, —2u a4 tu
E—2uy 0, vy 2up 9 M 2uy d; tuy —2u; 4; tu

=1 2 vy —2v9 v —2vd 'y —1+2v 9 tul’
204 &flvl —2v, é'flv n—2v, &{lul 2vq a{lu

where {é=d,—2uv, n»=d,+2uv, andny=2. Suppose that it admits a boundary condition of the
following form:

UX|X=0:p1(U,U), UX|X=0:p2(uiv)! (31)

compatible with the fourth-order symmetry. It means that the constfaintdefines an invariant
surface for this symmetry, presented as a system of four equations with four independent variables,

U,= Uy — 2?0, —4Uv Uy + 20 U2 — 2u%p?,
Up -=Uq — 2U% 1, — 2U%0 , — 6U%02u; — 4uv U, + 4o uyu, + 4o u’
1,7~ Uit U1t U1 vUy it av Ui 4vU vy,
32
_ -2 2 _ 2 3,,2 ( )
V,=—vy—20°U+4vuv,—2uv i+ 20°U%,
= —0q 4= 202Uy + 202U, + 600202 — v U+ 4Uv v, — dv3uu
Uir U1t U-Ugt v1Ug v vU U U1Vt v 1-

One can check that the systdB®) is compatible with the constraing = p(u,v), v;=p?(u,v)
only if p*=cu andp?=cuv. Since the systenB2) is of the form

J. Math. Phys., Vol. 36, No. 12, December 1995
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6816 Gurel, Gurses, and Habibullin: Boundary conditions for integrable equations

(U,Ul,l),vl)I:RZ(U,U]_,U,U]_):[I—, (33)
it follows from Proposition 2.2 that the constrainis=cu, v,=cv are compatible with every
symmetry of even order. So the boundary conditiogs_,=cu, v,|,—o=cv are compatible with
such symmetries. Analytical properties of this boundary value problem are studied prevemesly
Refs. 4, 10, and 1)1by means of the inverse scattering method.

Remark 4.10n the invariant surface, =cu, v,=cv the systen{32) is reduced to a system
of two equations:

U,= Uy — 2u?v,— 2¢?u?v — 2u3v?,
v, =—vy— 202U+ 2¢%0?u+ 20302,

The integrability of these equations is shown in RefsBe p. 17bh Under a suitable change of
variables in it this system of two equations becomes the famous derivative nonlineadiSgaro
equation.

Among the nonlinear integrable equations, the Harry-Dym equation,

ug+uduz=0, (34

is of special interest because its analytical properties are not typical. Using the symmetry approach
we find a boundary condition of the form

p(U,Ul,UZ):O, (35)

compatible with the Harry-Dym equation. One has to notice that the transformation from the
standard set of variablasu,,u,,us,..., tou,u;,Uy,U;,U; ¢,Uzy,..., iS NOt regular. For instance,
uz=—u,/u®. It has a singular surface given by the equatior0. So one should examine this
surface separately. Since the Harry-Dym equatid#) as well as its higher-order symmetries
possess the reflection symmexy —x, u— —u, t—t the trivial boundary condition(t,0)=0 is
consistent with the integrability.

Suppose that the boundary value probléd¥) and (35) is compatible with the ninth-order
symmetryu, = u9ug+---. It means that the constraimi(u,v,w) is consistent with following
system of equations, equivalent to the ninth symmetry:

u =flv U7'=f21 W7'=f31 (36)

wherev =u, , w=Uy,, and (,f,,f3)"=R3u,,v,,w;)", where

uw+u; 9, 'w —uv—u; d; v u?+ue 4; tu
R=| (1/u)d,+vw—u/u’+v, d; 'w —v2-v 4 uv+u, d; tu
w2+ w, d; 'w (1/u)d—vw—u/u?—w; d; v uw+w, 4; tu

The explicit expressions for,,f5 are very long. Hence we give the explicit form only for the

function f:
1 3 ul 3
f]_: _uttt+3uttut G_ E Uttulh— E ?"’ E Uul’tth
3 15, S 3
+§uulytht_ﬁuh ht_Rh Ut—zulutht, (37)
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whereh=2u,u—uZ. Here one has two choices for the rank of Bf). It is either one or two. The
first choice does not lead to any regular invariant surface. The second gives

ux|x=0=CUv uxx|x=0=CZU/2- (39

Since the symmetry under consideration is of the farps R3u,, whereR=u*D3uD(1/u?)
(see Ref. 12is the recursion operator for the Harry-Dym equation, assurnirgconst:0 as
|x|] —,1% and taking this constant to bel without loss of generality, we can write the following
corollary to Proposition 2.2.

Corollary: The boundary value probleii34) and(35) is compatible with every symmetry of
the formu_=L(R®)u,, whereL is a scalar polynomial with constant coefficients.

Remark 4.20n the invariant surface=cu, w=c?u/2 Eq. (37) takes the form

U,= — Ug+ 3ugUg /u—3udu?/2, (39

equivalent to the mKdV equation.
The Korteweg de Vries equationu,=u;+6u;u admits a recursion operator
R=D?+4u+2u;D ", which may be represented in the form

4u+12v 9; 'u 0 1+2v g, *
R= d+12w 9, tu —-2u 2w g,
2w+12(u—6uv)d; 'u —2v  —2u+2(u,—6uv)d;

It is not difficult to show that the system of equationsy,w),=R3(u,v,w), admits an invariant
surfaceu=0, w=0 on which the equation turns into the mKdV equation. It means that the
boundary conditioru(t,x=0)=0, u,,(t,x=0)=0 is compatible with all symmetries of the form
(u,,v,,w) =HR>(u,,v,,w,)". Similarly, the mKdV equatioru,=u,+6u?u, is compatible
with the boundary condition(t,x=0)=0, u,(t,x=0)=0.

V. APPLICATIONS TO DISCRETE CHAINS
Consider an integrable nonlinear chain of the form
u;(n)=f(u(n—1),u(n),u(n+1)), (40

with unknown functioru=u(n,t) depending on integer and reak. The natural set of dynamical
variables serving the hierarchy of higher symmetries for the chain is thei(®tu(=1),
u(=*=2),.... However, it is more convenient for our aim to use the following unusual one, consist-
ing of the variablesu(0),u(1) and all theirt-derivatives. Transformations of these sets to each
other are given by Ed41) itself and its differential consequences. In terms of new basic variables,
every higher-order symmetry of this chain,

u(n)=gu(n—m),u(n—m-1),...,u(n+m)), 47
could be presented as a system of two partial differential equations,
u,=G(v,W,01,Wq,...,05,Wg), W,=Gs(v,W,01,Wq,...,05,Ws), (42

wherev=u(0,t,7), w=u(1,t,7), v;=d"v/at", w,=a'w/ix'.
Prescribe some boundary condition of the form
u(0)=p(u(1),u(2),...,u(k)), (43
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6818 Gurel, Gurses, and Habibullin: Boundary conditions for integrable equations

to Eq. (40) to hold for all momentst. We shall call the boundary value proble@0), (43
consistent with the symmetiy1) if the constraini{43) defines an invariant surface for the system
(42). Note that interconnection between the hierarchies of the commuting discrete chains and
integrable partial differential equations is well knovgee the survey. An illustrative example of

this kind of connections is related to the famous Volterra chain,

u(n)=u(n)(u(n+1)—-u(n-1)). (44)
Its next symmetry is
u(n)=u(n)u(n+)[u(n)+u(n+1l)+u(n+2)]—u(n)u(n—21)[u(n)+u(n—1)+u(n—2)],
which might be represented @Ref. 5, p. 123
v, Hve=2ow+v?), W.—Wg=(2oWw+w?),, (45)

under the substitutionu(0)=v, u(l)=w, u(-1)=w-v/v, u(2)=v+wlw, u(—-2)=v
—adlnu(—1)/dt. Moreover, the full hierarchy of the Volterra chain is completely described by the
hierarchy of the last system. According to the definition above the boundary value pr@t8gm

(44) will be consistent with a symmetry of the Volterra chain if the constred®) describes an
invariant surface for the same symmetry, represented as a system of partial differential equations.
Let us examine invariant surfaces of the following system of partial differential equations:

v,=v+ (BuH? =30 H—20%), W, =Wy +(3WH?+3wH—2w?),, (46)

whereH=uv +w, which is exactly the higher-order symmetry for the \olterra ch@di) of the
form

u(n)=u(nu(n+)[u(n+2)u(n+3)+u(n)u(n+2)+u(n)u(n—1)
+u?(n)+2u(n+u(n+2)+u?(n+2)+2u(n)u(n+1)+u?(n+1)]
—u(nu(n—D[u(n)u(n+1)+u(n)u(n—2)+u(n—2)u(n—3)+u?(n—2)
+2u(nu(n—1)+u?(n)+2u(n—1)u(n—2)+u?(n—1)].

It is easy to check that the only invariant surface of the formconst admissible by the system
(43) is v=0. The corresponding boundary conditio(®)=0 is well studiedsee Refs. 14 and 15
Remark 5.1:0n the invariant surface=0 the systen{46) reduces to the scalar equation

W, = Wiy + 3wew+ 3w+ 3ww?,

which is nothing else but the next symmetry of the Burgers’ equation. Moreover, the constraint is
compatible with every generalized polynomial symmetry. On the invariant surface they are all
reduced to the symmetries of the Burgers’ equation. It is evident, for instance, that the &&tem
turns into the Burgers’ equation itself.

Suppose now that =p(w). Then one obtains thai(w)= —w. It gives rise to a boundary
conditionu(0)= —u(1) compatible with the Volterra chaifsee Ref. 1§

Remark 5.2:Under the constrainb = —w the system(46) turns into the modified KdV
equation,

U= Uttt+ GUzvt .

It is not difficult to show that there is no any invariant surface of the formp(w,w,) such
that dp/ dw, #0 admissible with the systerd6).
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For the case,=p(v,w,w;) calculations become very long so that here we utilized Math-
ematica 2.1(we thank George Alekseev for his help with this calculatjomterep has a form
p=(v/w)w;+ 2v (v +w), which produces the boundary conditiof—1)=—u(0)—u(1)—u(2).

The slight difference with43) is overcome by the simple shift of the discrete variatle

Using Proposition 2.1, it is easy to check that the invariant surfgegv/w)w;+2v (v +w)
is compatible with every odd-order polynomial generalized symmetry of the syg@®nit means
that the boundary condition(—1)=—u(0)—u(1)—u(2) is compatible with the corresponding
symmetries of the Volterra chain.

The well-known boundary condition®(0)=1 for the modified Volterra chain,

U(n)=(1—u?(n))(u(n+1)—u(n—1)),
defines the invariant surfac€=1 for the following systems of equations:
v, ue=2((1=0?)W), W, —wy=2((1-w’)o), (47)
and
v 0 =20 (1-v?)(3W?—1) = 3vwoy);,
W, + Wi = 2(W(1—wW?)(3v%— 1)+ 3vww,), 49
which are equivalent to the next symmetries of this chain:
u,(n)=(1-u*n))(D_—D,)(1—u*(n))(D_—D)u(n)
and
u(n)=(1—-u?n)(D_—D,)(L—u*(n)[(—~DZ—=D2)u(n)+ (D, +D_)(U*(nu(n+1)
+u?(n)u(n—1)+2u(n—21)u(n)u(n+1))].

HereD ., D _ are the shift operator® L u(n)=u(n+1),D_u(n)=u(n—1);v=u(0),w=u(l)
and other variables(n) are expressed throughw, and theirt-derivatives by means the chain
and its differential consequences.

Remark 5.30n the invariant surface®=1 the system$47), (48) are reduced to the Burgers’
equation and its third-order symmetry.

VI. CONDITION OF WEAK COMPATIBILITY

It is easy to notice that any symmetry of Ed) rewritten in terms of the nonstandard set of
the dynamical variables turns into the equation contaimmgl extra variablesi; ,u,,...,u,_.
For instance, the fourth-order symmetry of the Burgers’ equation,

U,= Uy + 4uzu+ 10u,u; + 6u,u?+ 12u2u+ 4u,u®,
takes the following form:
U,=Ug+2(Ww+u?)uy,

wherew=u,. To extend it to the closed form, it is enough to add one more equation obtained
from the above equation by the differentiation with respect tmd replacingi,= u,—2uw. This

is the general rule for integrable equations: One has tanadd more equation&o have a closed

system of equationsexpressing variables; ., 1<i<m-1 through dynamical ones. But on the

other hand, one may consider the single symmetry equation alone and suppose the extra variables
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6820 Gurel, Gurses, and Habibullin: Boundary conditions for integrable equations

are expressed interms ofand its lower derivatives. Let us pose the question, for which choice of
such expressions does the symmetry under consideration turn into an integrable equation? As an
example let us consider the Burgers’ equation. How should we choose the depewdewga),
such that the equatioru.=u,+2(w-+u?)u, would be integrable? The only choice is
w=—u?+c,u+c, (see Ref. 17 We will call the boundary conditions;= u;(u), x=0 (obtained
this way) for Eq. (1) as weakly compatible with the symmetry if these constraints are chosen to
satisfy the requirement above; i.e., the equation fomtiesymmetry written down in terms of the
introduced variables turns into some integrable equation after replacipgu;(u),
ui=u;(du;/du),.... So in the above case of the Burgers’ equation only the condition
w(u)=—u?+c,u+c, is weakly compatible with the fourth-order symmetry. As the remarks
given above indicate, the compatibility of the condition with a symmetry implies the weak com-
patibility with it, but not vice versa. However, we conjecture that if the boundary condition is
weakly compatible with at least three higher symmetries then the corresponding initial boundary
value problem will be solvable by a suitable generalization of the inverse scattering method.
The following example for the Harry-Dym equatid4) seems to be intriguing. Let us
represent the fifth-order symmetry,

U, = — 5u(2u5U?+ 10u,U; U+ 10UU,U +5U3U7)

in the formu,, = 3(hu),, whereh=2u,u—u?. Represent also the next two symmetries in the
similar form:

U, = UyUy— 3Uuguh+ u 3(h+u?)?— 4uZ(h+uf) +uj]— uuy + fuuh

anduT9 = f, [see Eq(37)]. It is evident that for arbitrary functio®R = F(u) the constrainh=0,

u,=F(u) is weakly consistent with fifth and ninth symmetries, because the former takes the
trivial form u, =0 and the latter turns into the integrable equati@®. The seventh-order sym-

metry becomesuT7 = (Su);, where S=F—uF’. Thus, if for instance,S=a=const or
S=1/(yu+ B)?, one will have the equatiouT7 = (Su);, to be integrabldsee Ref. 9, p. 129

SupposingS(u) =a one can easily find that,=cu+a, u,=c?u/2+ac+a?2u. It leads to the

following boundary conditionu,=cu+a, u,,=u2/2u, at x=0 for the Harry-Dym equation,
which coincides with38) if a=0. In the cas&=1/(yu+ 8)? to find F, one has to integrate the
ordinary differential equatiofr (u)—uF’(u)=S.
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