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In this work we develop a general procedure for constructing the recursion opera-
tors for nonlinear integrable equations admitting Lax representation. Several new
examples are given. In particular, we find the recursion operators for some KdV-
type systems of integrable equations. ©1999 American Institute of Physics.
@S0022-2488~99!03212-0#

I. INTRODUCTION

It is well known that most of the integrable nonlinear partial differential equations,

ut5F~ t,x,u,ux ,...,unx!, ~1!

admit a Lax representation,

Lt5@A,L#, ~2!

so that the inverse scattering method is applicable. The generalized symmetries1 of ~1! have also
Lax representations with the sameL operator,

Ltn
5@An ,L#, n>1. ~3!

The recursion operatorR, satisfying the equation~see Ref. 2!

Rt1@DF ,R#50, ~4!

whereDF is the Freche´t derivative of the functionF, generates symmetries of~1! starting from the
simplest ones. In general,R is a nonlocal operator~a pseudodifferential operator!.

The construction of the recursion operator of a given integrable system~1! is not an easy task
Several works are devoted to this subject. Among these works, most of the authors use~4! for the
construction of the recursion operator.3–8 There are several difficulties in this direct approach. T
main problems are the choices of the order ofR and the structure of the nonlocal terms. This is
approach having no relation with the Lax representation~2!.

On the other hand, some of the authors used Lax representation for this purpose. Most o
works are related to the squared eigenfunctions of the Lax operator9–13and are based on finding a
eigenvalue equation for the squared eigenfunctions of the Lax operator. The operator corre
ing to this eigenvalue equation turns out to be the adjoint of the recursion operator.

a!Electronic mail: gurses@fen.bilkent.edu.tr
64730022-2488/99/40(12)/6473/18/$15.00 © 1999 American Institute of Physics
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There is an alternative use of the Lax representation to construct recursion operator
approach is based on the explicit construction of theAn operators~3!. It was first used by Symes,14

Adler15 ~see also Dorfman–Fokas,16 Fokas–Gel’fand17! and Antonowicz–Fordy.18,19 Although
these authors use the Lax representation in different ways, their approach is basically the
Symes and Adler use the Gel’fand–Dikii20 construction of theAn operators. On the other hand
Antonowicz–Fordy determines these operators from integrability condition~3! and by using an
ansatz forAn . Their basic aim is to determine the Hamiltonian operatorsu1 and u2

21 of the
equations under consideration. The recursion operator is simply given byR5u2u1

21. Their ap-
proach is based on some explicit formulas for coefficients of theAn operator. This is necessary t
find the Hamiltonian operatorsu1 and u2 , and it seems that this approach is quite effective
determine the bi-Hamiltonian structure for the simple cases but it becomes more comp
when theL-operator has a sophisticated structure.

If one is interested only in the determination of the recursion operatorR, we shall show in this
work that it is possible to succeed this without any concrete information of the coefficientsAn

operators. We use only an ansatzÃ5PA1R that relatesAn operators for differentn. HereP is
some operator that commutes with theL operator andR is the remainder.

We follow this basic idea, partially used by Symes,14 Adler.15 Shabat and Sokolov,22 and
establish an extremely simple, effective, and algorithmic method for the construction of recu
operators when the Lax representation~2! is given.23

In the next section we consider the case whereL is a scalar operator. We first consider the ca
whereL is a differential operator and then the case where it is a pseudodifferential operat
each case we present our method, discuss the reductions, and give examples for illustrat
Sec. III we consider Lax operator taking values in a Lie algebra. We give our method both f
general case and also for the reductions. We give one example for each case in the text.
additional examples are given in the Appendices A, B, and C corresponding to all different

II. SCALAR LAX REPRESENTATIONS

First we consider equations with the scalar Lax representations of the form

Lt5@A,L#, ~5!

whereL is, in general, a pseudodifferential operator of orderm and A is a differential operator
whose coefficients are functions ofx and t.

The different choice of operatorsA for a givenL leads to a hierarchy of nonlinear systems~3!.
It is well known that one can define operatorsAn by the following formula:20

An5~Ln/m!1 , ~6!

whereLn/m is a pseudodifferential series of the formLn/m5(2`
n v iD

i and (Ln/m)15( i 50
n v iD

i .
Herev i are some concrete functions depending on the coefficients ofL andD is the total deriva-
tive with respect tox.

In Refs. 25 and 26 the relationships between the Kac–Moody algebras and special ty
scalar differential and pseudodifferential operatorsL were established. All corresponding inte
grable systems are Hamiltonian ones. For most of them a second Hamiltonian structure
known up to now.

In this section and Appendices A, B, and C we consider the simplest systems from Re
and 26 as examples and find their recursion operators. In the sequel these examples
referred to as Drinfeld–Sokolov~DS! systems. It is interesting to note that in all these examp
the order of the recursion operator is equal to the Coexter number of the corresponding
Moody algebra.
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A. Gel’fand–Dikii systems

In this section we shall consider the case whereL is a differential operator,

L5Dm1um22Dm221¯1u0 , ~7!

whereui , i 50,1,...,m22 are functions ofx, t. In the framework of Ref. 25, this corresponds to t
Kac–Moody algebras of the typeAm21

(1) .
To show that~3! is equivalent to a system of (m21) evolution equations with respect toui

one can use the following standard reasoning. Set

Ln/m5~Ln/m!11~Ln/m!2 , ~8!

where (Ln/m)1 is the differential part of the seriesLn/m and (Ln/m)2 is a series of order<21.
Since@L,Ln/m#50 we have

@~Ln/m!1 ,L#5@L,~Ln/m!2#. ~9!

The left-hand side of~9! is a differential operator, but the right side is a series of order<n22.
Thus, both sides of~3! are differential operators of order<n22 and it is equivalent to a system o
evolution equations for the dependent variablesui , i 50,1,...,m22. This system can be obtaine
by comparing the coefficients ofDi , where 0,...,m22 in ~3!.

SinceL (n1m)/m5LLn/m, then we have

Am1n5~LLn/m!15L~Ln/m!11„L~Ln/m!2…1 , ~10!

which leads directly to

Ltn1m
5@An1m ,L#5LLtn

1@„L~Ln/m!2…1 ,L#. ~11!

The above equation~11! has been given also by Symes14 ~see also Adler’s paper15!. In his work
Symes expressed the coefficients of the both parts of~11!, in a rather complicated way, in term
of some finite set of coefficients of the resolvent for anL operator. That allows him to expres
Ltn1m

in terms ofLtn
. This relation gives directly the recursion operator. He gave explicit form

for the casesm52 andm53.
In this section we shall show that in order to construct the recursion operator it suffic

know only that

Ltn1m
5LLtn

1@Rn ,L#. ~12!

Obviously, it follows from the following.
Proposition 1:For anyn,

An1m5LAn1Rn , ~13!

whereRn is a differential operator of order<m21.
Proof: The relation~13! coincides with~10! if we put

Rn5„L~Ln/m!2…1 . ~14!

Since (Ln/m)2 is a series of order<21, then ord(Rn)<m21.
Remark 1:It follows from the formula

An1m5~Ln/mL !15~Ln/m!1L1~~Ln/m!2L !1 , ~15!

that
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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An1m5AnL1R̄n , ~16!

and

Ltn1m
5Ltn

L1@L,R̄n#, ~17!

whereR̄n is a differential operator of order<m21.
To find the recursion operator we can simply equate the coefficients of different powersD

in ~12!. It is easy to see that in this comparison of the coefficients ofDi , i 52m22,...,m21 we
determineRn in terms of the coefficients of operatorsL andLtn

. It is important that the resulting
formulas turn out to be linear in the coefficients ofLtn

. The remaining coefficients ofDi , i 5m

22,...,0 in~12! give us the relation

S u0

•

•

•

um22

D
tn1m

5RS u0

•

•

•

um22

D
tn

, ~18!

whereR is a recursion operator. Instead of~12! one can use~17!. The corresponding recursio
operators coincide.

Example 1. KdV equation:The KdV equation,

ut5
1
4~u3x16uux!, ~19!

has a Lax representation with

L5D21u, A5~L3/2!1 . ~20!

Since in this caseLtn12
5utn12

[un12 andLtn
5utn

[un , the main relation~12! takes the form

un125~D21u!•un1@Rn ,L#, ~21!

with Rn5anD1bn .
Now if we equate successively to zero the coefficients ofD2, D, and D0 in the above

equation, we obtain

an5 1
2D

21~un!, bn5 3
4un ,

and

un125~ 1
4D

21u1 1
2uxD

21!un ,

that gives the standard recursion operator for the KdV equation,

R5 1
4D

21u1 1
2uxD

21. ~22!

In the same way one can find a recursion operator for the Boussinesq equation~see Appendix
A!.

B. Symmetric and skew-symmetric reductions of a differential Lax operator

The standard reductions of the Gel’fand–Dikii systems are given by the conditionsL* 5L or
L* 52L. Here* denotes the adjoint operation defined as follows. LetL be a differential operator
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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L5SaiD
i . Its adjointL* is given byL* 5S(2D) i

•ai . It is easy to see that ifL* 5L then m
5ord(L) must be an even integer. For the caseL* 52L, it must be an odd integer.

It is well known that for both reductions all possibleAn are defined by~6!, wheren takes odd
integer values. This condition provides that (An)* 52An that is necessary for~3! to be compat-
ible.

If L* 5L, the formulaAn1m5(LLn/m)15(L (n1m)/m)1 gives a correctAn operator sincen
1m is an odd integer. Thus, in this case Proposition 1 remains valid and the recursion op
can be found from~12! or ~17!.

On the other hand, ifL* 52L then both integersm and n are odd and hence their summ
1n is an even integer. This means that (L (n1m)/m)1 cannot be taken as anAn operator. In this
~skew adjoint! case we must take

An12m5~L ~n12m!/m!15~L2Ln/m!1 ,

to find the recursion operator. Following the proof of Proposition 1 we obtain Proposition 2
Proposition 2:If L* 52L then

An12m5L2An1Rn , ~23!

where ord(Rn),2 ord(L). It follows from ~23! that

Ltn12m
5L2Ltn

1@Rn ,L#. ~24!

Remark 2:Instead of~23! we can use the ansatz

An12m5LAnL1R̃n , ~25!

or

An12m5AnL21 R̃̃n . ~26!

The recursion operators obtained by the utility of~23!, ~25!, and~26! all coincide.
In the works,25,26 more general reductionsL†56L were also considered. HereL†

5KL* K21, whereK is a given differential operator, such thatLK21 is a differential operator. In
this general reductions, as well, possibleAn operators are given by~6!, with n being an odd
integer. Propositions 1 and 2 are valid for this general symmetric and skew-symmetric cas
hence one can use Eqs.~12!, ~24! accordingly to obtain the recursion operators.

Example 2. Kupershmidt equation:This equation,

ut5u5x110uu3x125uxu2x120u2ux , ~27!

has the Lax pair

L5D312uD1ux , A5~L5/3!1 . ~28!

In this caseL* 52L; therefore we use Eq.~24! with

R̃n5anD51bnD41cnD31dnD21enD1 f n . ~29!

By equating the coefficients of powers ofD in ~24!, we obtain

an5 2
3D

21~un!, bn5 11
3 un , cn5 1

9„20uD21~un!173un,x…,

dn5 1
3„10uxD

21~un!122uun127un,2x…,
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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en5 1
27„70u2xD

21~un!22D21~u2xun!140u2D21~un!28D21~u2un!

1134un,3x1212uun,x1184uxun…,

f n,x5 1
27„20u4xD

21~un!174u3xun1126u2xun,x140uu2xD
21~un!140ux

2D21~un!

1136uxun,2x127uuxun128un,5x164uun,3x116u2un,x…,

and the recursion operator for the Kupershmidt equation:

R5D6112uD4136uxD
31~49u2x136u2!D215~7u3x124uux!D113u4x182uu2x169ux

2

132u312uxD
21~u2x14u2!12~u5x110uu3x125uxu2x120u2ux!D

21. ~30!

C. Pseudodifferential Lax operator

In this section we generalize our scheme to the case of pseudodifferential Lax operator
only difference is that in formulas like~13! and ~23! the Rn operator also becomes a pseudod
ferential operator.

It follows from these formulas that the structure of the nonlocal terms inRn is, in general,
similar to the nonlocal terms inL sinceAn1m andAn are differential operators.

For skew-symmetric case,An may be defined by either~23! or ~25!, or ~26!. In the pseudo-
differential case they are not equivalent, in the sense that the nonlocal part ofRn depends on which
ansatz we choose. For illustration, let us consider the caseL5MD21, whereM is a differential
operator. The following lemma shows that ifL†5L or L†52L, where

L†5DL* D21, ~31!

then the formulas~13! and ~25! are much suitable then~16!, ~23!, and~26!.
Lemma:Let L†5eL, wheree561. Then

Rn5Dm211¯1a0 , for e51, ~32!

whereRn is defined by~13!, and

R̃n5D2m211¯1a21D21, for e521, ~33!

whereR̃n is defined by~25!.
Proof: If L5MD21 then L†5eL implies M* 52eM . It is easy to show that (L1/m)†

52L1/m. Hence (Ln/m)†52Ln/m for an odd integern. Define now a seriesKn by

Ln/m5DKn .

It is easy to prove thatKn* 5Kn . SinceKn5(Kn)11(Kn)2 and (Kn)* 5Kn , we have

~Kn!1* 5~Kn!1 , ~Kn!2* 5~Kn!2 .

From the last formula it follows that ord(Kn)2<22, which leads to an important result,

An5~Ln/m!15D~Kn!1 .

This implies that

LAn5M ~Kn!1 ~34!

is a differential operator. Now using~34! in ~13! and~25! for the casese51 ande521, respec-
tively, we find the ansatz forAn given by ~32! and ~33!.
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



pre-

6479J. Math. Phys., Vol. 40, No. 12, December 1999 On construction of recursion operators from . . .

Downloaded 08 May
Example 3(e521): It is known that the KdV equation has, besides the standard Lax re
sentation, the following Lax pair:

L5~D21u!D21, A5~L3!1 . ~35!

The L operator satisfies the reductionL†52L. According to the formula~33! we have

R̃n5anD1bn1cnD21.

It follows from ~25! that

an5D21~un!, bn5un , cn52un,x2uD21~un!.

The remaining equation in~25! gives the recursion operator

R5D214u12uxD
21. ~36!

Example 4(e51). DSIII system:The DSIII system25,26 is given by

ut52u3x16uux16vx ,
~37!

v t52v3x26uvx .

The nonlocal Lax representation for this system is

L5~D522uD322D3u22Dw22wD!D21,
~38!

A5~L3/4!1 ,

wherew5v2u2x . SinceL†5L we can use~32!, which gives us

Rn5anD31bnD21cnD1dn . ~39!

By equating the coefficients of the powers ofD in ~25!, we obtain

an5D21~un!, bn54un ,

cn5 1
2„26uD21~un!111un,x12D21~uun!12D21~vn!…,

dn,x52 1
2„6u2xD

21~un!110uxun25un,3x14uun,x26vn,x….

The recursion operator of the DSIII is found as

R5S R0
0 R1

0

R0
1 R1

1D , ~40!

with

R0
05D428uD2212uxD28u2x116u2116v1~22u3x112uux112vx!D

2114uxD
21u,

R1
05210D218u14uxD

21,
~41!

R0
1510vxD112v2x1~4v3x212uvx!D

2114vxD
21u,

R1
1524D4116uD218uxD116v14vxD

21.

This recursion operator has recently been given in Ref. 6.
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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III. MATRIX L OPERATOR OF THE FIRST ORDER

In this section we demonstrate how our approach, given in the previous sections, c
generalized to the case whereL is a matrix operator of the form

L5Dx1la1q~x,t !. ~42!

A. General case

Let us consider the Lax operator~42!, whereq anda belong to a Lie algebrag andl is the
spectral parameter. The constant elementa is supposed to be such that

g5Ker~ada! % Im~ada!. ~43!

First, let us recall the procedure25 of constructing theA operators for the Lax operator~42!.
Proposition 3:There exist unique series,

u5u21l211u22l221¯ , uiPIm~ada!, ~44!

h5h01h21l211h22l221¯ , hiPKer~ada!, ~45!

such that

eadu~L !5L1@u,L#1 1
2†u,@u,L#‡1¯5Dx1al1h. ~46!

Let b be a constant element ofg such that@b,Ker(ada)#5$0%. It follows from ~45! that
@bln,Dx1al1h#50. Hence@Fb,n ,L#50, where

Fb,n5e2adu~bln!. ~47!

Then the correspondingA operator of the form

Ab,n5bln1an21ln211¯1a0 , ~48!

is defined by the formula

Ab,n5~Fb,n!1 , ~49!

where

~S2`
n a il

i !15S0
na il

i . ~50!

According to~47!,

Fb,n115lFb,n . ~51!

Hence

Ab,n115~lFb,n!15l~Fb,n!11„l~Fb,n!2…1 . ~52!

The last formula shows that

Ab,n115lAb,n1Rn , RnPg, ~53!

whereRn does not depend onl. Substituting~53! into the Lax equationLtn11
5@Ab,n11 ,L#, we

get

Ltn11
5lLtn

1@Rn ,L#. ~54!
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Using the ansatz~54!, one can easily find the corresponding recursion operator.
Example 5:The system

ut52 1
2uxx1u2v,

~55!
v t5

1
2vxx2v2u,

is equivalent to the nonlinear Schro¨dinger equation, has a Lax operator

L5D1S 1 0

0 21D l1S 0 u

v 0D . ~56!

The Lie algebrag in this example coincides withsl(2).
Using ~54! with

Rn5S an bn

cn 2an
D ,

we find that

an5 1
2D

21~vun1uvn!,

bn5 1
2un , cn52 1

2vn ,

and the recursion operator of the system~55! is given by

R5S 2 1
2D1uD21v uD21u

2vD21v 1
2D2vD21u

D . ~57!

B. Reductions in matrix case

In the general case considered in the previous section theAn operators belong to the Lie
algebra,

a15$S i 50
k ail

i , aiPg, kPZ1%, ~58!

that is a subalgebra of the Lie algebra,

a5$S2`
k ail

i , a iPg, kPZ%. ~59!

A standards reduction is defined by any automorphisms of the Lie algebrag of finite order
k. Becausesk5Id, the eigenvalues ofs aree i ,i 50,...,k21, wheree is a primitivek root of unity.

Let gi be an eigenspace corresponding to eigenvaluee i . Then the following reductionaj

Pgi , wherei 5 j (modk) in ~58! and~59! is compatible with Eqs.~3!. Note that according to this
definition aPg1 , and the potentialq(x,t) in ~42! belongs tog0 or, the same, satisfiess(q)5q.

It is easy to see that, to satisfy such a reduction, we must use the ansatz

Ab,n1k5lkAb,n1Rn , ~60!

where

Rn5r k21lk211¯1r 0 , r iPgi . ~61!

Further generalizations are associated with modifications of sign ‘‘1’’ in ~50!, which corre-
sponds to the simplest decomposition of algebraa into the direct sum of two subalgebras,
 2013 to 139.179.14.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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a5a1 % a2 , ~62!

wherea1 is given by~58! and

a25$S2`
21 ail

i , aiPg%. ~63!

The sign ‘‘1’’ in ~50! is the projection of ontoa1 parallel toa2 . If we have a different decom
position ~62!, then the construction from Proposition 3 is also valid, but we have the follow
condition:

RnPa1ùla2 , ~64!

instead ofRnPg. If we also have thes reduction, we must use the most general ansatz~60!,
where

RnPa1ùlka2 . ~65!

Example 6:Let us consider the following equation:

ut5
1
4uxxx2

3
8uxxu1 3

8uuxx2
3
8uuxu, ~66!

whereu is a square matrix of arbitrary size, or more generally,u belongs to an arbitrary associa
tive algebraK. This equation has a Lax representation with

L5D1S 0 1

1 0D l1S u 0

0 0D . ~67!

Here1 is the unity ofK. The reduction~67! can be described as follows~see Ref. 27!. The Lie
algebrag is the algebra of all 232 matrices with entries belonging toK. The automorphisms is
defined by

s~X!5TXT21, ~68!

where

T5S 1 0

0 21D .

Obviouslys25Id and eigenvalues ofs are 1 and21. The corresponding eigenspaces are

g05H * 0

0 *
J , g15H 0 *

* 0J , ~69!

and therefore the coefficientsai in ~59! have the following structure:

a2 j5S * 0

0 *
D , a2 j 115S 0 *

* 0D . ~70!

The subalgebraa1 is given by~58!, where the coefficients have the structure~70! and, addition-
ally,

a05S * 0

0 0D .

The subalgebraa2 has the following form:
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a25S2`
0 ail

i , ~71!

wherea0 is of the form

a05S a 0

0 a D , aPK.

The A operator for~66! is given by formulaA5(Fa,3)1 @see~49!#, where

a5S 0 1

1 0D ,

and ‘‘1’’ means the projection ontoa1 parallel toa2 .
According to~65!, Rn is of the form

Rn5S an 0

0 an
D l21S 0 bn

cn 0 D l1S dn 0

0 0D . ~72!

It follows from

Ltn12
5l2Ltn

1@Rn ,L#, ~73!

that

un2an,x1@an ,u#1bn2cn50 cn2bn2an,x50,

dn2bn,x2ubn50, dn1cn,x2cnu50,

un1252dn,x1@dx ,u#.

Finding an , bn , cn , anddn from this system, we obtain the following recursion operator:

R52~D1adu!~2D1Ru!~2D1adu!21~D1Lu!D~2D1adu!21, ~74!

whereRu andLu are the operators of right and left multiplications byu, respectively.
Note that in the commutative case~66! coincides with the modified KdV equation. It is eas

to verify that ~74! becomes the standard recursion operator of a modified KdV equation
factors in~74! have to be regarded as operators acting on a~noncommutative! polynomial depend-
ing on u,ux ,uxx ,... .

IV. CONCLUSION

In this work we devoted ourselves in the construction of recursion operators when th
representation is given. We have shown that our approach can be easily generalized to a
where theL operator is a polynomial ofl. It would be interesting to generalize it for the cases
more complicatedl dependence ofL as well as for the cases of 211-dimensional equations
Toda-type lattices, and ordinary differential equations.
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APPENDIX A: EXAMPLE TO SEC. II A

The Boussinesq equation,

utt52 1
3„u4x12~u2!2x…, ~A1!

can be expressed in the form of a pair of first-order evolution equations,

ut5vx ,

v t52 1
3~u3x18uux!. ~A2!

This system has a Lax pair,

L5D312uD1ux1v, A5~L2/3!1 . ~A3!

To construct the recursion operator for this system, we use Eq.~12! with the differential operator,

Rn5anD21bnD1cn .

By equating the coefficients of the powers ofD in ~12!, we find

an5 2
3D

21~un!, bn5 1
3„5un1D21~vn!…,

cn5 1
9„6vn18uD21~un!110un,x…,

and after that we obtain the recursion operator of the form~40! for ~A2! with

R0
053v12vxD

21,

R1
05D212u1uxD

21,
~A4!

R0
152„

1
3D

41 10
3 uD215uxD13u2x1 16

3 u21~ 2
3u3x1 16

3 uux!D
21

…,

R1
153v1vxD

21.

APPENDIX B: EXAMPLES TO SEC. II B

1. Sawada–Kotera equation

The Lax pair for the Sawada–Kotera equation,28

ut5u5x15uu3x15uxu2x15u2ux , ~B1!

is given by

L5D31uD, A5~L5/3!1 . ~B2!

In this example,L†52L, whereL†5D21L* D andL is skew-symmetric, then we use~24!. The
operatorR̃n has the same form as~29!, with the coefficients given by

an5 1
3D

21~un!, bn5 5
3un , cn5 1

9„5uD21~un!129un,x…,

dn5 1
9„5uxD

21~un!114uun126un,2x…,
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en5 1
27„10u2xD

21~un!22D21~u2xun!2D21~u2un!15u2D21~un!

128un,3x132uun,x132uxun…,

f n50.

The recursion operator is given as

R5D616uD419uxD
31~9u2111u2x!D

21~10u3x121uux!D15u4x116uu2x16ux
214u3

1~u5x15uu3x15uxu2x15u2ux!D
211uxD

21~u212u2x!. ~B3!

2. DSI system

The DSI system,25,26

ut53vvx ,
~B4!

v t52v3x12uvx1vux ,

has a Lax representation with

L5@D31~u1v !D1 1
2~u1v !x#@D31~u2v !D1 1

2~u2v !x#,
~B5!

A5~L1/2!1 .

HereRn is a differential operator of order 5, and sinceL is symmetric we again use Eq.~12!. The
expressions for the coefficients of the operatorRn are very long and complicated. Hence we do n
display them here. We find that the recursion operatorR of this system is of the form~40!, where

R0
0524D6224uD4227uxD

312~249u2x218u2142v2!D2110~27u3x212uux130vvx!D

226u4x282uu2x269ux
21222vvx1141vx

2216u3148v2u

12~22u5x210uu3x225uxu2x210u2ux115v2ux130vv3x145vxv2x130uvvx!D
21

12uxD
21~3v222u22u2x!,

R1
05168vD41204vD316~21v2x132uv !D216~40vux17v3x122uvx!D

16~13vu2x110uxvx1v4x15uv2x14vu2112v3!1108vvxD
21v12uxD

21~6uv19v2x!,
~B6!

R0
1556vD41268vxD

312~243v2x132uv !D212~36vux1219v3x1106uvx!D

12~27vu2x192uxvx199vax199uv2x14vu2112v3!12~10vu3x135u2xvx145uxv2x

110uvux118v5x130uv3x110u2vx115v2vx!D
2112vxD

21~3v222u22u2x!,

R1
15108D61216uD41432uxD

316~81u2x118u2122v2!D216~45u3x136uux170vvx!D

13~18u4x118uu2x19ux
2198vv2x167vx

2132uv2!136~2v3x12vxu1vux!D
21v

12vxD
21~6uv19v2x!.

3. DSII system

The DSII system,25,26
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ut53vx ,
~B7!

v t522~v3x1uvx1vux!,

has a Lax representation with

L5~D51uD31D3u1~v1 1
2u

2!D1D~v1 1
2u

2!!D,

A5~L1/2!1 . ~B8!

SinceL is symmetric we again use Eq.~12!. In this case the operatorRn is given as follows:

Rn5anD51bnD41cnD31dnD21enD, ~B9!

where

an5 1
3D

21~un!, bn5 5
3un ,

cn5 1
9@5uD21~un!13D21~vn!129un,x#,

dn5 1
9@5uxD

21~un!126un,2x114uun112vn#,

en5 1
27@5~2u2x1u213v !D21~un!23D21~vun1uvn!19uD21~vn!

22D21~u2xun1 1
2u

2un!154uxun128un,3x132~uun,x2unux!142vn,x#.

The recursion operator~40! for the system can be found as29

R0
052D626uD429uxD

32~11u2x19u2142v !D21~210u3x221uux230vx!D

25u4x216uu2x26ux
2260v2x24u3224vu1~2u5x25uu3x25uxu2x

25u2ux215vux215v3x215uvx!D
212uxD

21~2u2x1u213v !,

R1
05242D4248uD2287uxD26~7u2x1u226v !127vxD

2123uxD
21u,

~B10!
R0

1528vD41106vxD
31~165v2x132uv !D21~54vux1132v3x174vxu!D130vu2x179uxvx

154v4x157uv2x14u2v224v21~10vu3x125vxu2x130uxv2x110uvux19v5x115uv3x

15u2vx215vvx!D
212vxD

21~3v1u212u2x!,

R1
1527D6154uD41135uxD

313~54u2x19u2222v !D213~36u3x127uux228vx!D

13~9u4x19uu2x19ux
2221v2x216vu!218~v3x1uxv1vxu!D2123vxD

21u.

4. DSIV system

The DSIV system,25,26 which is also known as the Hirota–Satsuma system,30,31

ut5
1
2u3x13uux26vvx ,

~B11!
v t52v3x23uvx ,

has Lax representation with

L5~D21u1v !~D21u2v !, A5~L3/4!1 . ~B12!
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Since the operatorL is symmetric we use Eq.~12!. In this case the operatorRn has the same form
as ~39!, with coefficients given by

an5 1
2D

21~un!, bn5 7
4un2 1

2vn ,

cn5 1
8@6uD21~un!12D21~uun!24D21~vvn!117un,x212vn,x#,

dn,x5 1
16@6u2xD

21~un!212v2xD
21~un!130uxun28uxvn124uun,x

115un,3x212vxvn28uvn,x220vvn,x228vn,3x#.

The recursion operator~40! for the given system is

R0
05 1

4D
412uD213uxD12u2x14~u22v2!1~3uux26vvx1 1

2u3x!D
211uxD

21u,

R1
0525vD224vxD2v2x24uv22uxD

21v,
~B13!

R0
152 5

2vxD23v2x2~v3x13uvx!D
211vxD

21u,

R1
152D424uD222uxD24v222vxD

21v.

5. N53 Hirota–Satsuma system

This system is given by29

ut5
1
4u3x13uux13~2v21w!x ,

v t52 1
2v3x23uvx , ~B14!

wt52 1
2w3x23uwx .

This is an example for theN53 system that covers some otherN52 systems as special cases. F
instance, lettingw50, we get DSIV and lettingv50 we get DSIII systems.

The corresponding Lax pair is

L5~D212u22v !~D212u12v !14w, A5~L3/4!1 . ~B15!

In this case the operatorL is symmetric and henceRn has the same form as~39!, with the
coefficients

an5D21~un!, bn5 7
2un1vn ,

cn5 1
4@12uD21~un!14D21~uun1wn22vvn!117un,x112vn,x#,

dn,x5 1
8@12u2xD

21~un!124v2xD
21~un!160uxun116uxvn115un,3x148uun,x124vxun

240vxvn120vn,3x116vvn,x120wn,x#.

The recursion operator is given by

R5S R0
0 R1

0 R2
0

R0
1 R1

1 R2
1

R0
2 R1

2 R2
2
D , ~B16!

where
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R0
05 1

4D
414uD216uxD14~u2x14u224v214w!

14~ 1
4u3x13uux26vvx13wx!D

2114uxD
21u,

R1
0522~5vD214vxD1v2x18uv14uxD

21v !,

R2
055D218u14uxD

21,

R0
1525uxD26v2x22~v3x16vxu!D2114vxD

21u,

R1
152D428uD224uxD18~8w22v2!28vxD

21v28D21wx ,

R2
154~vxD

2112D21vx!,

R0
2525wxD26w2x22~v3x16wxu!D2114wxD

21u.

R1
25216vD21wx28wxD

21v,

R2
252D428uD224uxD116~w2v2!14wxD

21116vD21vx . ~B17!

APPENDIX C: EXAMPLES TO SEC. III

1. Non-Abelian Schro ¨ dinger equation

This is the system given by

ut52 1
2uxx1uvu,

~C1!
v t5

1
2vxx1vuv,

whereu andv belong toK ~see Example 6 for the notations!. The Lax operator of~C1! is given
by

L5D1S 1 0

0 21D l1S 0 u

v 0D . ~C2!

The corresponding formula~54! reduces to

S 0 un11

vn11 0 D 5lS 0 un

vn 0 D 1@Rn ,L#, ~C3!

where

Rn5S an bn

cn 2an
D . ~C4!

The formula~C3! gives us bothan ,bn ,cn and the recursion operatorR. They are given by

an5 1
2D

21~unv1uvn!, bn5 1
2un , cn52 1

2un , ~C5!

R5
1

2 S 2D1RuD21Rv1LuD21Lv RuD21Lu1LuD21Ru

2LvD21Rv2RvD21Lv D2RvD21Ru2LvD21Lu
D . ~C6!
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2. Non-Abelian modified KdV equation

The standard non-Abelian modified KdV equation is given by

ut5
1
4uxxx2

3
4uxu

22 3
4u

2ux . ~C7!

The Lax representation of this equation is given

L5D1S 0 1

1 0D l1S u 0

0 2uD . ~C8!

The recursion operatorR can be found from~60! and~61!. In our case the automorphisms is the
same as in Example 6, and formulas~60! and ~61! give us

S 0 un11

vn11 0 D 5l2S 0 un

vn 0 D 1@Rn ,L#, ~C9!

where

Rn5S 0 an

bn 0 D l1S cn 0

0 dn
D . ~C10!

Using ~C9! we find an ,bn ,cn ,dn from the following:

bn2an5un , 2an,x2anu2uan1cn2dn50,

2bn,x1bnu1ubn1dn2cn50, dn,x1cn,x5@cn2dn ,u#,

un115dn,x1@dn ,u#.

The resulting recursion operator is given by

R5 1
4~D2adu•D21

•adu!„D2~Lu1Ru!D21~Lu1Ru!…. ~C11!
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