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Second-order second-degree Painleve ~ equations related
with Painleve |1-VI equations and Fuchsian-type
transformations

U. Mugan® and A. Sakka
Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey

(Received 3 February 1998; accepted for publication 2 April 1999

One-to-one correspondence between the Painlewd equations and certain
second-order second-degree equations of Palirtigye is investigated. The trans-
formation between the Painleveguations and second-order second-degree equa-
tions is the one involving the Fuchsian-type equation. 1€99 American Institute

of Physics[S0022-24889)01507-9

I. INTRODUCTION

Painleve! Gambier? and Fuch$ addressed a question raised by E. Picard concerning the
second-order first-degree ordinary differential equations of the form

v"=F(z,u,v'), (1.2

whereF is rational inv’, algebraic inv, and locally analytic ire, and have the property that all
movable singularities of all solutions are poles. Movable means that the position of the singulari-
ties varies as a function of initial values. A differential equation is said to have the Painleve
property if all solutions are single valued around all movable singularities. Within theiudo
transformation, Painlévand his school found 50 such equations. Among all these equations, 6 of
them are irreducible and define classical Painkearscendents, P, PlI,...,P¥Bnd the remaining
44 equations are either solvable in terms of known functions or can be transformed into one of the
6 equations. These equations maybe regarded as the nonlinear counterparts of some classical
special equations. For example, PIl has solution which has similar properties as Airy’s furictions.
Although the Painlevequations were discovered from strictly mathematical considerations, they
have appeared in many physical problems, and possess a rich internal structure. The properties and
the solvability of the Painlevequations have been extensively studied in the liter&ftire.

The Riccati equation is the only example for the first-order first-degree equation which has the
Painleveproperty. Before the work of Painléwad his school, Fucfié considered the equation of
the form

F(z,u,v")=0, (1.2

whereF is polynomial inv andv’ and locally analytic irg, such that the movable branch points
are absent, that is, the generalization of the Riccati equation. Briot and B8wgueidered the
subcase ofl.2), that is, the first-order binomial equations of degmee 7, :

(v")™+F(z,v)=0, (1.3
whereF(z,v) is a polynomial of degree at mostrRin v. It was found out that there are six types

of equations of the forn(l1.3). But, all these equations are either reducible to a linear equation or
solvable by means of elliptic functiofisSecond-order binomial-type equations of degree 3,
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("™ +F(z,v,0")=0, (1.9

whereF is polynomial inv andv’ and locally analytic irg, were considered by Cosgrolewho

found out that there are nine classes. Only two of these classes can have an arbitrargndagdee

the others can have the degrees of three, four, and six. As in the case of first-order binomial-type
equations, all nine classes are solvable in terms of the first, second, and fourth Paanrezen-

dents, elliptic functions, or by quadratures. ChaZ@arniert* and Bureat? considered the third-

order differential equations possessing the Painf@meperty of the following form:

v"=F(z,v,v',v"), (1.5

whereF is assumed to be rational inv’,v” and locally analytic ire. But, in Ref. 15 the special
form of F(z,v,v’,v"),

F(z,u,0',0")=Ff1(z,0)v"+fx(z,0)(v")?+F3(z,0)v" + f4(z,0), (1.6

wheref,(z,v), k=1,...,4, are polynomials i of degreek with analytic coefficients irz, was

considered. In this class, no new Painl¢ranscendent was discovered since, and all of them can

be solved either in terms of known functions or one of the six Painlerescendents.
Second-order second-degree Painlgyee equations of the following form,

(v")?*=E(z,v,0" )v"+F(z,v,v"), (1.7

whereE and F are assumed to be rational inv’ and locally analytic inz, were subject the
articles’®!” A special case of1.7), given as

v"=M(z,v,v")++N(z,v,v"), (1.8

was considered in Ref. 16, whekéandN are polynomials inv’ of degree 2 and 4, respectively,
rational inv, and locally analytic irg, and no new Painléviganscendent was found. In Ref. 17,
the special form of1.7), E=0 and thug- polynomial inv andv’, was considered and six distinct
classes of equations denoted by SD-1,...,SD-VI, were obtained by usiagrttethod. Also, these
classes can be solved in terms of classical PairtirescendentéPl,...,PV), elliptic functions, or
solutions of linear equations.

Letv(z) be a solution of any of the 50 Painleequations, as listed by Inéegach of which
takes the form

v"=Py(v")2+ P’ +Py, (1.9

where Py,P4,P, are functions ofv, z, and a set of parametets The transformation, that is,
Lie-point symmetry, which preserves the Painlepeoperty of (1.9), of the form u(z;&)
=f(w(z:@),z) is the Mdius transformation:

) (1.10

wherev(z;a) solves(1.9) with a set of parametera and u(z;&) solves(1.9 with a set of
parametersy. Lie-point symmetry can be generalized by involving z; @), that is, the transfor-
mation of the formu(z;&)=F(v’'(z;@),v(z;@),z). The only transformation which contains
linearly is the one involving the Riccati equation, that is,

v +avi+bv+c
dvi+ev+f

1.1y

u(z,a)=

wherea,b,c,d,e,fare functions oz only.
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In Ref. 6, the transformation of typ@.11) was used and the aim was to fiach,c,d,e,such
that (1.11) defines a one-to-one invertible map between solutwref (1.9) and solutionsu of
some second-order equations of the Painlgy®e. An algorithmic method was developed to
investigate the transformation properties of the Painksyeations, and some new second-degree
equations of Painleveype related with PlIl and PVI were also found. Therefore, second-degree
equations are important in determining the transformation properties of the Pagnjeations®:®
Moreover, second-degree equations of Paintgpe appear in physidS-2! Furthermore, second-
degree equations also appear as the first-integral of some of the third-order Raipke\egjua-
tions.

Instead of considering the transformation of the fdhill) one may consider the following
transformation:

(V)™ +Z,Pj(zv) (0™
3MQi(zw)(w)™

u(z;a)= (1.12
whereP; ,Q; are polynomials i, whose coefficients are meromorphic functiong ahd satisfy

the Fuchs theoreff? concerning the absence of the movable critical points. A second-order
second-degree algebraic differential equation of the form

a;(v")2+a"v’ +ag " v+ayv')?+asv'v+agp?=0, (1.13

wherea;, j=1,2,...,6, are meromorphic functionsnfwas considered by P. Appéilin Ref. 22,

it was shown that Appell’s condition for solvability ¢1.13 is a necessary and sufficient condi-

tion for (1.13 to have its solutions free of movable branch points. Also, in Ref. 22, some analo-
gous conditions were applied to irreducible first-order algebraic equations of the second degree,
and necessary and sufficient conditions for the solutions of such equations to be free of movable
branch points were obtained. A first-order algebraic differential equation of dagréeis given

as

ay(z,v) (v )"+ayzv)(v) " V4 +a,_1(z,v)v' +ap(z,v)=0, (1.19

where the functions;(z,v), i=1,...n, are assumed to be polynomialsiinwhose coefficients are
analytic functions ofz. The necessary and sufficient conditions for the solution€ldf4 to be

free from movable branch points are given by the Fuchs thefRah 4 (Chap. Xlll) and Ref. 22
(theorem 1.1]. The Fuchs theorem shows that, apart from the other conditions, the irreducible
form of the first-order algebraic differential equation of the second degree is

a1(2)(v")?+[ax(2)v?+az(2)v +au(2) v’ +[as(2)v*+ag(2)v3+as(z)v?+ag(z)v +ag(2)]=0,

(1.15
wherea;(2), i=1,2,...,9, are analytic functions afanda,(z) #0. Let
F(v):=Ag*+An3+A0°+Au+A,, (1.1
where
Ao=4a,as—a3, A;=4a,a5—2aa;,
A,=4a,a;—2aa,—a3, Az=4aja5—2asa,, (1.17

A4:4a1a9_a‘21,
It is known that wherF(v)+# 0, there are unique monic polynomidig(v),F,(v) such that

F(v)=A(2)F1(v)[Fa(v)]?, (1.18
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where A(z) is an analytic function andr,(z) has no multiple roots. In Ref. 22 it was shown
(theorem 6.2 that the solutions of the equatid.15 are free of movable branch points if and
only if the following conditions hold:

IF, IF,

(i) Fy(v) divides Gl(v)::(a2v2+a3v+a4)E—Zalﬁ,

(ii) Ap=0 andA;#0 imply a,=0, (1.19
(iii) Ag=A;=A,=0 andA;#0 imply a,=0.

The conditions of the Fuchs theorem are satisfied if and only if the conditioh9 are satisfied.

In this article, we investigate one-to-one correspondence between PI-PVI and some second-
order second-degree Painletyge equations such that the transformation involving @dL5 is
used and given by

(v")%+ (aw?+aw+ag)v’ +bu*+byv3+bw?+bw+bg
- (C202+C10+00)U,+d4v4+d303+d202+dll)+d0 '

(1.20

wherea; ,by,c;,dy, j=0,1,2,k=0,1,2,3,4, are functions afand a set of parametess By using

the transformations of the fori1.20, second-order second-degree Painliee equations which

are labeled as SD-l.a, SD-I.b, SD-Il.c, SD-1.d, and SD-l.e in Ref. 17, can be obtained from PVI,
Plll and PV, PIV, PII, PI, respectively. In the following sections, we first present the procedure to
obtain these known equations, and for each Paindenmtion we provide an example of a second-
order second-degree Painletyge equation that has not been considered in the literature.

The procedure used to obtain second-degree Paityg@eeequations and one-to-one corre-
spondence with PI-PVI is as follows: Given Ed..9), determinea; ,b,c;,dy, j=0,1,2,3,k
=0,1,2,3,4, by requiring thatL..20 defines a one-to-one map between the solutiai (1.9) and
solution u of some second-degree equation of the Painlgye. LetAj:=cju—a;, By:=du
—by. Then the transformatio(iL.20 can be written as

(v")?= (A2 +Aw+Agv’ +Buw*+ B3+ Bw?+Bv+B,. (1.22)
It should be noted that if Eq1.21) is reducible, that is, if there exits a nontrivial factorization,
then it can be reduced to a Riccati equation. If it is not reducible, then its solutions are free of

movable branch points provided that the conditions giveflii9 are satisfied. Differentiating
Eq. (1.21) and using(1.9) to replacev” and(1.21) to replace ¢')?, one gets

dy'+V¥=0, (1.22
where

D =(P;—2A0 — A1) (Av2+Aw+Ag) + Po(Aw?+ A+ Ag)?+ 2Py — 4B w3 — (3B3+ A))v?
— (2B, +A;)v—(B1+AL) +2P,(Bw*+Bgvi+Bw?+Bw+By),

W = (B4v*+ Bav®+ Byw2+ Byv + Bo)[ Pa(Asv 2+ A + Ag) + 2P; — 2A,0 — A, ] 23
—Po(Aw?+Aw+Ag) — (Bju*+Biud+Buw?+Biv+BY).
There are two cases to be distinguished:
(1) ®=0: Equation(1.22 becomes
v=0. (1.24
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If the solutions of the equatiofl.2]) are free of movable branch points, that is, the conditions
given in(1.19 are satisfied, then one obtains the Painigy® equation of degree>1 related
with PI-PVI equations. To obtain the second-degree Pairgye equations, one should reduce
the equation{1.24) to a linear equation im. If (1.24 is reduced to an equation which is quadratic
in v, then one obtains the second-order fourth-degree Paity@ecequations related with Pl—
PVI, which are not considered in this article. Hence, one candind,c;,d, such that(1.24
reduces to a linear equation in

A(u’,u,z)v+B(u’,u,z)=0, (1.2

then, substitute = — B/A into Eq.(1.21) to determine the second-order second-degree equation of
the Painleveype for u.

(I ®+#0: If ® dividesV, then(1.21) can be reduced to a Riccati equation and hence its
solutions are free of movable branch points. Then, one can substitate- V/® in Eq. (1.21)
and obtain the following equation far:

W2+ (A2 + A+ Ay PV — D%(B,u*+Bav3+B,v?+ B+ Bg) =0. (1.26)
Findinga;, by, c;, anddy such that(1.26 reduces to a quadratic equationzin
A(u’,u,z)v?+B(u’,u,z)v+C(u’,u,z)=0. (1.27

Solving the equation(1.27) for v and substituting into equatioflL.22 yields a second-order
second-degree Painlevgpe equation fou.

It turns out that Pl admits transformations discussed in cases | and Il, and PlI-PVI admit only
transformations of case Il.

Second-order second-degree Painigyee equations were studied mainly by Bureau and
Cosgrovet®!’ But, as mentioned before, in both articles the special form of the second-degree
Painlevetype equations was considered, and no new Pairntenscendent was found. In Refs. 24
and 25 the transformatiofi.11) was used to obtain one-to-one correspondence between PI-PVI
and certain second-degree Painkbye equations. Some of these second-degree equations had
been obtained previously, but most of them had not been considered in the literature before. In this
article, we investigate the transformation of ty{de20 to obtain the one-to-one correspondence
between PI-VI and the second-order second-degree Paitylpgeequations. By using the trans-
formation of type(1.11) and the procedure described above, it is possible to obtain all of the
second-degree equations given in Ref. 17 except the ones which can be solvable in terms of
elliptic functions or solutions of linear equations. In addition to known equations which are related
with Painleveequations through the transformatioh.20), it is possible to obtain some new
second-degree equations of the Painleyee. Since the calculations are extremely tedious, one
new second-degree Painletyge equation for each Painleeguation, PI-PVI, is given. Through-
out this article’ denotes the derivative with respectzand - denotes the derivative with respect
to x.

Il. PAINLEVE |

Let v(z) be a solution of PI equation,
v"=6v2+7z. (2.1
Then, for Pl the equatiofiL.22) takes the form of
(p3v3+ v 2+ Prv + bo)v’ + hsv°+ Phav* + thav >+ v ®+ hyv + Yho=0, 2.2

where
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¢3:2(A%+ZB4), ¢2:A£+3Bs+3A1A2_12,
G1=A;+ 2B+ AT+ 2A0A,, Po=AL+ B+ AA; —22,
¢5:2A284, 1104: BA,1+AlB4+ 2AzB3+ 6A2, (23)
¢3: Bé+ A]_B3+ 2A282+ 6A1, lﬁ'z: Bé+Ale+ 2AZBl+ 6A0+ ZAQ,
l//lz B:I|_+AlBl+ 2A280+ ZA]_, l//oz B(I)+AlBo+ ZIAQO.

Case I:®=0: One should choose;=0, j=0,1,2,d,=0, k=1,2,3,4,b,= 3a3, by=—3a}
+a,a,—4,b,=—1a)+ 3a3+aga,, by=—aj+aga, — 2z. One can always absoly andd, in u
by a proper Mbius transformation. Hence, without loss of generality, one cageD andd,
=2. The only possibility to reduce the equatidn=0 to a linear equation i is to setys
== 3= h,=0. Therefore, one obtaina,=a;=ay=b,=b,=0, by=—4, and b;=—-2z.
Then the equatio1.20 becomes

2u=(v")2—4v3-2zv, (2.9
and the linear equation far reads

v+u’'=0. (2.5

Equation(2.4) with the condition(2.5) satisfies corollary 6.3 in Ref. 22, and hence its solutions are
free of movable branch points. By following the procedure discussed in the Introduction, one can
get the following second-order second-degree equation(foy:

(u")?=—4(u")3-2(zu —u). (2.6)

Equation(2.6) was first obtained by CosgroVeand labeled as SD-l.e.
Case Il: ®#0: As an example, lety;=0, i=1,2,3, po#0, and =0, 1 =2,3,4,5. These
choices imply tha#\;=0, j=0,1,2,B,=B,=0, andB;=4. Then, Eq(1.26 becomes

(Bjv+Bg)2—(B1—22)%(4v3+Bv+By)=0. (2.7)

To reduce the equatiofR.7) to a quadratic equation far, one has to takel;#0 and, hence,
without loss of generalityh, =0 andd,;=1. Moreover,d, andb, are the solutions of the follow-
ing equations:

do(bp—22d))=0, (dp)>+4d3+by=0, (by)’—4z%(dp)?=0. (2.9

Here, we only consider the cas§=0; thendy=pu and bo=—4u3, whereu is a constant.
Therefore, the equation&.21) and(1.22 become

(v")2=4v3+uv+ p(u+4u? (2.9

and

!

v’=(u_22)(v+,u), (2.10

respectively, and the quadratic equation fotakes the form of

4(u—22)%v%—[(u")?+4p(u—22)%Jv— w(u")?+ (u+4u?)(u—22)2=0. (2.1
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Letu(z)=—2(e*/(y—1)+6u?) andz=e*—6u2. Then the equation.9) and(2.11) give one-
to-one correspondence between solutio(®) of Pl and solutiong/(x) of the following second-
order second-degree Painletype equation

{4y(y=1)(y—9) = (y—y+ D(Ty—4)y+5y(y—1)]+ 12ue®y3(y—1)%)?
=(y+24[(y—y+1)?+12ue®y*(y—1)?]?+326%y*(y— 1)%}. (2.12
IIl. PAINLEVE 1|
Let v(z) be a solution of PIl equation
v"=2v3+zv+a. (3.1
Then, for PII, the equatiofil.22 takes the following form:
(h303+ v+ 1o+ o)’ + thsv°+ Phav* + Yhav>+ Y ®+ hyv + =0, (3.2
where
$3=4(By+3A5-1), ¢,=A)+3B3+3ALA,,
G1=A]+2B,+2AcA,+A2—27, ¢o=Aj+B+AA;— 20,
Us=2A,(Bs+1), =B, +AB,+2A,B5+2A,, (3.3
Y3=B3+A B3+ 2A,B,+2A0+2A;,  ¢,=B,+A By, +2A,B +ZA+ aA,,
Y1=B1+AB1+2A,Bot+zA @A, =Byt ABytahg.
Here, we only consider the cagg=0,i=1,2,3,$,#0, and¢; =0, | =3,4,5. y5=0 implies that
eitherA,=0 orB,=—1.
Case i:If A,=0, then one obtain&;=A,=0, B,=1, B3=0, B,=z and ¢y=B;—2«, i,
=1, y1=B], ¥o=B{. With these choices, the equati¢h26) yields
(v2+Bjv+B)?—(B;—2a)%(v*+zv?+ B+ Bg) =0. (3.9

To reduce the equatiof8.4) to a quadratic equation in, one possibility is to set the coefficients
of v* andv® to zero. Then, one obtainB;=2a+ ¢, wheree=*1, and by using the proper
Mobius transformation, one may talBy=_2u+ 3z>. Hence, the equationd.21) and(1.22 be-

come
Z2
(v")?=v*+zv’+(2a+e)v+2u+ 7 (3.5
and
z

v'i=¢€ v2+2u’+§ , (3.6

respectively. The quadratic equationuns
4u'v?—(2a+e)v+4(u’)?+2(zu’ —u)=0. (3.7

The equation$3.5) and (3.7) give one-to-one correspondence between solutida¥ of PIl and
solutionsu(z) of the equation
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(u")?2=—4(u")3-2u'(zu —u)+ &(2a+e€)?. (3.9

The equation(3.8) was first obtained by Cosgrot/eand labeled as SD-I.d.

Case ii: If B,=—1, then one obtain®\,=2¢, A;=0, Ag=€z, B3=0, B,=—2 and ¢,
=B,—2a+€#0, ,=4eB,+2ea—1, ;=B +4eBy+ez?, y=B)+eaz, where e==1.
Then the equatiofl.26) becomes

(202 + v + o) >+ 2€ (v 2+ 32) (0% + Y10 + thg) + (v + zv?—Byv — B) =0.
(3.9

To reduce the equatio8.9) to a quadratic equation in one may set the coefficients of andv?
to zero. Thus one obtainB;=0, and without loss of generality one may taRg=(u—z?).
Therefore, the equation&.21) and(1.22 give

(v")2=€(2v%+2)v" —v*— W%+ F(u—2?), (3.10

and
=~ |(2a-eutruvt Sut (2 3.1
v = Za=e (2a—e€)v°+uv 4u 2( a—¢€)zZ|, (3.11)

respectively, and the quadratic equatiorviis
(4uv +eu')’=4(2a—€)u. (3.12

The equation$3.10 and(3.12 give one-to-one correspondence between solutigak of PIl and
solutionsu(z) of the following second-order second-degree Paintgpe equation:

[4uu”—3(u’)?+8zP+4(2a— €)?u]?=64u°. (3.13

IV. PAINLEVE Il

Let v(z) be a solution of PIIl equation

UH:

S|P

72_5 ’ 3 E 2 é
(v") l + yv +Z(av +,8)+v. (4.2

Then, for PIII, the equatiofl.22 takes the following form:

(pav?+ 303+ v+ v + do)v ' + v ®+ thsv®+ thgv* + v+ v+ v + =0,

4.2
where
, 2a o1 o1
$a=2y=2B4=Ay  $3=— " BsmAAa—Apm JAr, o= | ALt DAL,
283 1 ,
¢1:7+81+A0A1_A6_EA0, ¢0:A0+280+26,
, 2 1o
l//GZ_Az(B4+’}/), lﬂ5:_ B4+EB4+A253+’)/A1+ EAZ y
, 2 o
l//4:A084_ B3_ E B3_A282_ '}/Ao_ EA]_, (43)
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B

2 a
3=AoB3—B;— EBZ_AZBl_ ;Az_ ;Aoa

, 2 B
Ur=RAoB,—B;— EBl_AZBO_ EAl_ 6A;,

, 2 B
¥1=RAoB1—Bo— EBO_ EAO_ A1,  Po=Ao(By—9).

As an example, lef=0, A;=2/z, B;=—28/z, andBy= — §. Then one get#y= ¢1= $,=0
and o= ¢y1=,=0. Moreover, if ¢p,= =0, then eitherA,=0, B,=vy or A,=2\y, B,
= —1v, wherey can be taken with either sign.

Case i:If A,=0, B,= v, then equation{1.26) takes the following form:

2 2
(502 + hgv + ih3)?+ E¢SU(¢502+ Yav + th3) — 5| yv*+Bav3+Byv?— TIBU -5|=0.
(4.4

To reduce the equatia@.4) to a quadratic equation in one may set the coefficients of andv?
to zero. Then, one obtairB;=(2/z)(«+2+/y), and without loss of generality, one may take
B,=u. With these choices the quadratic equationw itakes the following form,

8[yZ2U’ +2(a+ \y)(a+3Vy) w2+ 8[(a+2\y)(zU +u)+4yB]v
+7%(zU' +2u)?+ 16y62°=0, (4.5

and the transformationd.21) and(1.22 become
2 2 2
(U’)ZZEUU’+)/U4+ E(a+2\/;)vg+uvz—?ﬂv—5 (4.6)

and

v’=_—[47f202+4(a+ Vy)v+22u’ +2zu], 4.7

42\/;

respectively. Then, the transformatio@5) and (4.6) give one-to-one correspondence between
solutionsv (z) of Pl and solutionsy(x) of the following second-order second-degree Painleve
type equation

200102 — — A(N2( i _7_5 U— E X i 2_ 2
X2(§)2= = 4(Y) (XY =Y) = 15 (}Y=y) + Tg (@t 20y + Sl vB = 8(at217)?],
(4.9
wherey(x) = [ Z%u(z) + 1] andx=z%. The equatior(4.8) was first obtained by CosgroVeand

labeled as SD-I.ljwith A;=0).
Case ii: A,=2\/y, B,=—v: The equatior(1.26) takes the form of

2
(502 + hqv +h3)*+ E¢3U(\/;ZU+1)(1//502+ v+ ir3)

2
+ 3| yv*— By —Buw?+ TBU—H? =0. 4.9
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One may set the coefficients of andv® to zero in order to reduce the equatih9) to a
quadratic equation in. Then, one obtainB;= —2./y/z, and without loss of generality one can
takeB,=u. Then, the equatiofl.21) becomes

2 2y 2
(v’)2=zv(\/;Zv+1)v'—'yv4—Tyva+UU2—?’8v—5- (4.10

By using the linear transformatiop(x)=2z%u(z)+1, 2x=2%, and ,u=a—2\/—, the equation
(1.22 can be written as

Vy 1
7y+1 u+ﬂ(y—2ﬁfy), (4.1

1
v'= \/;Uz‘f‘ 7
and the quadratic equation foris

4y(yy— p2)o?+ a4z \yy(y—2B\y) +2Bp v+ 22[(Y—2B8y)?+46u?]=0. (4.12

The equationg4.10 and (4.12 give one-to-one correspondence between solutidz$ of PlIl
and solutiong/(x) of the following equation:

X2[2y%) —yy?— 4(6u®— yB2y — 8B 1P = (Y2 + 4Bux)’[y(¥)>— 4(yy— u®)(dy+ B2)].

(4.13
V. PAINLEVE IV
Let v(z) be a solution of PIV
1 3 B
m— "~ (.,1\25 — .3 2 2_ —
v 2v(v ) +2v +4zv°+2(z°—a)v + o (5.9

Then, for PIV the equatiofl.22 takes the following form,

(pav?+ 303+ v+ v+ do)v ' + g0 ®+ hrsv®+ v+ v+ v+ v + =0,

(5.2
where
$4=3(1-B,—3A)), $3=82-2B3—2A1A,~ A},
$2=4(Z*—a) =B~ IAT—AA— AL, d1=—Ay, do=3A3+Bo+28,
Yo=—3A2(Byt1), hs=—(Bi+3A1Bs+ 3ABs+ 4z A+ 3A,),
4= 3A0Bs— B3~ 3A1B3— $A;B,— 2(Z°— a) A~ 3A— 4ZA, (5.3

3= 3A0B3— By~ 3A1Bo— 3A,B1 — 2(Z°— @) A — 4z Ay,
2= 3AoBo—B1— 3A1B1 — 3A,Bo— BA— 2(Z°— ) Ay,
¥1=3A0B1—Bo—3A1Bo— BA1, o= 3A0(Bo—28).
As an example, lef;=0 andB,= —23. Then one getg,= ¢, = o= y/;=0. Moreover, setting
ba= P3=pg= y5=0, one has the following two distinct casg$r A,=0, A;=0, B,=1, By

=4z or (i) A;=2¢, Ay=4ez, By=—1, By=—4z, wheree=*1.
Case i:In this case Eq(1.26) takes the form of
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(P02 + v + )2 — 5 (v*+ 4zv3+ Bow2+ B —28) =0. (5.4)
To reduce the equatiof5.4) to a quadratic equation in, one may set the coefficients of and
v> to zero. Then, one obtairB,=4(z2— a+ €) and, hence, without loss of generality, one can
chooseB;=u. Then the equationgl.21) and(1.22 become
(v)2=v*+ 423+ 42— a+ v’ +uv -2 (5.5

and

—€
v'=— (40 +8z+u'), (5.6

respectively. The equatior{s.5 and
8[u’'+8(a—e€)Jv?+16(zu —u)v +(u’)%2+328=0 (5.7

give one-to-one correspondence between solutigay of PIV and solutionai(z) of the follow-
ing equation:

(u")2=4(zu —u)?>— Y (u")?+328](u’ +8a—8e). (5.9

The transformationu=8(y— uz), whereu=3(a— €), transforms the equatiofs.8) to the fol-
lowing equation,

(Y")2=—4(y")3+4(zy —y)?+2(6u%—B)Y —4u(2u?+p), (5.9

which was first obtained by CosgrdVeand labeled as SD-I.c.
Case ii: In this case Eq(1.26) can be written as follows:

[(fat €do)v?+ (s +2€2h0)v + Yp)*= $3[ (B, +42%)0*+Bw—2B].  (5.10
It is clear that if one setg,+ ep,=0, then the equatiofb.10 reduces to a quadratic equation in
v. Thus, one should takB,= —4z2 and, without loss of generalityg;=u. Then, the equations
(1.22) and(1.22 become, respectively,
(v')?=2ev(v+22)v' —v*—4zv3—47%0°+uv— 28 (5.11

and
€
v'=m[lZ,uvz—S(u—S,uZ)v—(eu’+22u—4B)], (5.12

whereu=1(a+€). The equation5.11) and
9u?v?+2u(3eu’ +6zu—128—72u’)v + (eu’ +2zu—48)%+2888u’=0  (5.13

give one-to-one correspondence between solutigay of PIV and solutionsi(z) of the follow-
ing second-order second-degree Painigye equation:

[Buu’—2(u’)?—2e(zu—2B+12u?)u’ —2(42°—3€)u?>—8(6u?— B)zu+ 16(6 12— B)?]?
=—27u?—16u(2u’+ B)]Y eu’ +2zu+ 28— 12u?]. (5.14
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VI. PAINLEVE V

Let v(z) be a solution of PV:

. 3v—-1

_ 12
. :Zv(v_l)(v,) ,B(U2 1) N v ov(v+1)

vt —. (6.2

2 Ev’-i— gv(v—l)z-k
z z2 Z%v z v—1

Then, for PV, Eq(1.22 takes the form of

(50> + pavt+ v+ Pov?+ drv + Po)v ' + v+ Prev®

+ 50>+ hav*+ Yav >+ Yov?+ v + =0, (6.2
where
2a 1, 3 , 6ba 1
$5=—z~Bam5A%  $a=3Bat AT A S A,

1 1 1 2
¢3=2B3+B,+ §A§+ 2A1A,+AjA AL+ EAz—Ai— EA1+ ?[3a+ﬂ+ yz+ 67%],

1 1 1 2
¢2:281+Bz+ §A§+2A0A1+A0A2+Ai+ EA]__A(I)_ EAO_?[Q+3B+72_622]1
3,68 1 28 1,
¢$1=3By+ EAO+;2_+AO+ EAO, o= — 72_+BO+ EAO ,
1 2a 3. 1 2, 1 « ,
Yr=—5R Bat —z |, ¥e=Ba| A+ 5 A1~ |~ 5 ABat (3R~ A By,
(6.3
1 3 1 1
1/15:B4(§A1+ 2Ao+ +Bg §A2+ EAl EAsz

A2 2 o , ,

3A 1A 2\ 1
2™z

1

AB1— >

AoB,

1 3 2

$a=B3[ 5 A1t A0t
A, A , | 3a

—?(301—1—,8—#- vz+ 67°)+ ?(a+3[3+ vz— 87°)+ ?A0+Bé—Bé,

3A+1A21ABl
e AT )T 5B 5

2 2 2 AoBs

1 3 2
P3=Ba[ A1t AT S

5 5 +B;

3B

Ag ) A )
—?(3a+,8+ vz+ 67°)+ ?(a+3[3+ vz— 6z )—?A2+B§—Bi,

3A 1A2
2Met My

+Bg >

2 2

1 3 2
$2=Ba| 5 A1t AT S

AO 2 B ’ ’
+ 7 (@t 3B+ yz— 629+ 3 (A,—3A1) +B{ By,
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1 B , -1 28
~5AB1t 2(A1=3A0)+Bg,  Yo=—5Ag| Bo— 7 |-

=B 3A+1A+2
'ﬁl—o—o—lz =

2 2

As an example, let

-2 1
A1:T(ZA0+1)a A2:E(ZA0+2),
(6.9
2y 2y
83:_ 282+381+4BO_7+45 y B4:Bz+281+380_?+25,
and let¢g= 1= o= y1=0. Then, Eq.(7.2) can be written as
Psv’ + th0%+ (hs+ 3ih7)v — =0, (6.9
and the equatiofi1.26) can be written as

[ 707+ (e + 3h70 — thp+ 3¢5 (Av®+ A +Ag) 2
= ¢l (Ba+ 3ADU + (Ba+ 3A1A2)v°+ (3B2AT+ FA0A2)v
+(By+ 3AcA)v + (Bo+3A9) . (6.6)
Here ,=0 implies that eithe,=0 or Bo=28/7>.

Case i: A=0: Equations(6.4) and ¢g= ¢1=¢1=0 imply that A;=—2/z, A,=2/z, and
Bo=—2B/7%. If By=(u?—1)/z%, whereu=1— 2« and 2« can take either sign, and without
loss of generalityB, = (1/z%)(4u+ yz— u*+6p), then Eq.(6.6) reduces to the following qua-
dratic equation fow:

Av’+Bv+C=0, (6.7
where
A=8u’[2(zU +u)+ 62°— u?+2B]+ (du— yz—3u’+2B)?,
B=2(4u—yz—3u2+2B)[4(zU —u)+ u?—2B]—4u’(4u+ yz— u?+6R), (6.9
C=[4(zu —u)+ u?—2B]%+8Bu>.

The equationg1.21) and(1.22 respectively become

1
(v’)2=?[22v(v— Do’ +(p?—1)v*+(4u—yz—3u?+2B+2)v°
—(8u+2682°—3u’+6B+1)v?+(4u+ yz— u?+68)v—28], (6.9

and
1
v'= Z—MZ[zﬂ 2av%— (4u—yz—3u’+2B+2u)v—(4zu' —4u+u?-2B)]. (6.10

The equation$6.9) and(6.7) define one-to-one correspondence between soluti¢)sof PV and
solutionsu(z) of the following second-order second-degree Paintgpe equation:
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Z2(u")2=—4(u")(zu —u)—28(zu' —u)>— [ 8(u2—2B) — 3y*1(zu' —u)
+3y(uP+ 2B + i YA (= 2B) — S(uP+2B)?). (6.11)
The equation(6.11) was first obtained by Cosgrbvand labeled as SD-I.b.

Case ii: By=28/z% ThenAy=2(u—1)/z, B;=— 2A,A;, where (w—1)?=—23. With out
loss of generality, leB,=(1/z%)[u—6(u—1)>—6(u—1)—1+2yz—267?]. Then Eq.(6.4) im-
plies thatB,= (1/z%) (u— u?), By=(—2/z?)[u+ yz— u(2—1)]. With these choices, the equa-
tion (6.6) becomes

Av?+Bv+C=0, (6.12
where
A=u[u’—2(u?+2a)u+(u?—2a)?],
B=—4uzuu —2(u+ yz)[u?>—2(u’+2a)u+(u?—2a)?], (6.13
C=—[zU —2u(u+y2) >+ (u—262%+2yz)(u+ u?—2a)?.
The equation(1.21) can be written as follows,
[zv'—(v—1)(uv—pu—1)12=uv*—2(u+ yz)v3+ (U— 2622+ 2y2)v?, (6.14

and the equatiofil.22) becomes

' 1 2 2
=- m{ﬂ(u_ﬂ« +2a)v
+{zU —u—2yuz+2u—1)(u?—2a)Jv— (u—1)(u+ u?—2a)}. (6.15

Let u(z) be a solution of the following second-order second-degree equation of Paippeve
[2uu’—(u")2+268u%+ 2yu—28(u?—2a)%—2v*(u?+2a)]?
=8[u*— yz(u?—2a)?IH{u(u’)?+(26u+ y?)
X[Uu?=2(u2+2a)u+ (u?—2a)?]}. (6.16

Then Egs.(6.12 and (6.14) give one-to-one correspondence between solutidzy of PV and
u(z) of the equation6.16).

VII. PAINLEVE VI

Letv(z) be a solution of PVI

1/1 1 1 1 1 1
””7(5 U—1+E)<U’>2‘ z+ﬁ+m>”'
v(v—1)(v—z z z—1) 6z(z—1
+_2—2_(Z (Zi(l) )(a+§2-+ ;ylf—l)g_l— (U(_Z)2)>. (7.7
Then, for PVI, Eq.(1.22 takes the form of
(hev°+ s+ pav*+ dhav>+ v+ d1v + do)v” + thgv®
+ 70"+ g0+ P50 °+ Yavt+ v+ v ®+ v + =0, (7.2
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where

B 2a 1, B , 4a(z+1) . (2z-1)
¢6_ZZ(Z— 1)2_84_ EAZ! ¢5_2(Z+ 1)B4+(Z+ 1)A2_ ZZ(Z_ 1)2 27 Z(Z—l)

_z (2z—1)
¢4_(z—1) Az z2(z—1)

1 3

(A=A, + §A§+A0A2+(z+ 1)AA,— EZA§+ B,+(z+1)B;
2

—3zB,+(z+1)A,—Aj+ m[oz(zz+4z+ 1)+ Bz+(6z+vy)(z—1)],

z (2z—-1)
¢3:ﬁ(Al_A2) - m(AO_Al) + 2AOA1_ 22A1A2+ 281_ 2283

4
+(z+ DA - Ag—zA— mz[(éﬁ' B)(z+ 1)+ (y+9)(z—1)],

(2z-1) 3, 1,
¢2:(Z——1)(A0_A1)+ m _AO_(Z+ 1)AOA1_Z%A2_ _ZA1+ SBO_(Z+ 1)Bl

Ag+ 5 5

—2zB,—zA +(z+1)Aj— %1)2[6(24— B(Z2+4z+1)+(yz+6)(z—1)],

2(z
b= 2(Z+1)BO+(Z+1)AO+ (ﬂ( ) AO+( )AO}
1 2B
$0=2 B+ 5 A+ = 1)2},
1 2
Y=~ 5 Ay Bat 2— 772 Z=12’
1 (2z—-1) 1 a ’
7=By| (z+1)A,+ EA]_— m} — §A283+ W[Z(Z-F DA~ A]-B,, (7.3
_ 3 2z 2(2z—-1) 1 2(2z—-1)
Ye=B, E(AO_ZA2)+ z—1) + 2(z-1) +Bj| (z+1)A,+ EAl— m
1
— 5 ABy+(z+1)B,—By+ Zz(z;il)z[Z(erl)Al—Ao]
A,
W[a(z +4z+1)+ Bz+(5z+y)(z—1)],
3 2z 2(2z—-1) 1 2(2z—-1) 1
¢5:B3{§(AO_ZA2)+ (Z— 1) + Z(Z— 1) +Bz (Z+ 1)A2+ EA]__ m - EAzBl
1 2z 2a(z+1)

+(8z+ v)(z— 1)]+ 2A2 )2[(a+,8)(z+1)+(y+5(z 1)]+(z+1)B;—zB,—B,,

Downloaded 08 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



3584 J. Math. Phys., Vol. 40, No. 7, July 1999 U. Mugan and A. Sakka

2z 2(2z—-1)

. 22z-1)] 1
(z=1) z(z-1)

1
7M1 2(z—1) | 2A2Bo

+B4| (z+1)A,+

3
b= [ (Ag—zAy) +

1 2z Ao ,
_Bg EZA]_‘F(Z"‘l)AQ'f‘m +§ZAOB4—EW[Q’(Z +4Z+1)+BZ
t(ozty)(z- D]+ m[(chr,B)(ZJr D+(y+6)(z—1)]

- (ZA 1)[az+,8(z +4z+1)+ yz(z— 1)+ 5(z—1)]+(z+1)B;—zB;— By,
3 2z 2(2z-1) 1 22z-1)] 1
l,//3=Bl E(AO_ZAZ)—’_ (Z_l) + Z(Z—l) +BO (Z+ 1)A2+ EA]_ m ZAoB3

2B8(z+1)
(Z 1)2 A2 Z(Z 1)2[(

B, a+B)(z+1)

1 A DA 2z
52  t+(z+1) 0+(z— D +

+(y+5)(z—1)]—z(? 1 [az+ B(Z2+4z+ 1)+ (yz+ 8)(z—1)]+(z+1)B;—zB,— By,
N 2z 2(2z-1) 1 2z
lﬁ’z—Bo E(AO_ZAQ)+ (Z_l) + Z(Z_ 1) _Bl EZA]_'F(Z‘F 1)AO+ m

1
+§ZA)BZ+(Z+ 1)Bj—zB; + [2(z+1)A;—2zA]

B
(z—1)°

[az+,8(z +4z+1)+(yz+6)(z—1)],

z(z 1)
B 1 1 2z
= ﬁz[2(2+1)A0 ZA ]+ 5 ZAOB1 Bo| (z+1)Ap+ 5 zA1+(Z 1 -zBy,
z 2B
Yo=%Ao| Bo— m}

As an example, let

= [(Z-DAg+2], A= )[(z—l)A0+2],

1
Ar= z2(z—1) z2(z—1

-1
53=Z3(Z—_1)[z2(z2— 1)B,+2(z—1)(Z%+z+1)By+ (z— 1)(Z2+ 22+ 2+ 1)By—2yz2— 246],

(7.9
1
B4=m[zz(z— 1)By+2(22—1)By+(z— 1)(Z%+2z+1)By—2yz—26],
and ¢o= ¢1= o= y1=0. Then, the equatiof7.2) takes the following form,
’ 2 1
v’ + pgv + 7+ (z2+ 1) hglv + ?1/12:0- (7.5

and the equatiofil.26) can be written as

Downloaded 08 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



J. Math. Phys., Vol. 40, No. 7, July 1999 Second-degree Painlevé equations 3585

1 1 2
Pgv?+ [+ (2+1) Pglv + EZ¢2+ §¢G(A2U2+A1U+AO)

=@ (By+ 1A+ (Bs+ 3A1A) 03+ (By+ 2AZ+ 2AA,) 02
+(B1+ 2AADU+(Bot $A3)]. (7.6)

The equationy,=0 implies that eithe,=0 or Bo=28/(z—1)2.

Case i: Ay=0: Then, the equatiog,=0 implies thatB,= — 28/(z— 1)? and then the equa-
tions ¢, =y, =0 are satisfied identically. LeB,=(u?—1)/z%(z—1)?, whereu=1—\2a and
J2a can take either sign, and without loss of generality, Bet= —[1/2%(z—1)?][4(z+ 1)u

+(B—a+Ja)(3z+1)+ (y—8)(3z—1)]. Then the equatiofi7.6) reduces to the following qua-
dratic equation fow:

Av?+Bv+C=0,

A=4u?[4z(z— 1)U’ +4u+2vz— k]+[4u—2N(z— 1) + v— u?]?,
(7.7)
B=2z[4u—2\(z— 1)+ v—u?][4(z— 1)U’ —4u—v]—4u®Z4u+2(y+ B)(z— 1)+ v+48],
C=27[4(z—1)u’'—4u—v]?+8Bu?2?,

wherek=a— B+ y—6—2a+1, \=a+8—2a, andv=pB+ y—a— 6+ \2a. The equation
(1.21) can be written as
[2(z—1)v' —v(v—1)]>=p?v*+[4u—2\(z— 1) + v— u?]v3—[4(z+ 1)u+3vz— k]v?
+2[4u+2(y+ B)(z— 1)+ v+4BJv—2BZ%, (7.9

and the equatioii1.22 becomes

1
- 2uz(z—1) {2n

!

v 2av?—[4u—2N\(z— 1)+ v—pu?+2u]v—Z[4(z— 1)u’ —4u—v]}.

(7.9

Equations(7.7) and (7.8) give one-to-one correspondence between solutidizd of PVI and
solutionsu(z) of the following second-order second degree equation of Pairygpes

Z%(z—1)%(U")?=—4u’'(zu —u)?2+4(u")2(zu —u)+ k(U ) >+ X(y+ B)(zu' —u)
+i4(y=B) (P = M)+ v U’ + N2 (y=B) + (y+ B) A (w*=N)].
(7.10

The equation(7.10 was first obtained by Cosgroteand labeled as SD-l.a.
Case ii: By=28/(z—1)% ThenAy=2(n—1)/(z—1), Bo=1A2, andB,;=—3A,A;, where
(w—1)%2=—2p. Without loss of generality, let

Bzzﬁ[zu—uz(zz+4z+1)+2,uz(z+2)—(22+z—1)+2yz(z—1)+25(z—1)].
(7.11
Then one obtain®,=[1/z%(z—1)?](u— x?) andBy=[—1/2%(z—1)?][(z+1)(u—2u?)+2uz

+A(z—1)], wherex=2y+25—1. With these choices the equati¢n.6) yields the following
guadratic equation fow:
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Av?+Bv+C=0, (7.12
where
A=u[u?=2(p’+2a)u+ (u?—2a)?],
B=—(4uz(z—1)uu' +[(z+ Du+N(z—1)J[u?—2(u?+2a)u+ (u?—2a)?]), (7.13
C=—(2(z—1u' - p[(z+ )u+N(z—D)]D?+[zu+2y(z— 1)*+ N (z— D J(u+ u’—2a)%
The equationg1.21) and(1.22 become
[2(z— Vv’ — po?+(uz—z+ v —(u—1)z]?
=uv?—[(z+1)u+A(z—1)Jv3+[zu+2y(z— 1)?+ N\ (z—1)]v?, (7.14
and

= X =D(ut p?=2a) *

U!

(U—u2+2a)v?+[2(z— 1)U’ —z(u+ u?—2a)

—uMz= 1)+ p(p?=2a)(z+1)Jo— (p—1)Z(u+ pu?—2a)}, (7.19

respectively. Letu(z) be a solution of the following second-order second-degree equation of
Painlevetype:

[47%u%u"—27%u(u’)?+4zPu’ + Py(u)]?

B (z+1)
“(z-1)

2
u?—N(u?—2a)| [4Z%u(u’)?+Qq(u)],

Piu):=u*+ (A —4y—u?—2a)ul+ [ N2’ +2a) + (N —4y)(n?—2a)?Ju—N%(u?—2a)?,
(7.16
Qq(u):=[u?+2(A—4y)u+A?J[u2—2(u’+2a)u+(u?—2a)?].

Then, the equation&.12 and(7.14) gives one-to-one correspondence between soluti¢nps of
PVI andu(z) of the equation(7.16).
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