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In this work we develop a general procedure for constructing the recursion opera-
tors for nonlinear integrable equations admitting Lax representation. Several new
examples are given. In particular, we find the recursion operators for some KdV-
type systems of integrable equations. 1®99 American Institute of Physics.
[S0022-24889)03212-0

I. INTRODUCTION

It is well known that most of the integrable nonlinear partial differential equations,
U= F(t,X,U,Uy,...,Upny), (1)
admit a Lax representation,
Le=[A,L], )

so that the inverse scattering method is applicable. The generalized symhwtiigshave also
Lax representations with the sarheoperator,

L, =[Ay.L], n=1. 3)

The recursion operatdR, satisfying the equatiofsee Ref. 2
Ri+[Dg,R]=0, (4)

whereD¢ is the Frechederivative of the functiorF, generates symmetries f) starting from the
simplest ones. In generak is a nonlocal operatafa pseudodifferential operajor

The construction of the recursion operator of a given integrable sydteisinot an easy task.
Several works are devoted to this subject. Among these works, most of the authots fasehe
construction of the recursion operafof. There are several difficulties in this direct approach. The
main problems are the choices of the ordeRoénd the structure of the nonlocal terms. This is an
approach having no relation with the Lax representat®n

On the other hand, some of the authors used Lax representation for this purpose. Most of these
works are related to the squared eigenfunctions of the Lax op&ratand are based on finding an
eigenvalue equation for the squared eigenfunctions of the Lax operator. The operator correspond-
ing to this eigenvalue equation turns out to be the adjoint of the recursion operator.
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There is an alternative use of the Lax representation to construct recursion operators. This
approach is based on the explicit construction ofAh@peratorg3). It was first used by Symés,
Adler’® (see also Dorfman—Foka8 Fokas—Gel'fant) and Antonowicz—Fordy®!° Although
these authors use the Lax representation in different ways, their approach is basically the same.
Symes and Adler use the Gel'fand—DiKiiconstruction of theA,, operators. On the other hand,
Antonowicz—Fordy determines these operators from integrability cond{@pmand by using an
ansatz forA,. Their basic aim is to determine the Hamiltonian operatéysand 6,2 of the
equations under consideration. The recursion operator is simply givd?J:byZe[l. Their ap-
proach is based on some explicit formulas for coefficients ofitheperator. This is necessary to
find the Hamiltonian operator@, and #,, and it seems that this approach is quite effective to
determine the bi-Hamiltonian structure for the simple cases but it becomes more complicated
when thel-operator has a sophisticated structure.

If one is interested only in the determination of the recursion opefajove shall show in this
work that it is possible to succeed this without any concrete information of the coefficieAts of

operators. We use only an ans#tz PA+ R that relatesA, operators for differenn. Here P is
some operator that commutes with theperator andR is the remainder.

We follow this basic idea, partially used by SyntésAdler.!® Shabat and Sokolok?, and
establish an extremely simple, effective, and algorithmic method for the construction of recursion
operators when the Lax representati@is given?®

In the next section we consider the case whei®a scalar operator. We first consider the case
wherelL is a differential operator and then the case where it is a pseudodifferential operator. In
each case we present our method, discuss the reductions, and give examples for illustrations. In
Sec. lll we consider Lax operator taking values in a Lie algebra. We give our method both for the
general case and also for the reductions. We give one example for each case in the text. Several
additional examples are given in the Appendices A, B, and C corresponding to all different cases.

II. SCALAR LAX REPRESENTATIONS

First we consider equations with the scalar Lax representations of the form
L=[A,L], )

wherelL is, in general, a pseudodifferential operator of ordeand A is a differential operator
whose coefficients are functions »fandt.

The different choice of operatofsfor a givenL leads to a hierarchy of nonlinear syste(gs
It is well known that one can define operatdts by the following formula?®

Ap=(L"™) 6)

whereL"™ is a pseudodifferential series of the folo¥™==" _v;D' and "™, =3 ,v;D'.
Herev; are some concrete functions depending on the coefficiertsaofd D is the total deriva-
tive with respect tox.

In Refs. 25 and 26 the relationships between the Kac—Moody algebras and special types of
scalar differential and pseudodifferential operatbrsvere established. All corresponding inte-
grable systems are Hamiltonian ones. For most of them a second Hamiltonian structure is not
known up to now.

In this section and Appendices A, B, and C we consider the simplest systems from Refs. 25
and 26 as examples and find their recursion operators. In the sequel these examples will be
referred to as Drinfeld—SokolofDS) systems. It is interesting to note that in all these examples
the order of the recursion operator is equal to the Coexter number of the corresponding Kac—
Moody algebra.
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A. Gel'fand-Dikii systems

In this section we shall consider the case wheiie a differential operator,
L=D"+up_,DM 2+ +uy, (7)

whereu;, i =0,1,...m— 2 are functions ok, t. In the framework of Ref. 25, this corresponds to the
Kac—Moody algebras of the typa(l) , .

To show that(3) is equivalent to a system ofi{— 1) evolution equations with respect tp
one can use the following standard reasoning. Set

Ln/mz(Ln/m)++(Ln/m)_ , (8)

where (™™ is the differential part of the serids”™ and (L"'™)_ is a series of ordez — 1.
Since[L,L”™=0 we have

[(LY™) 4 LI=[L,(L"™)-]. ©)

The left-hand side of9) is a differential operator, but the right side is a series of ceder 2.
Thus, both sides df3) are differential operators of orden—2 and it is equivalent to a system of
evolution equations for the dependent variahlesi =0,1,...m— 2. This system can be obtained
by comparing the coefficients @', where 0,..m—2 in (3).

SinceL("™M/M=| | "M then we have

Am+n:(|—Ln/m)+:L(Ln/m)++(|—(Ln/m)—)+ ) (10
which leads directly to

Lt =[Ansm L1=LLe +[QLLY"™ )y L] 1y

n+m

The above equatiofill) has been given also by Syniés¢see also Adler's pap#). In his work
Symes expressed the coefficients of the both partd Df in a rather complicated way, in terms
of some finite set of coefficients of the resolvent forlawmperator. That allows him to express
L; . intermsofl, . This relation gives directly the recursion operator. He gave explicit formulas

for the casesn=2 andm=3.
In this section we shall show that in order to construct the recursion operator it suffices to
know only that

L, =Ll +[Rq.L]. (12)

Obviously, it follows from the following.
Proposition 1:For anyn,

Anim=LAR TRy, (13

whereR, is a differential operator of ordeem— 1.
Proof: The relation(13) coincides with(10) if we put

Ry=(L(L"™)_), . 14

Since ("™)_ is a series of ordex — 1, then ordR,)<m-— 1.
Remark 1:It follows from the formula

An+m:(|—n/m|—)+:(Ln/m)+|-+((|—n/m)—|—)+v (15

that
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Ansm=AL+R,, (16)

and
I_tn#—m: I_tnl__l_[l_’ﬁn]’ (17)

whereR, is a differential operator of ordeem— 1.

To find the recursion operator we can simply equate the coefficients of different powers of
in (12). It is easy to see that in this comparison of the coefficient®'ofi=2m—2,...m—1 we
determineR, in terms of the coefficients of operatdrsand Ly . It is important that the resulting

formulas turn out to be linear in the coefficientslgf. The remaining coefficients @', i=m
—2,...,0 in(12) give us the relation

Up Uo
=R| - , (19
um_2 tn+m um_2 tI']

whereR is a recursion operator. Instead @22) one can usé€l7). The corresponding recursion
operators coincide.
Example 1. KdV equatiorithe KdV equation,

U= 7(Usx+ 6ul), (19
has a Lax representation with
L=D?+u, A=(L%?,. (20)
Since in this case; =U;  ,=Uniz and L¢,= Ut =Un, the main relation(12) takes the form
Unso=(D2+u)-u,+[Ry,L], (21)
with R,=a,D+b,.
Now if we equate successively to zero the coefficientsDéf D, and D° in the above
equation, we obtain
a,=2D"*(up), by=3uy,
and
Uns2=(zD?+u+3u,D YUy,
that gives the standard recursion operator for the KdV equation,
R=3D?+u+tu,D 1. (22)

In the same way one can find a recursion operator for the Boussinesq eqsatoppendix
A).

B. Symmetric and skew-symmetric reductions of a differential Lax operator

The standard reductions of the Gel'fand—Dikii systems are given by the conditioas. or
L*=—L. Here* denotes the adjoint operation defined as follows.lLbe a differential operator,
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L=3a,D'". Its adjointL* is given byL*=3(—D)'-a;. It is easy to see that f*=L thenm
=ord(L) must be an even integer. For the case=—L, it must be an odd integer.

It is well known that for both reductions all possilig are defined by6), wheren takes odd
integer values. This condition provides that,}* = — A, that is necessary fdi3) to be compat-
ible.

If L*=L, the formulaA, = (LL"™),=(L"*™'M) _ gives a correci\, operator sincen
+m is an odd integer. Thus, in this case Proposition 1 remains valid and the recursion operator
can be found from(12) or (17).

On the other hand, iL* = —L then both integersn andn are odd and hence their sum
+n is an even integer. This means that"™’™) . cannot be taken as ah, operator. In this
(skew adjoint case we must take

Ant2m= (L(n+2m)/m)+ = (LZLn/m)+ )

to find the recursion operator. Following the proof of Proposition 1 we obtain Proposition 2.
Proposition 2:If L* =—L then

An+2m= LZAn+ Rn, (23
where ordR,,) <2 ord(L). It follows from (23) that

Ly, =L°L +[Rq,L]. (24)

n+

Remark 2:Instead of(23) we can use the ansatz

Aniom=LAL+R,, (25)

or

A, om=AL2+R, . (26)

The recursion operators obtained by the utility(88), (25), and(26) all coincide.

In the works?®®?® more general reductiond™=+L were also considered. Here"
=KL*K™1, whereK is a given differential operator, such tHaK ~! is a differential operator. In
this general reductions, as well, possilflge operators are given bg6), with n being an odd
integer. Propositions 1 and 2 are valid for this general symmetric and skew-symmetric cases and
hence one can use Eq42), (24) accordingly to obtain the recursion operators.

Example 2. Kupershmidt equatiomhis equation,

U= Usy+ 10UUgy + 25U, U,y + 20Uy, (27)
has the Lax pair
L=D3%+2uD+u,, A=(L%3,. (29
In this caseL* = —L; therefore we use Eq24) with
R,=a,D%+b,D*+c,D3+d,D?+e,D+f,. (29)
By equating the coefficients of powers bBfin (24), we obtain

anZ%Dil(Un)y bn:%uny Cn:%(szil(un)_F?&Jn’x)'

dn=3(10u,D ~(u,) + 220U, + 27U, ),
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en= 2_17(70J2><D _l(un) —-2D _l(u2xun) + 40J2D _l(un) —8D _1(U2un)
+134up 5+ 210U, + 184u,u,),
frx= 372004 D ~Y(Up) + 74ug,Up+ 126U5,U;, x+ 40uUy, D ~2(u,) +40u2D ~Y(u,)
+ 136Uy Up, o+ 27U Uy U+ 28U, 5+ 64U U, 3+ 16U%U, ),
and the recursion operator for the Kupershmidt equation:
R=D5+12uD*+ 36U,D 3+ (49, + 36u%) D2+ 5( 7Ugy+ 24U Uy, ) D + 13U 4+ 82U Uy, + 692
43203+ 2u,D ™ YUy + 4u?) + 2(Ugy + 10U Uz, + 25U Up + 20u?u,)D L, (30)
C. Pseudodifferential Lax operator

In this section we generalize our scheme to the case of pseudodifferential Lax operators. The
only difference is that in formulas liké€l3) and (23) the R, operator also becomes a pseudodif-
ferential operator.

It follows from these formulas that the structure of the nonlocal termR,jns, in general,
similar to the nonlocal terms ih sinceA, ., andA, are differential operators.

For skew-symmetric casé,, may be defined by eithég23) or (25), or (26). In the pseudo-
differential case they are not equivalent, in the sense that the nonlocal Byrdepends on which
ansatz we choose. For illustration, let us consider the tasklD ~1, whereM is a differential
operator. The following lemma shows thatlift=L or L= —L, where

L'=DL*D 1, (31

then the formulag13) and(25) are much suitable thef16), (23), and(26).
Lemma:Let LT=€L, wheree==*1. Then

R,=DM 1+...+a,, for e=1, (32
whereR, is defined by(13), and
R,=D?™ '4...4a D!, for e=—1, (33
whereR, is defined by(25).
Proof: If L=MD ! then LT=¢L implies M*=—¢M. It is easy to show thatL(™)"
=—LY" Hence ("™'=—L"™ for an odd integen. Define now a seriek,, by
LVM=DK,,.
It is easy to prove tha; =K,,. SinceK,=(K,). +(K,)_ and K,)*=K,, we have
(Kn)i=Kn) s, (Kp)X=(Kp)-.
From the last formula it follows that or#(,) =< —2, which leads to an important result,
Ap=(L"™), =D(K,). .
This implies that
LA=M(Kp) -+ (34)

is a differential operator. Now usin@4) in (13) and(25) for the cases=1 ande= —1, respec-
tively, we find the ansatz foA,, given by(32) and (33).
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Example 3(e=—1): It is known that the KdV equation has, besides the standard Lax repre-
sentation, the following Lax pair:

L=(D?+u)D "%, A=(L%.. (35
The L operator satisfies the reductibdi= — L. According to the formuld33) we have
R,=a,D+b,+c,D ™.
It follows from (25) that
a,=D"Y(u,), by=u,, €,=—Uyx—uD (uy).
The remaining equation ifR5) gives the recursion operator
R=D?+4u+2u,D 1. (36)
Example 4(e=1). DSIII system:The DSIII syster™?®is given by
U= — Uz, + 6uu,+6v,,
Vi=2V3— 6uv,. 37
The nonlocal Lax representation for this system is
L=(D°%-2uD®*-2D% —-2Dw—-2wD)D "},
A=(L¥, (38)
wherew=v—u,,. SinceLT=L we can us&32), which gives us
R,=a,D3+b,D?+c,D+d,. (39
By equating the coefficients of the powersbfin (25), we obtain
a,=D"(uy), b,=4u,,
Ch=3(—6uD"*(up)+ 11u, ,+2D " *(uu,) + 2D Y(vy)),
dn.x=— 3(6UzD ~1(up) + 10Uy — 5Up 3+ AU, x— BV ).
The recursion operator of the DSIII is found as
Ry RS
~lx ) “
with
RS=D*—8uD?— 12u,D — 8,y + 16u%+ 16v + (— 2ug,+ 12uuy+ 12v,)D 1+ 4u,D 'u,
R9=—10D%+8u+4u,D %,
(41)
RE=10v,D + 12, + (4vg,—12uv,)D 1+ 4v,D 1y,
Ri=—4D*+16uD?+8u,D+16v+4v,D 1.

This recursion operator has recently been given in Ref. 6.
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lll. MATRIX L OPERATOR OF THE FIRST ORDER

In this section we demonstrate how our approach, given in the previous sections, can be
generalized to the case whdrds a matrix operator of the form

L=D,+\a+q(x,t). (42)
A. General case

Let us consider the Lax operat6t2), whereq anda belong to a Lie algebrg andA is the
spectral parameter. The constant eleneers supposed to be such that

g=Ker(ad,)®Im(ad,). (43

First, let us recall the procedi#feof constructing theA operators for the Lax operat¢42).
Proposition 3:There exist unique series,

U=U_;N T+u_,A"2+---, uelm(ad,), (44)
h=hg+h_;\ " *+h_,\"2+---, h,eKer(ad,), (45

such that
e®(L)y=L+[u,L]+ 3[u,[u,L]]+ --=Dy+ax+h. (46)

Let b be a constant element of such that[b,Ker(ad)]={0}. It follows from (45) that
[bA",Dy+aN+h]=0. Hence[®y, ,,L]=0, where

Dy, ,=e 3(b\"). (47

Then the corresponding operator of the form

Apn=b\"+a, \""14+---+a, (48)
is defined by the formula
Apn=(Ppn)+, (49)
where
(OUNEDOFED HEH (50
According to(47),
Dp i1 =NPy . (51
Hence
Apn+1= APy n) . =N (Ppp) o + N Ppp) ) (52)
The last formula shows that
Apn+1=AMAynTRn, Rye0, (53

whereR,, does not depend ok. Substituting(53) into the Lax equation.th:[Ab,nH,L], we
get

Lo, =ALe F[Ry L. (54)
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Using the ansat54), one can easily find the corresponding recursion operator.
Example 5:The system

U= — 3Uy+ U2V,

(55)
Vi= 3V — V32U,
is equivalent to the nonlinear Scliinger equation, has a Lax operator
1 0 0 u
L=D+ + :
0 -1 A v O 56
The Lie algebray in this example coincides withl(2).
Using (54) with
an bI"I
" Ch —2ay ,
we find that
a,=1D Y vu,+uv,),
b= %un v Ch=— %Vn )
and the recursion operator of the systésb) is given by
—3iD+uD v uD tu
R= (57)

—vDv  Ip-vD )’

B. Reductions in matrix case

In the general case considered in the previous sectiomtheperators belong to the Lie
algebra,

a, ={3[ oa\, aeg, keZ,}, (58)
that is a subalgebra of the Lie algebra,
a={3"_a\', ajeg, keZ. (59)

A standardo reduction is defined by any automorphigrof the Lie algebray of finite order
k. Becauser“=1d, the eigenvalues af aree',i=0,...x— 1, wheree is a primitive x root of unity.

Let g, be an eigenspace corresponding to eigenvaluerhen the following reductiora,
€ g;, wherei=j(modk) in (58) and(59) is compatible with Eqs(3). Note that according to this
definitionae g;, and the potentiadj(x,t) in (42) belongs tog, or, the same, satisfies(q) =q.

It is easy to see that, to satisfy such a reduction, we must use the ansatz

Ab,n+x:)\KAb,n+ R,, (60)
where
Ry=r . N1+ 41y, rieg;. (62)

Further generalizations are associated with modifications of sigh ih (50), which corre-
sponds to the simplest decomposition of algebiato the direct sum of two subalgebras,
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a=a,®a_, (62
wherea, is given by(58) and
a_={3"La\', aeg}. (63

The sign “+” in (50) is the projection of onta, parallel toa_ . If we have a different decom-
position (62), then the construction from Proposition 3 is also valid, but we have the following
condition:

Rpea,N\a_, (64)

instead ofR,eg. If we also have ther reduction, we must use the most general angafy,
where

Rpea, N\ a_. (65
Example 6:Let us consider the following equation:
U= leuxxx_ %uxxu + %U Uy x— %U uyu, (66)

whereu is a square matrix of arbitrary size, or more generallppelongs to an arbitrary associa-
tive algebralC. This equation has a Lax representation with

u O)
0 ol (67)

0 1

=D+
LD]_(,J

A+

Herel is the unity of K. The reduction(67) can be described as followsee Ref. 2Y. The Lie
algebrag is the algebra of all X2 matrices with entries belonging 6. The automorphisna is

defined by

a(X)=TXT 1, (68)
where

1 0

T= 0 —1)-
Obviously o*=1d and eigenvalues of are 1 and—1. The corresponding eigenspaces are

* 0 0 =

oy %) acl? )

and therefore the coefficiengs in (59) have the following structure:

* 0 0 =*
azj:( ) azj+1:< .

0 « 0 (70)

The subalgebra, is given by(58), where the coefficients have the struct(ré) and, addition-

ally,
x 0
a0= ( 0 0) .

The subalgebra_ has the following form:
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a_=2(1wai)\i, (71

wherea, is of the form

a O
ag= 0 al ael.

The A operator for(66) is given by formulaA=(®, 3) ; [see(49)], where

0 1>,

=11 o

and “+" means the projection onta, parallel toa_ .
According to(65), R, is of the form

a, O 5 0 b, d, O
= + + .
"1l0o a, A c, O A 0 0 (72
It follows from
Ly, =MLy +[Rq,L], (73

that
Up,—apxt[a, u]+b,—c,=0 c¢,—b,—a,«=0,
d,—bx—ub,=0, d,+c,x—cou=0,
Up+2= —dnx+[dy,ul.
Findinga,, b,, ¢,, andd, from this system, we obtain the following recursion operator:
R=—(D+ad)(—D+R,)(2D+ad,) XD+L,)D(2D+ad,) %, (74

whereR, andL, are the operators of right and left multiplications tyrespectively.

Note that in the commutative cagg6) coincides with the modified KdV equation. It is easy
to verify that (74) becomes the standard recursion operator of a modified KdV equation. All
factors in(74) have to be regarded as operators acting @macommutativepolynomial depend-
iNg ON U, Uy ,Uyy, .. -

IV. CONCLUSION

In this work we devoted ourselves in the construction of recursion operators when the Lax
representation is given. We have shown that our approach can be easily generalized to all cases
where thel operator is a polynomial of. It would be interesting to generalize it for the cases of
more complicatedh dependence of as well as for the cases of+2l-dimensional equations,
Toda-type lattices, and ordinary differential equations.
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APPENDIX A: EXAMPLE TO SEC. Il A
The Boussinesq equation,
U= = 3(Ugy+2(U%) ), (A1)

can be expressed in the form of a pair of first-order evolution equations,

Ut:VX,
Vt: _%(USX—’_ SUUX) (AZ)
This system has a Lax pair,
L=D3+2uD+u,+v, A=(L?®),. (A3)

To construct the recursion operator for this system, we usé€lRgwith the differential operator,
R,=a,D?+b,D+c,.
By equating the coefficients of the powersfin (12), we find
a,=3D"*(uy), b,=3(5u,+D " (vy)),
Ch=35(6v,+8uD ™ *(up)+10u, ),
and after that we obtain the recursion operator of the fgtf for (A2) with
RO=3v+2v,D 1,

R%=D?+2u+u, D1,

A4
Ro=— (3D*+ YuD?+5u,D + U+ Fu?+ (5us,+ Fuu,)D Y, -
Ri=3v+v,D .
APPENDIX B: EXAMPLES TO SEC. II B
1. Sawada—Kotera equation
The Lax pair for the Sawada—Kotera equatfon,
U= Usy + 5UUgy + SUy Uy, + 5U%U, (B1)
is given by
L=D3+uD, A=(L%%),. (B2)

In this exampleL.T=—L, whereLT=DL*D andL is skew-symmetric, then we ug24). The
operatorR,, has the same form d89), with the coefficients given by

apn= %D_l(un): b,= gun v Cp= %(SU D_l(un) + 29Un,x):

dn=3$(5u,D " Y(up) + Lduu,+ 26U, 5,),
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€= #(10UD ~(Up) = 2D~ (U liy) — D~ H(U%Uy) +5u°D " (uy)
+28up, 3+ 32uup «+ 32u,uy),
f,=0.
The recursion operator is given as
R=D®+6uD*+9u,D3+ (9u?+ 11Uy, ) D?+ (10U, + 21UUy) D + Sugy+ 16Uy + 6uZ+ 4u®

+ (Ugy+ SU Uz, + BUyUny + 5U%U ) D~ 1+ u D~ H(u?+ 2u,,). (B3)

2. DSI system
The DSI systen?>?®

U=3VVy,
(B4)
Vi=2V3y+ 2UV,+ VU,
has a Lax representation with
L=[D3+(u+v)D+3(u+v),J[D3+(u—v)D+ 3(u—v)y],
(BS)

A:(Ll/2)+ )

HereR, is a differential operator of order 5, and sirlcés symmetric we again use E(@L2). The
expressions for the coefficients of the operd&grare very long and complicated. Hence we do not
display them here. We find that the recursion oper&af this system is of the forn40), where

RO=—4D5—24uD*—27u, D3+ 2(— 49, — 18u%+ 42v?) D2+ 10( — 7ugy,— 12uuy+ 30vv,)D
— 26U — 82U Uy — 692+ 2221V, + 141v2— 16us+ 48v2u
+2(— 2Usy— 10U Ugy — 25U, Uy — 102U, + 15v2U, + 30V V 35+ 45V, Vo, + 30uvv,) D 1

+2u,D " Y(3v?—2u%—u,,),

RI=168/D*+ 204/D3+ 6(21v 5+ 32uv) D%+ 6(40vU, + 7V, + 22uv,) D

+ 6(13VUyy+ 10UV, + V gy + 5UVy + AvuZ+ 120 %) + 108/v,D v +2u,D ~1(6uv+9v,y),
(B6)
R3=56vD*+268/,D%+2(243/,,+ 32uv) D%+ 2(36vuy+ 2195, + 106uv,) D

+ 2(2 Uy + 92U,V + 99V 5+ 99UV oy + 4V UZ + 12v3) + 2( 10V Ugy + 35Uy vy + 45U,V 5y
+10uvuy+ 18vs,+ 30uv g+ 10uv,+ 15v2v, ) D~ 1+ 2v,D " 1(3vZ—2u%—uy,),

R1=108D%+216uD*+4321,D3+ 6(81u,,+ 18u+ 22v%) D2+ 6( 45Uz, + 36uUUy+ 70vv,) D
+3(18U 5+ 18Uy + U2+ 98VV 5y + 67V 2+ 32uv2) + 36(2V gy + 2V, U+ VU, ) D Ly

+2v,D Y(6uv+9v,,).

3. DSII system
The DSII systent>2®
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U=3Vv,,
(B7)
Vi= —2(VaxtUvyt+vuy),
has a Lax representation with
L=(D°+uD*+D3u+(v+3u?)D+D(v+3u?))D,
A=(LY?), . (B8)

Sincel is symmetric we again use E(L2). In this case the operat®, is given as follows:
R,=a,D°+b,D*+c,D%+d,D?+e,D, (B9)
where
a,=3D"*(up), by=3up,
Ch=3[5UD *(u,)+3D Y(v,)+29u,,],
dn=3[5UD " (up,) + 26U, 5+ 14uu,+ 12v ],
€n= 3 5(2uy,+u?+3v)D*(u,) —3D " *(vu,+uv,) +9uD Y(v,)
— 2D~ Y ugyup+ 3UPup) + 54U U, + 28U, g+ 32U, — UnUy) + 427, L]
The recursion operatgr0) for the system can be foundZs
R9=—D5—6uD*—9u,D3— (11up+ 9u?+42v) D2+ (— 10us,— 21uu,— 30v,) D
— 55Uy — 16U Upy— 6UZ— 60V 5 — 4U%— 24vU+ ( — Usy— 5UUg— SUyUyy
—5u2uy— 15vu,— 15vg,— 15uv,)D "1 —u, D~ (2uy+ u?+3v),
RY=—42D*— 48uD?—87u,D — 6(7up+u?—6v)+27v,D *—3u,D 'u,
(B10)
R5=28vD*+106v,D3+ (165v 5+ 32uv) D%+ (54vuy+ 1325, + 74v,u) D + 30U,y + 79U,V
+ 54V 4+ 57UV 9y + AUV — 2472+ (10V U, + 25V Uy + 30U,V o + 10UV U, + OV, + 15UV 3,
+5uv,— 15vv,)D " 1—v,D " Y(Bv+u?+2u,,),
R1=27D®+54uD*+ 135u,D 3+ 3(54up,+ 9uZ— 22v) D2+ 3(36Ugz,+ 27U — 28v,) D
+3( U+ Uy + U2 — 21V 5 — 16vU) — 18(V 3+ Uyv +Vyu) D 2 —3v,D ~tu.
4. DSIV system
The DSIV systenf>?® which is also known as the Hirota—Satsuma system,
Ug= U3, + 3UU,— BVV,,
(B11)
Vi= —V3zy— 3UVy,
has Lax representation with

L=(D?+u+v)(D?*+u-v), A=(L%¥%,. (B12)
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Since the operatdr is symmetric we use Eq12). In this case the operat®; has the same form
as(39), with coefficients given by

an=3D"(up), by=7Uy—3vy,
c,=36uD Y(u,)+2D Y(uu,)—4D " Y(vv,) + 17U, —12v,,],
= 5[ 6U2,D ~H(up) — 12v,, D~ Y(uy,) + 30U, U, — Buyv, + 24uuy,
+ 15U 53— 12v, v, — 8uvy, x— 20v vy, y— 28V, 5].
The recursion operat@rd0) for the given system is

RO=1D*+2uD?+ 3uyD + 2Upy + 4(u?—v?) + (3uuy— 6VV,+ 2uz) D "1 +u,D tu,

RY=—5vD2—4v,D—v,,—4uv—2u,D v,

(B13
RE=—3v,D — 3V, — (V3 + 3uv,)D 1 +v,D tu,
Ri=—D*-4uD?-2u,D—4v?-2v,D lv.
5. N=3 Hirota—Satsuma system
This system is given 15y
Ur= 2z +3ul+3(—v2+ W)y,
V= — 3Va— 3Uvy, (B14)

W= — W3, — 3UW,.

This is an example for the=3 system that covers some ot 2 systems as special cases. For
instance, lettingv=0, we get DSIV and lettingg=0 we get DSIII systems.
The corresponding Lax pair is

L=(D?+2u—2v)(D?+2u+2v)+4w, A=(L%¥%%,. (B15)

In this case the operatdr is symmetric and henc®, has the same form a89), with the
coefficients

an= D_l(un)1 bn: %un+Vn )
Ch=312u0D H(u,) + 4D Huu,+w,—2vv,,) + 17U, + 12v, ],
dnx= 5L 12u5D ~Y(up) + 24v,,D ~(uy,) + 60U, U, + 16UV, + 15U, 3+ 48UU, ,+ 24v, U,
— 40V, v+ 20v,, 5+ 16vV,, + 20w, , ].
The recursion operator is given by
RS RY RI
R=| Ro Ri R;|, (B16)
Ry R Rj

where
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RI=1D*+4uD?+6u,D +4(Uyy+4u—4v2+ 4w)
+4(3us,+3uu,— 6vv,+3w,)D 1+ 4u,D 1,
RI=—2(5vD?+4v,D + Vv, +8uv +4u,D 1v),
R9=5D?+8u+4u,D 1,
R=—5U,D — 6V, —2(Vay+6v,u)D  1+4v,D 1,
R}=—D*-8uD?—4u,D +8(8w—2v?)—8v,D 'v—8D 'w,,
Ri=4(v,D 1+2D 1v,),
R3=—5W,D — Wy, — 2(V 3+ 6W,u)D "1+ 4w, D u.
R2=—16vD *w,—8w,D lv,
2__ 4 2 2 -1 -1
R3=—D*-8uD?—4u,D+16(w—v?)+4w,D " *+16vD lv,. (B17)

APPENDIX C: EXAMPLES TO SEC. Il

1. Non-Abelian Schro “dinger equation

This is the system given by

U= — 3U,,+ UvU,

(C1
V= 3Vyy+ VUV,

whereu andv belong toC (see Example 6 for the notation§he Lax operator ofC1) is given
by

0

L=D+
0 -1

At

0 u)
v ol (C2

The corresponding formulés4) reduces to

0 tna (0 "l RL c3
:)\ + ] E]
Ve O v, 0 [Rq,L] (C3)
where
an bn
R,= . 4
" Cn _an) 4

The formula(C3) gives us botha, ,b,,c, and the recursion operat®. They are given by
an:%D_l(unV+UVn)v bn:%unv Cn:_%una (CYH

1{-D+RD R, +L, DL, RD WL, +L,D 'R,
== : C6
R=3 -L,b'*R,~-R,D, D-RD 'R,~L,D7IL, (6
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2. Non-Abelian modified KdV equation

The standard non-Abelian modified KdV equation is given by

_1 3, 112 3,2
Ut = ZUxxx ™ 2UxU™— U7 Uy . (C7)

The Lax representation of this equation is given

0 1

=D+
I_DlO

N+

u O)
o _ul (8

The recursion operatd® can be found fron{60) and(61). In our case the automorphissnis the
same as in Example 6, and formul&®) and(61) give us

(Vr10+1 uno+1 :)\2(\?” L:)n +[RH’L]’ (Cg)
where
0 a, c, O
Rn=(bn oMo dﬂ). (C10
Using (C9) we finda,,b,,c,,d, from the following:
bh,—a,=u,, —apy—aju—ua,+c,—d,=0,

—bpxtbyu+ub,+d,—c,=0, d,y+c,x=[ch—d,,u],
un+1:dn,x+[dn ,Ll].
The resulting recursion operator is given by

R=%D-ad,-D ' -ad,)(D—(L,+R,)D " Y(L,+Ry)). (C11)

1p. J. Oliver,Applications of Lie Groups to Differential EquatignGraduate Texts in Mathematics, 2nd €8pringer-
Verlag, New York, 1993 Vol. 107.

2p. J. Olver, J. Math. Phy438, 1212(1977.

3M. Girses and A. Karasu, J. Math. Phy$, 3485(1995.

4M. Girses and A. Karasu, Phys. Lett. 244, 21 (1996.

SM. Girses and A. Karasu, J. Math. Phy8, 2103(1998.

6M. Girses and A. Karasu, Phys. Lett. 251, 247 (1999.

’S. 1. Svinolupov, Theor. Math. Phy87, 391 (1991).

8J. Krasil’'shchik, Contemp. Matt219, 121 (1998.

9A. S. Fokas and R. L. Anderson, J. Math. Ph3, 1066(1982.

10A. S, Fokas, Stud. Appl. Math7, 253 (1987.

A, P. Fordy and J. Gibbons, J. Math. Phg®, 1170(1980.

2p_ M. Santini and A. S. Fokas, Commun. Math. Phys5 375 (1988.

BA. S. Fokas and P. M. Santini, Commun. Math. PHyk6, 449 (1988.

W, Symes, J. Math. Phy&0, 721 (1979.

5M. Adler, Invent. Math.50, 219 (1979.

16|, Ya. Dorfman and A. S. Fokas, J. Math. Ph@8, 2504 (1992.

A, S. Fokas and . M. Gel'fand, important Developments in Soliton ThepBpringer Series in Nonlinear Dynamics,
edited by A. S. Fokas and V. E. Zakhar@pringer-Verlag, Berlin, 1993pp. 259-282.

18M. Antonowicz and A. P. Fordy, ilNonlinear Evolution Equations and Dynamical Systems (NEEDS&ied by J.
Leon (World Scientific, Singapore, 1988pp. 145-160.

19M. Antonowicz and A. P. Fordy, itSoliton Theory: A Survey of Resyleslited by A. P. FordyManchester University
Press, Manchester, England, 199Bee also the related references therein.

201, M. Gel'fand and L. A. Dikii, Funct. Anal. Appl10, 13 (1976.

21, Magri, J. Math. Phys19, 1156(1978.

22\, V. Sokolov, Sov. Math. Dokl30, 44 (1984).

Downloaded 08 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



6490 J. Math. Phys., Vol. 40, No. 12, December 1999 Gurses, Karasu, and Sokolov

2Here we note that in 1980 that Shabat and Sokolov independently found the recursion operator for the Sawada—Kotera
equation. This result was published in Ref. 24. In Ref. 22, Sokolov found the recursion operator for the Krichever—
Novikov equation.

24N. H. Ibragimov, Transformation Groups Applied to Mathematical Physigeidel, Boston, 1985

25V, G. Drinfeld and V. V. Sokolov, J. Sov. Mat30, 1975(1985.

26\, G. Drinfeld and V. V. Sokolov, Proc. Sobolev Sem. Novosibigsis (1981) (in Russiai.

271, Z. Golubchik and V. V. Sokolov, Theor. Math. Phykl2 1097 (1997.

28K. Sawada and T. Kotera, Prog. Theor. Phys. 1355(1974.

293, Springael, X. B. Hu, and I. Loris, J. Phys. Soc. J§%).1222(1996.

303, Satsuma and R. Hirota, J. Phys. Soc. %in.3390(1982.

31G. Wilson, Phys. Lett. A89, 332(1982.

Downloaded 08 May 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



