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We give the conditions for a system Nfcoupled Korteweg de Vrie&KdV) type

of equations to be integrable. We find the recursion operators of each subclass
and give all examples foN=2. © 1998 American Institute of Physics.
[S0022-24888)03003-3

I. INTRODUCTION

In Ref. 1 we gave an extension of the recently proposed Svinolupov Jordah3égistems to
a class of integrable multicomponent KdV systems and gave their recursion operators. This class
is known as the degenerate subclass of the KdV system. In this work we will extend it to a more
general KdV type of system equations containing both the degenerate and nondegenerate cases.
This is a major step towards the complete classification of KdV systems. In addition we give a
new extension of such a system of equations.

Let us consider a system df nonlinear equations of the form

0y =00t SO0 (1)

wherei,j,k=1,2,...N, g are functions depending on the variablesandt, andb} . andS}k are
constants. The purpose of this work is to find the conditions on these constants so that the
equations in(1) are integrable. In general the existence of infinitely many conserved quantities is
admitted as the definition of integrability. This implies the existence of infinitely many generalized
symmetries. In this work we assume the following definition for integrability:

Definition: A system of equations is said to be integrable if it admits a recursion operator.

The recursion operatdif it exists) of the system of equations given {@), in general, may
take a very complicated form. Let the highest powers of the operBt@sdD ~! be respectively
defined bym=degree ofR and n=order nonlocality ofR. In this work we are interested in a
subclass of equations admitting a recursion operator mith2 andn=21. Namely, it is of the
form

R} =bD?+aj,q"+c},qxD )

X
whereD is the totalx derivative,D ! is the inverse operator, amjik andcijk are constants with
Sj=al;+ Cly - 3)

Before starting to the classification @f) we recall a few fundamental properties of the recursion
operator. An operath} is a recursion operator if it satisfies the following equation

R =F/RI—RF/*, (4)
WhereFlQi is the Frehet derivative of the systeil), which is given by
U{:Fj,i()'j, (5)
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whered'’s are called the symmetries of the systéth The condition(3) implies that Eq(1) itself
is assumed to be in the family of the hierarchy of equati@nsflows)
o, =on,
where for alln=0,1,...,0%, denotes the symmetries of the integrable KdV syst®mFor instance,
for n=0,1 we have respectively the classical symmetoigs g, ando’=q; .
Equation(5) is called the symmetry equation @f) with

o e
F{'=biD3+ s, 05+ 5,;9D. (6)

Recursion operators are defined as operators mapping symmetries to symmetries, i.e.,
R}a’jZ)\Ui, (7)

where\ is an arbitrary constant. Equatio) and (7) imply (4). It is the equation4) which
determines the constamﬁ andc]k in terms ofb' ands 's. The same equatiof#) brings severe
constraints orb' andsjy .

We shall obtaln a classification ¢1) based on the matrik! ,

(i) det (b)=0,
(i) det (bi)#o,
and also we divide the classification procedure, for each class, into two parts sjjresg; and
s}k;&s{(j. For the system of equations admitting a recursion operator we have the following
proposition.

Proposition 1: Let g'(t,x) be functions oft andx satisfying theN KdV equations(1) and
admitting a recursion operatﬁ} in (2). Then the constantb;, sj,, aj, and ¢j, satisfy [in
addition to the(3)] the following relations:

bi'cj,—bick =0, (8

biaj,— bi(aj, +3cj; — i) =0, 9

bi(3al| + 3c — 2sl —sf) =0, (10
CiiSin—ShCim=0, (11)

ClicSim T CjicSii — CimSia — Cfi Skm="0, (12
a}kslm Skmajl slka]m_SIkCJm+SICkm+akISJm 0, (13
Chn(Shj—Ss) =0. (14)

Now we will discuss the problem of classifying the integrable system of equatlorisr the two
exclusive cases depending upon the manr}ix

II. CLASSIFICATION FOR THE CLASS det (b':)=0

In this subclass we assume the rank of the mznhasN 1. Investigation of the subclasses
for other ranks of matridb can be done similarly. For this case we may th;(e S — k'k where
ki is a unit vectork'k;=1. In this work we use the Einstein convention, i.e., repeated indices are
summed up from 1 t&N . We find the following solution 0f8)—(14) for the parameteraJk and
cjy for all N
Proposition 2: Let k' be a constant unit vector artd 5' k'k Then the complete solu-
tions of the equationé8)—(14) are given by
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al; = 28! + 4k (kja — 2knj) + (—aki+ b kikj],

(15
cii=43s|— 5[K'(kia;+kjn) + (—ak +b)kik;]+k'kn; ,
where

n=Kkisj,—ak;, a=Kks—nk, b'=k'k"s\—nkK, (16)

a=k"a,, n=kn; and s}k’s are subject to satisfy the following:
c}ksrm=c}<msik, (17
S}k_SLj:ki[kj(ak_ nK) —ke(@;—n;) ], (18
knsij=nikj+ka;, (19
ks, =k'n;+b'k; , (20)
ks = (n—a)k'k;+K'a;+b'k;, (22)
nL(ai—n)k;—(a;—n;k;]=0, (22
a;=pn;+ak;, (23

wherep is a constant. At this point we will discuss the classification procedure with respect to the
symbols}k whether it is symmetric or nonsymmetric with respect to its lower indices.

A. The symmetric case, Sj,=S};

Among the constraints listed in Proposition 2 the one giveri2®) implies thats‘jk’s are
symmetric if and only ifa; — n;= ak; wherea=a—n. There are two distinct cases depending on
whethern=0 or n#0. We shall give these two subcases as corollaries of the previous proposi-
tion.

Corollary 1: Let s}k=sLj andn=0. Then we have the following solution for al:

a;= §sj+ 5[k (Kja— 2kyn;) + kik;b'],

(24)
Ci= 55j— 5[k (kjag— 2ken;) + kyk;b'], (24)
wherea=0, p=1, and
a=n;,n=kkls|; ,b'=kik's]; . (25)
The vectork' and s}k are not arbitrary; they satisfy the following constraints:
SjeSlm = SheSjm =~ 2(kjn =~ kin) (=K' b'kp),
Knsl; =nikj+kinj,  k"sj,=k'n;+b'k; . (26)

As an illustration we give an example for this cds® particular solution of the equatiori26) for
N=2is

bj= 8= y'y;=xx;, 7
i 3 i X1
Sjk= 5 AX XXkt aXyyt 5y (Y Xkt YiXj),

wherei,j=1,2 and
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=8 =&, (28)
and
ki:yi , = %alxi , bi=a2Xi. (29)

Constantsa}k andc}k appearing in the recursion operator are given by

. . . aq .
aj= a1 X XX+ apX'yjy+ 7Y'ijk,
(30

i aq . aq .
Ci =7 XXX+ = Y'Xi Vi
kKT AATKT 5 Y Yk

Taking @;=2 anda,=1 (without loss of generalitywe obtain the following coupled system
U= Uyt 3UUyt ooy, vi=(Uv)y. (3D

The above system was first introduced by*lsmd the multi-Hamiltonian structure studied by
Antonowicz and Fordand by Olver and Rosen&The recursion operator of this system is given
by

D2+2u+uD ! v

R= .
v+uv, D71 0

(32

In Ref. 1 we have another example fid=3.
For the casen#0 for all N we have the following.
Corollary 2: Let s}kzs'kj, n+0, andp=0. Then the solution given in Proposition 2 reduces

to
aj;=3sj+3(a—2n)k'kk;, 33
C}I:%S:j_ 3(a—2n)k'kjk;,
where
nj=nk;, a=ak;, b'=akK, (34)
and the constraint equations
SkiSmi—SmiSki=0,  knsfi=(a+nkk;, ks, =(a+n)k'k;. (35)

For this case we point out that solution @3) and(35) gives decoupled systems.

; i i
B. The nonsymmetric case, Sj#Sj;

In this case the constraints in Proposition 1, in particyl#), implies that we must have
n=0. In this case we have the following expressionsafprand c]j for all N:

aj; = §sj + 5K (kjay — 2kinj) + (—ak' +bhkik;], (39

i
Cj|

=135, — 3[K'(kia;+k;n) +(—ak +b")kk]+k'kn;,
where
nj:kkkiS}k_akj ,
(37)

a=kkis};, b'=KK's),,
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and the constraint equations among the parameters are

C}kclkm_ C:kcjkm: 0, (38)

(a}k_ C}k)srer (i aLm)Sh' +(Spk— SLm)aﬁ + (S}(m_ Skmj)ai(l =0. (39

For N=2 we will give an example. Constarﬁa%< andcijk appearing in the recursion operator are

given by
P _ _
aj = a1 X' XXyt aX'YjYit asy' XYy, (40)
e S RO
Cjk_ 2 X Xij ay ijk,
wherea,, as, andaz are arbitrary constants and
ki:yi , Nj=agX, bi:azxi, Q= a1X;. (41)
We obtain the following coupled system:
U= Uyyxt 3aquuy, (42)
U= azUyv +aUvy,
which is equivalent to the symmetrically coupled KdV sysfem
U= Uyt Uyxxt BUU+4Uvy+ 20,0, 43
Ut = Uyyxt Uyxxt Bvvy+4v Uyt 204U,
and the recursion operator for this integrable system of equat#f)ss
D2+ ay(2u+u,D"Y) 0
R= ) (44)

azv+ap,D? 0

[ll. CLASSIFICATION FOR THE CASE det (b;)aﬁO

As in the degenerate case db\%)(= 0, we have two subcases, symmetric and nonsymmetric.
Before these we have the following proposition.
Proposition 3: Let det (b}) #0. Then the solution of equations given Proposition 1 is given as

follows:
a}|=%(5i,-+25=}|)—%c|kbL1K}E, (45
clj=s(7s;;—4sj) + 5Clby KRR,
where
and the constraint equations
bi'cj,—bick =0, (47)
5C"K;;— CK['—CiK['=0, (48)
K Kl +ckKl =0 49
CimKik T C; Kni=0, (49

Downloaded 08 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



2108 J. Math. Phys., Vol. 39, No. 4, April 1998 M. Gurses and A. Karasu

CiiSiin— ClnSik=0, (50
Kijckn=0. 51
(a}k_ C}k)srm"_ (Cikm_ a:(m)slkj + Klmkah + K}(ma:d =0. 52

whereC! is the inverse ob! .

A. The nonsymmetric case, S}, # Sj;

Equations(47)—(52) define an over-determined system for the co_mponen!%;KofAny solu-
tion of this system leads to the determination of the parametgmndc;, by (45).
As an example we give the following, f&f=2, coupled system

U= AU yxxt 2bv vy,
Ur=4aUyy,+ 2bu,w +buy, (53

wherea andb are arbitrary constants. This system, under a change of variables, is equivalent to
the KdV equation with the time evolution part of its Lax equatiofhe recursion operator of the
system(53) is

4 b
§(3aD2+bv) §(3u+2uXD*1)
R= L . (54
0 §(3aD2+4bv+2bvxD*1)

Hence the KdV equation coupled to time evolution part of its Lax-pair is integrable and its
recursion operator is given above. This is the only new exampl&l foR system.

B. The symmetric case, s}, =Ss};

When the symbod;}k is symmetric with respect to subindices, the parame(@iag:vanish. Then
the equationg45)—(52) reduce to

a}k:%Sijk’ C}k=%5}k, (55

where the parametety, ands;, satisfy
bi'sj — bisli =0, (56)
SikSim~ SikSim =0 (57)

We shall not study this class in detail, because in Ref. 1 some examples of this class are given for
N=2. Here we give another example which correspond to the perturbation expansion of the KdV
equation. Letg'=8'u, wherei=0,1,2,..IN, andu satisfies the KdV equation,= U+ 6uy.

The g"'s satisfy a system of KdV equations which belong to this subclass:

q?: qux"’ GQOQS ) (59
07 = Gt 6(0%0), (59)
92= 02+ 6[(ah)2+q°%],, (60)
(61)

N
A= ot 32, [8'()%]y (62
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IV. FOKAS—LIU EXTENSION

The classification of the KdV system given in this work with respect to the symmetries can be
easily extended to the following simple modification(&j:

0r=Dbj Aot Sical o+ xjal, (63)

wherey;'s are arbitrary constants. Equatit#8) without the last term will be called the principle

part of that equation. Hence the equatidh we have studied so far is the principle part of its
modification (63). We assume the existence of a recursion operator corresponding to the above
system in the form

R|=b|D?+a},q"+c},gkD "1+ w!, (64

Wherew}’s are constants. We have the following proposition corresponding to the integrability of
the above system.

Proposition 4: The operator given if64) is the recursion operator of the KdV systé@83) if
in addition to the equations listed in Propositior (8)—(14)] the following constraints on the
constantg(J andw are satisfied:

Xra}k_Xika}ﬁ_XLCﬁ +X}<Cik|_W]kS:(|+W:(S;<| =0, (65
X xicli =0, (66)

XKW = x{Wi=0, (67)

(XF= Wbl — (xi—Wi) bf=0, (68)
X\al— xia) + Wisf; —wi'sj, = 0. (69)

Since the constraint8)—(14) are enough to determine the coeff|C|ea§§ and c]k with some
constraints on the given constar’ﬂlrr. and s]k, we have the following corollary of the above
proposition.

Corollary 3: The KdV system in(63) is integrable if and only if its principle part is integrable.

The principle part 0f63) is obtained by ignoring the last tertthe term Wlth)(J) Hence the
proof of this corollary follows directly by observing that the constraints on the congz“iilamdwj
listed in (65)—(69) are independent of the constraints on the constants of the principle part listed
in (8)—(14). Before the application of this corollary let us go back to the Proposition 4 and ask the
guestion whether the KdV syste(@3) admits a recursion operator Wim} =

Corollary 4: The KdV system(63) admits a recursion operator of the principle part. Then the
last termX}qL is a symmetry of the principle part. W} =0, the above equatiori§5)—(69) reduce

to
xial— xialk — xicl + xiciy=0, (70
Xi'Sjk— Xisji =0, (72)
Xibl— Xib[=0, (72
X'Ci— xicfi =0 (73

In order that the term(}qﬁ( be a symmetry of the principle part, the consta,\a}tsare subject to
satisfy the following equations:

NERVE R 74

Xb— xibl=0, (79
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X:(KIK+XJK||( 0. (76)

These equations simply follow from the set of equati¢n)—(73), and hence the quantities
aizxgq; are symmetries of the principle part.

By the application of Corollary 3, the full classification of the syst@&8) with the recursion
operator(64) such thatg, (i.e., the system of equations themse)vieslong to the symmetries of
this system is possible. To each subclass given in the previous sections there exists a Fokas—Liu
extension such tham}:)(} with the following constraints:

XLCﬁ_X:(C}k:Q (77
xial— xfa, — xi(af —af) =0. (78)

The above constraints are identically satisfied for the dldss$ (b )#0, symmetrical cade
whenX —aé' +,8b' Hence the Fokas—Liu extension of the nondegenerate symmetrical case is
stra|ghtforward W|th this choice qu Herea and B are arbitrary constants.

For the degenerate case the set of equatf@dsand (78) must solved for a given principle
part, b' anda! i - Recently a system of integrable KdV system with-2 has been introduced by
Fokas and le’ This system is a nice example for the application of Corollary 3. We shall give
this system in its original form first and then simplify:

Ut vyt (3B11+284) BaUlUgt (2+ B184) B3(Uv )+ B1B830vy

+(Bl+ﬁ4)BZUXXX+(1+Blﬁ4)BZUXXX:01 (79)
Uit U+ (2+38184) Bavvy+ (B1+284) B3(Uv)x+ B183B4UUx
+(B1+ B4) B2BaUyxxt (14 B1B4) B2B4avxxx=0, (80)

whereB,, B2, B3, andB, are arbitrary constants. The recursion operator of this system is given
in Ref. 8. Consider now a linear transformation

u=mqr+n;S, v=myr+n,s, (81

wherem,,m,,n;, andn, are constants, angl andr are new dynamical variables = (s,r).
Choosing these constants properly, the Fokas—Liu system reduces to a simpler form

ry=(rs)y+ airy+ asS,,
1=(rs)x 1l x 25x 82)
St= Y1SuxxT Yol I x T 3SS+ asl y+ ausy,

where we are not giving the coefficients ,a,,a3, and a, in terms of the parameters of the
original equation given above, because these expressions are quite lengthy. The only condition on
the parametersg; is given by az= y,a,. This guarantees the integrability of the above system
(82). On the other hand, the transformation parameters are given by

+
mZZ_%mlv Ny=B4N1, (83
n:—i 5=B1(1+ B2 +2p (84)
1 5,83’ 1 4 4-

The principle part of the Fokas—Liu systeBp) is exactly the Ito system given i31) and hence
the recurS|on operator is the sum of the one giver3i) and X, which are given by)(l ay,
X3= a3, Xi= a5, x5=ay. That s,

y1D2+2s+sD 1+ a, yr+as

R= . 85
I’+rXD_1+a2 ay (85
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Another example was given very recenflyn a very different context foN=2:
Up= 30 uxt 2UDy+Uy0,  v=3vv,+2auy. (86)

The principle part of these equations is transformable to the Fuchssteiner system g4 in
Taking @1 =2, az=4, and scaling andt properly we obtainwithout losing any generalijy

[ =20yt 61y,  S=2S,r+4sr,. (87

The transformation between the principle paa=0) of (86) and (87) is simply given by
u=m,;s+ 3r, v=2r. Then the recursion operator of the syst#) is given by

0 iID%+2u+uD?
R= . (89
2a 2v+v,D71

V. CONCLUSION

We have given a classification of a system of KdV equations with respect to the existence of
a recursion operator. This is indeed a partial classification. Although we have found all conditions
for each subclass, we have not presented them explicitly. We obtained three distinct subclasses for
all values ofN and gave the corresponding recursion operators. We also gave an extension of such
systems by adding a linear term containing the first derivative of dynamical variables. We called
such systems the Fokas—Liu extensions. We proved that these extended systems of KdV equations
are also integrable if and only if their principle parts are integrable.Ncei2, we have given all
subclassess explicitly. Among these the recursion operator of the KdV coupled to the time evo-
lution part of its Lax pair seems to be new. Here we would like to add that Whe8 recursion
operators, including the Fokas—Liu extensions, are hereditary.

Our classification crucially depends on the form of the recursion operator. The recursion
operators used in this work were assumed to have degreéhtgleest degree of the operatdrin
R) and nonlocality order onéhighest degree of the operatbr ! in R). The next work in this
program should be the study on the classification problems with respect to the recursion operators
with higher degree and higher nonlocalities. For instance, viher2, Hirota—Satsuma, Bouss-
inesq, and Bogoyavlenskii coupled KdV equations admit recursion operatorsnwith and
n=1.1? Hence these equations do not belong to our classification given in this work.
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