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We give the conditions for a system ofN-coupled Korteweg de Vries~KdV! type
of equations to be integrable. We find the recursion operators of each subclass
and give all examples forN52. © 1998 American Institute of Physics.
@S0022-2488~98!03003-5#

I. INTRODUCTION

In Ref. 1 we gave an extension of the recently proposed Svinolupov Jordan KdV2,3 systems to
a class of integrable multicomponent KdV systems and gave their recursion operators. Thi
is known as the degenerate subclass of the KdV system. In this work we will extend it to a
general KdV type of system equations containing both the degenerate and nondegenerat
This is a major step towards the complete classification of KdV systems. In addition we g
new extension of such a system of equations.

Let us consider a system ofN nonlinear equations of the form

qt
i5bj

i qxxx
j 1sjk

i qjqx
k , ~1!

wherei , j ,k51,2,...,N, qi are functions depending on the variablesx, andt, andbj
i , andSjk

i are
constants. The purpose of this work is to find the conditions on these constants so th
equations in~1! are integrable. In general the existence of infinitely many conserved quantit
admitted as the definition of integrability. This implies the existence of infinitely many genera
symmetries. In this work we assume the following definition for integrability:

Definition: A system of equations is said to be integrable if it admits a recursion opera
The recursion operator~if it exists! of the system of equations given in~1!, in general, may

take a very complicated form. Let the highest powers of the operatorsD andD21 be respectively
defined bym5degree ofR and n5order nonlocality ofR. In this work we are interested in
subclass of equations admitting a recursion operator withm52 andn51. Namely, it is of the
form

Rj
i 5bj

i D21ajk
i qk1cjk

i qx
kD21, ~2!

whereD is the totalx derivative,D21 is the inverse operator, andajk
i andcjk

i are constants with

sjk
i 5ak j

i 1cjk
i . ~3!

Before starting to the classification of~1! we recall a few fundamental properties of the recurs
operator. An operatorRj

i is a recursion operator if it satisfies the following equation

Rj ,t
i 5Fk8

iRj
k2Rk

i F j8
k , ~4!

whereFk8
i is the Fréchet derivative of the system~1!, which is given by

s t
i5F j8

is j , ~5!
21030022-2488/98/39(4)/2103/9/$15.00 © 1998 American Institute of Physics
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wheres i ’s are called the symmetries of the system~1!. The condition~3! implies that Eq.~1! itself
is assumed to be in the family of the hierarchy of equations~or flows!

qtn

i 5sn
i ,

where for alln50,1,...,sn
i denotes the symmetries of the integrable KdV system~1!. For instance,

for n50,1 we have respectively the classical symmetriess0
i 5qx

i ands1
i 5qt

i .
Equation~5! is called the symmetry equation of~1! with

F j8
i5bj

i D31sjk
i qx

k1sk j
i qkD. ~6!

Recursion operators are defined as operators mapping symmetries to symmetries, i.e.,

Rj
i s j5ls i , ~7!

wherel is an arbitrary constant. Equations~5! and ~7! imply ~4!. It is the equation~4! which
determines the constantsajk

i andcjk
i in terms ofbj

i andsjk
i ’s. The same equation~4! brings severe

constraints onbj
i andsjk

i .
We shall obtain a classification of~1! based on the matrixbj

i ,

~i! det (bj
i )50,

~ii ! det (bj
i )Þ0,

and also we divide the classification procedure, for each class, into two parts wheresjk
i 5sk j

i and
sjk

i Þsk j
i . For the system of equations admitting a recursion operator we have the follo

proposition.
Proposition 1: Let qi(t,x) be functions oft and x satisfying theN KdV equations~1! and

admitting a recursion operatorRj
i in ~2!. Then the constantsbj

i , sjk
i , ajk

i , and cjk
i satisfy @in

addition to the~3!# the following relations:

bl
kcjk

i 2bk
i cjl

k 50, ~8!

bl
kajk

i 2bk
i ~ajl

i 13cjl
k 2sjl

k !50, ~9!

bk
i ~3ajl

k 13cjl
k 22sjl

k 2sl j
k !50, ~10!

cjk
i slm

k 2slk
i cjm

k 50, ~11!

cjk
i slm

k 1cjk
i sml

k 2cjm
k skl

i 2cjl
k skm

i 50, ~12!

ajk
i slm

k 2skm
i ajl

k 2slk
i ajm

k 2slk
i cjm

k 1sjl
k ckm

i 1akl
i sjm

k 50, ~13!

ckm
i ~sp j

k 2sjp
k !50. ~14!

Now we will discuss the problem of classifying the integrable system of equations~1! for the two
exclusive cases depending upon the matrixbj

i .

II. CLASSIFICATION FOR THE CLASS det „b j
i
…50

In this subclass we assume the rank of the matrixbj
i asN21. Investigation of the subclasse

for other ranks of matrixb can be done similarly. For this case we may takebj
i 5d j

i 2kikj where
ki is a unit vector,kiki51. In this work we use the Einstein convention, i.e., repeated indices
summed up from 1 toN . We find the following solution of~8!–~14! for the parametersajk

i and
cjk

i for all N
Proposition 2: Let ki be a constant unit vector andbj

i 5d j
i 2kikj . Then the complete solu

tions of the equations~8!–~14! are given by
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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al j
i 5 2

3 sjl
i 1 1

3@ki~kjal22klnj !1~2aki1bi !klkj #,
~15!

cjl
i 5 1

3 sl j
i 2 1

3 @ki~klaj1kjnl !1~2aki1bi !klkj #1kiklnj ,

where

nj5kkkisjk
i 2akj , aj5kkkisk j

i 2nkj , bi5klkkslk
i 2nki , ~16!

a5knan , n5kini andsjk
i ’s are subject to satisfy the following:

cjk
i slm

k 5cjm
k slk

i , ~17!

sjk
i 2sk j

i 5ki@kj~ak2nk!2kk~aj2nj !#, ~18!

knsl j
n 5nlkj1klaj , ~19!

knsjn
i 5kinj1bikj , ~20!

knsn j
i 5~n2a!kikj1kiaj1bikj , ~21!

n@~ai2ni !kj2~aj2nj !ki #50, ~22!

ai5rni1aki , ~23!

wherer is a constant. At this point we will discuss the classification procedure with respect t
symbolsjk

i whether it is symmetric or nonsymmetric with respect to its lower indices.

A. The symmetric case, s jk
i 5s kj

i

Among the constraints listed in Proposition 2 the one given in~22! implies thatsjk
i ’s are

symmetric if and only ifai2ni5aki wherea5a2n. There are two distinct cases depending
whethern50 or nÞ0. We shall give these two subcases as corollaries of the previous pro
tion.

Corollary 1: Let sjk
i 5sk j

i andn50. Then we have the following solution for allN:

ak j
i 5 2

3 sjk
i 1 1

3 @ki~kjak22kknj !1kkkjb
i #,

~24!

cjk
i 5 1

3 sjk
i 2 1

3 @ki~kjak22kknj !1kkkjb
i #, ~24!

wherea50, r51, and

al5nl ,nl5kik
jsl j

i ,bi5kjklsl j
i . ~25!

The vectorki andsjk
i are not arbitrary; they satisfy the following constraints:

sjk
i slm

k 2slk
i sjm

k 522~kjnl2klnj !~2kinm1bikm!,

knsl j
n 5nlkj1klnj , knsjn

i 5kinj1bikj . ~26!

As an illustration we give an example for this case.1 A particular solution of the equations~26! for
N52 is

bj
i 5d j

i 2yiyj5xixj ,
~27!

sjk
i 5

3

2
a1xixjxk1a2xiyjyk1

a1

2
yi~yjxk1ykxj !,

wherei , j 51,2 and
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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xi5d1
i ,yi5d2

i , ~28!

and

ki5yi , ni5
1
2 a1xi , bi5a2xi . ~29!

Constantsajk
i andcjk

i appearing in the recursion operator are given by

ajk
i 5a1xixjxk1a2xiyjyk1

a1

2
yixjyk ,

~30!

cjk
i 5

a1

2
xixjxk1

a1

2
yixjyk .

Taking a152 anda251 ~without loss of generality! we obtain the following coupled system

ut5uxxx13uux1vvx , v t5~uv !x . ~31!

The above system was first introduced by Ito4 and the multi-Hamiltonian structure studied b
Antonowicz and Fordy5 and by Olver and Rosenau.6 The recursion operator of this system is giv
by

R5S D212u1uxD
21 v

v1vxD
21 0D . ~32!

In Ref. 1 we have another example forN53.
For the casenÞ0 for all N we have the following.
Corollary 2: Let sjk

i 5sk j
i , nÞ0, andr50. Then the solution given in Proposition 2 reduc

to

al j
i 5 2

3 sjl
i 1 1

3 ~a22n!kikjkl ,
~33!

cjl
i 5 1

3 sl j
i 2 1

3 ~a22n!kikjkl ,

where

nj5nkj , aj5akj , bi5aki , ~34!

and the constraint equations

sk j
i sml

k 2sm j
k skl

i 50, knsl j
n 5~a1n!klkj , knsjn

i 5~a1n!kikj . ~35!

For this case we point out that solution of~33! and ~35! gives decoupled systems.

B. The nonsymmetric case, s jk
i Þs kj

i

In this case the constraints in Proposition 1, in particular~22!, implies that we must have
n50. In this case we have the following expressions foral j

i andcl j
i for all N:

al j
i 5 2

3 sjl
i 1 1

3 @ki~kjal22klnj !1~2aki1bi !klkj #,
~36!

cjl
i 5 1

3 sl j
i 2 1

3 @ki~klaj1kjnl !1~2aki1bi !klkj #1kiklnj ,

where

nj5kkkisjk
i 2akj ,

~37!

aj5kkkisk j
i , bi5klkkslk

i ,
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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and the constraint equations among the parameters are

cjk
i clm

k 2clk
i cjm

k 50, ~38!

~ajk
i 2cjk

i !slm
k 1~ckm

i 2akm
i !sl j

k 1~smk
i 2skm

i !ajl
k 1~sjm

k 2sm j
k !akl

i 50. ~39!

For N52 we will give an example. Constantsajk
i andcjk

i appearing in the recursion operator a
given by

ajk
i 5a1xixjxk1a2xiyjyk1a3yixjyk ,

~40!

cjk
i 5

a1

2
xixjxk1a1yixjyk ,

wherea1, a2 , anda3 are arbitrary constants and

ki5yi , ni5a3xi , bi5a2xi , ai5a1xi . ~41!

We obtain the following coupled system:

ut5uxxx13a1uux ,
~42!

v t5a3uxv1a1uvx ,

which is equivalent to the symmetrically coupled KdV system7

ut5uxxx1vxxx16uux14uvx12uxv,
~43!

ut5uxxx1vxxx16vvx14vux12vxu,

and the recursion operator for this integrable system of equations~42! is

R5S D21a1~2u1uxD
21! 0

a3v1a1vxD
21 0D . ~44!

III. CLASSIFICATION FOR THE CASE det „b j
i
…Þ0

As in the degenerate case det (bj
i )50, we have two subcases, symmetric and nonsymme

Before these we have the following proposition.
Proposition 3: Let det (bj

i )Þ0. Then the solution of equations given Proposition 1 is given
follows:

ajl
i 5 2

9~sl j
i 12sjl

i !2 1
9Cl

kbm
i K jk

m ,
~45!

cl j
i 5 1

9 ~7sl j
i 24sjl

i !1 1
9 Cl

kbm
i K jk

m ,

where

Kl j
i 5sl j

i 2sjl
i ~46!

and the constraint equations

bl
kcjk

i 2bk
i cjl

k 50, ~47!

5Ci
mKr j

i 2Cr
l Kl j

m2Cj
l Krl

m50, ~48!

cjm
k Klk

i 1cjl
k Kmk

i 50, ~49!
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cjk
i slm

k 2cjm
k slk

i 50, ~50!

Kl j
k ckm

i 50, ~51!

~ajk
i 2cjk

i !slm
k 1~ckm

i 2akm
i !sl j

k 1Kmk
i ajl

k 1K jm
k akl

i 50. ~52!

whereCr
i is the inverse ofbi

r .

A. The nonsymmetric case, s jk
i Þs kj

i

Equations~47!–~52! define an over-determined system for the components ofsjk
i . Any solu-

tion of this system leads to the determination of the parametersajl
i andcjl

i by ~45!.
As an example we give the following, forN52, coupled system

v t5avxxx12bvvx ,

ut54auxxx12buxv1buvx , ~53!

wherea andb are arbitrary constants. This system, under a change of variables, is equiva
the KdV equation with the time evolution part of its Lax equation.8 The recursion operator of th
system~53! is

R5S 4

3
~3aD21bv !

b

3
~3u12uxD

21!

0
1

3
~3aD214bv12bvxD

21!
D . ~54!

Hence the KdV equation coupled to time evolution part of its Lax-pair is integrable an
recursion operator is given above. This is the only new example forN52 system.

B. The symmetric case, s jk
i 5s kj

i

When the symbolsjk
i is symmetric with respect to subindices, the parametersK jk

i vanish. Then
the equations~45!–~52! reduce to

ajk
i 5 2

3sjk
i , cjk

i 5 1
3sjk

i , ~55!

where the parametersbk
i andsjk

i satisfy

bl
ksjk

i 2bk
i sjl

k 50, ~56!

sjk
i slm

k 2slk
i sjm

k 50. ~57!

We shall not study this class in detail, because in Ref. 1 some examples of this class are gi
N52. Here we give another example which correspond to the perturbation expansion of the
equation. Letqi5d iu, where i 50,1,2,...,N, andu satisfies the KdV equationut5uxxx16uux .
The qi ’s satisfy a system of KdV equations which belong to this subclass:

qt
05qxxx

0 16q0qx
0 , ~58!

qt
15qxxx

1 16~q0q1!x , ~59!

qt
25qxxx

2 16@~q1!21q0q2#x , ~60!

••• . ~61!

qt
N5qxxx

N 13(
i 51

N

@d i~q0!2#x . ~62!
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IV. FOKAS–LIU EXTENSION

The classification of the KdV system given in this work with respect to the symmetries ca
easily extended to the following simple modification of~1!:

qt
i5bj

i qxxx
j 1sjk

i qjqx
k1x j

i qx
j , ~63!

wherex j
i ’s are arbitrary constants. Equation~63! without the last term will be called the principl

part of that equation. Hence the equation~1! we have studied so far is the principle part of
modification~63!. We assume the existence of a recursion operator corresponding to the
system in the form

Rj
i 5bj

i D21ajk
i qk1cjk

i qx
kD211wj

i , ~64!

wherewj
i ’s are constants. We have the following proposition corresponding to the integrabil

the above system.
Proposition 4: The operator given in~64! is the recursion operator of the KdV system~63! if

in addition to the equations listed in Proposition 1@~8!–~14!# the following constraints on the
constantsx j

i andwj
i are satisfied:

x l
kajk

i 2xk
i ajl

k 2xk
i cjl

k 1x j
kckl

i 2wj
kskl

i 1wk
i sjl

k 50, ~65!

x l
kcjk

i 2xk
i cjl

k 50, ~66!

xk
i wj

k2x j
kwk

i 50, ~67!

~x j
k2wj

k!bk
i 2~xk

i 2wk
i !bj

k50, ~68!

x j
kakl

i 2xk
i ajl

k 1wk
i sl j

k 2wj
kslk

i 50. ~69!

Since the constraints~8!–~14! are enough to determine the coefficientsajk
i and cjk

i with some
constraints on the given constantsbj

i and sjk
i , we have the following corollary of the abov

proposition.
Corollary 3: The KdV system in~63! is integrable if and only if its principle part is integrable
The principle part of~63! is obtained by ignoring the last term~the term withx j

i ). Hence the
proof of this corollary follows directly by observing that the constraints on the constantsx j

i andwj
i

listed in ~65!–~69! are independent of the constraints on the constants of the principle part
in ~8!–~14!. Before the application of this corollary let us go back to the Proposition 4 and as
question whether the KdV system~63! admits a recursion operator withwj

i 50.
Corollary 4: The KdV system~63! admits a recursion operator of the principle part. Then

last termx j
i qx

j is a symmetry of the principle part. Ifwj
i 50, the above equations~65!–~69! reduce

to

x l
kajk

i 2xk
i ajl

k 2xk
i cjl

k 1x j
kckl

i 50, ~70!

x l
ksjk

i 2xk
i sjl

k 50, ~71!

x j
kbk

i 2xk
i bj

k50, ~72!

x l
kcjk

i 2xk
i cjl

k 50. ~73!

In order that the termx j
i qx

j be a symmetry of the principle part, the constantsx j
i are subject to

satisfy the following equations:

x l
ksjk

i 2xk
i sjl

k 50, ~74!

x j
kbk

i 2xk
i bj

k50, ~75!
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x l
kK jk

i 1x j
kKlk

i 50. ~76!

These equations simply follow from the set of equations~70!–~73!, and hence the quantitie
s i5x j

i qx
j are symmetries of the principle part.

By the application of Corollary 3, the full classification of the system~63! with the recursion
operator~64! such thatqt

i ~i.e., the system of equations themselves! belong to the symmetries o
this system is possible. To each subclass given in the previous sections there exists a Fok
extension such thatwj

i 5x j
i with the following constraints:

xk
i cjl

k 2x l
kcjk

i 50, ~77!

x l
kajk

i 2x j
kalk

i 2xk
i ~ajl

k 2al j
k !50. ~78!

The above constraints are identically satisfied for the class@det (bj
i )Þ0, symmetrical case#

whenx j
i 5ad j

i 1bbj
i . Hence the Fokas–Liu extension of the nondegenerate symmetrical ca

straightforward with this choice ofx j
i . Herea andb are arbitrary constants.

For the degenerate case the set of equations~77! and ~78! must solved for a given principle
part,bj

i andajk
i . Recently a system of integrable KdV system withN52 has been introduced b

Fokas and Liu.9 This system is a nice example for the application of Corollary 3. We shall
this system in its original form first and then simplify:

ut1vx1~3b112b4!b3uux1~21b1b4!b3~uv !x1b1b3vvx

1~b11b4!b2uxxx1~11b1b4!b2vxxx50, ~79!

v t1ux1~213b1b4!b3vvx1~b112b4!b3~uv !x1b1b3b4uux

1~b11b4!b2b4uxxx1~11b1b4!b2b4vxxx50, ~80!

whereb1, b2 , b3 , andb4 are arbitrary constants. The recursion operator of this system is g
in Ref. 8. Consider now a linear transformation

u5m1r 1n1s, v5m2r 1n2s, ~81!

where m1 ,m2 ,n1 , and n2 are constants, ands and r are new dynamical variables,qi5(s,r ).
Choosing these constants properly, the Fokas–Liu system reduces to a simpler form

r t5~rs!x1a1r x1a2sx ,
~82!

st5g1sxxx1g2rr x13ssx1a3r x1a4sx ,

where we are not giving the coefficientsa1 ,a2 ,a3 , and a4 in terms of the parameters of th
original equation given above, because these expressions are quite lengthy. The only cond
the parametersa i is given bya35g2a2. This guarantees the integrability of the above syst
~82!. On the other hand, the transformation parameters are given by

m252
b11b4

11b1b4
m1 , n25b4n1 , ~83!

n152
1

db3
, d5b1~11b4

2!12b4 . ~84!

The principle part of the Fokas–Liu system~82! is exactly the Ito system given in~31! and hence
the recursion operator is the sum of the one given in~32! and x j

i which are given byx1
15a4,

x2
15a3, x1

25a2, x2
25a1. That is,

R5S g1D212s1sxD
211a4 g2r 1a3

r 1r xD
211a2 a1

D . ~85!
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Another example was given very recently10 in a very different context forN52:

ut5
1
2vxxx12uvx1uxv, v t53vvx12aux . ~86!

The principle part of these equations is transformable to the Fuchssteiner system given i~42!.
Taking a152, a354, and scalingx and t properly we obtain~without losing any generality!

r t52r xxx16rr x , st52sxr 14srx . ~87!

The transformation between the principle part (a50) of ~86! and ~87! is simply given by

u5m1s1 1
2r , v52r . Then the recursion operator of the system~86! is given by

R5S 0 1
2 D212u1uxD

21

2a 2v1vxD
21 D . ~88!

V. CONCLUSION

We have given a classification of a system of KdV equations with respect to the existen
a recursion operator. This is indeed a partial classification. Although we have found all cond
for each subclass, we have not presented them explicitly. We obtained three distinct subcla
all values ofN and gave the corresponding recursion operators. We also gave an extension o
systems by adding a linear term containing the first derivative of dynamical variables. We
such systems the Fokas–Liu extensions. We proved that these extended systems of KdV eq
are also integrable if and only if their principle parts are integrable. ForN52, we have given all
subclassess explicitly. Among these the recursion operator of the KdV coupled to the time
lution part of its Lax pair seems to be new. Here we would like to add that whenN52 recursion
operators, including the Fokas–Liu extensions, are hereditary.11

Our classification crucially depends on the form of the recursion operator. The recu
operators used in this work were assumed to have degree two~highest degree of the operatorD in
R) and nonlocality order one~highest degree of the operatorD21 in R). The next work in this
program should be the study on the classification problems with respect to the recursion op
with higher degree and higher nonlocalities. For instance, whenN52, Hirota–Satsuma, Bouss
inesq, and Bogoyavlenskii coupled KdV equations admit recursion operators withm54 and
n51.12 Hence these equations do not belong to our classification given in this work.
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