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Deformations of surfaces associated with integrable
Gauss—Mainardi—Codazzi equations
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(Received 6 July 1999; accepted for publication 23 November)1999

Using the formulation of the immersion of a two-dimensional surface into the
three-dimensional Euclidean space proposed recently, a mapping from each sym-
metry of integrable equations to surfaceslifican be established. We show that
among these surfaces the sphere plays a unique role. Indeed, under the (@jid SU
rotations all integrable equations are mapped to a sphere. Furthermore we prove
that all compact surfaces generated by the infinitely many generalized symmetries
of the sine-Gordon equation are homeomorphic to a sphere. We also find some new
Weingarten surfaces arising from the deformations of the modified Kurteweg—de
Vries and of the nonlinear Schiimger equations. Surfaces can also be associated
with the motion of curves. We study curve motions on a sphere and we identify a
new integrable equation characterizing such a motion for a particular choice of the
curve velocity. ©2000 American Institute of Physids§0022-248810)02104-9

I. INTRODUCTION

Let F:Q—R3 be an immersion of a domaift € R? into R3. Let (u,v) e Q. The surface
F(u,v) is uniquely defined to within rigid motions by the first and second fundamental forms. Let
N(u,v) be the normal vector field defined at each point of the surf&aev). Then the triple
{F,.F,,N} defines a basis dt® on S parametrized by (u,v). The motion of this basis o8 is
characterized by the Gauss—WeingartéiV) equations. The compatibility of these equations are
the well-known Gauss—Mainardi—CodaZ&MC) equations. The GMC equations are coupled
nonlinear partial differential equations for the coefficiegt{u,v) andd;;(u,v) of the first and
second fundamental forms. For certain particular surfaces these equations reduce to a single or to
a system of integrable equations. The correspondence between the GMC equations and the inte-
grable equations has been studied extensively, see, e.g., Refs. 1-28.

Recently a more systematic approach to surfaces, GMC equations, and integrable equations
has been established by defining surfaces on Lie algebras and on their Lie Gfdupsrticular
this approach provides an explicit relation between symmetries of integrable equations and sur-
faces iniR3. Let the SUW2) valued function®(u,v,\) satisfy the Lax pair associated with some
nonlinear integrable equation for the scalar functtbfsee Refs. 29—-32Define the s(2) valued
function F(u,v,\) by

aD
F(up,\)=d ! a()\)K+M(u,v,)\)®+¢>’(¢) , )
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where a(\) is an arbitrary function of the complex constantM (u,v,\) is an arbitrary s(®)

valued function of @,v), ¢(u,v) is a symmetry of the nonlinear equation satisfieddby,v), and
®’ denotes the Frechalerivative of ® with respect tod. Then F(u,v,\) is the immersion
function of a surfacex;,x,,X3), in R3,

xi=fi(u,v,N), 1=123, F(u,u,\)=i3=3f(u,v.\)0, 2

whereo;, i=1,2,3, are the Pauli sigma matrices.

The investigation of some of the consequences of(Exis the main subject of this paper.

In Sec. Il we give a short review of some of the results of Refs. 1 and 2 and also show that if
a=¢=0 andM is a constant @) matrix, then the surface with immersion functibns a sphere.

In Sec. Il we investigate the case thasatisfies the sine-Gordon equation

%0
Judv

=siné. 3

In particular we show the following(a) If «=M=0 andF describes an oriented, compact
connected surface, then this surface is homeomorphic to a sphere. This result gives another
example to the studies of the global properties of the associated suffates%/(b) If ¢=0 and
M= (ip/2)o,, wherep is a constant, thef describes a surface of constant negative curvature.

In Sec. IV we investigate the case whetsatisfies either the elliptic sinh-Gordon or

20 %0 1
iz gzt g (Hee*'—e 20 =0, (@)
or the Liouville equation. In particular we show that special cases of(Bgcan be used to
generate linear Weingarten surfaces.

In Secs. V and VI we use E@l) and Lax pairs associated with the nonlinear Sdimger and
with the modified Korteweg—de Vrig&dV) equations to characterize certain nonlinear Weingar-
ten surfaces including

2uPH2(u?K —v)=(3u’K+4N%—2v)?, (5)
K 2 H2+ n =0 6
§ 9_,(1.2_ ’ ( )

whereK andH denote the Gaussian and mean curvatures, respectively,and are constants.

Surfaces can also be constructed from the motion of curves, see Appendices A and B. In Sec.
VII we study curve motions on a sphere. By choosing a particular velocity vector, we obtain the
new integrable equation

sing

1
(cos6)? O] + 5( 6, cosh)>+ cosé[ cosé( 8, cosb),],=0. @)

6,— 6, cosfa,* (

Equation(7) reduces to the modified KdV equation in the limit that the curvature of the curve
approaches a constant.
In Sec. VIII we give explicit formulas which associate a curve evolution to a given surface.

II. SURFACES OF INTEGRABLE EQUATIONS

In this section we follow the notations of Refs. 1 and 2.
Theorem 2.1:(Ref. D Let U(u,v;\),V(u,v;\),A(u,v;\),B(u,v;\) be sy2) valued differ-
entiable functions ofi, v for (u,v) e QCR? and\ e C. Assume that these functions satisfy

U,—V,+[U,V]=0, (8)
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and
A,—B,+[AV]+[U,B]=0. 9
Define an SW) valued functiond® (u,v;\) and an s(2) valued functionF(u,v;\) by
O, =Ud, &, ,=VD, (10)
and
F.=® !A®, F,=0 'BOD. (11)

Then for each\, F(u,v;\) defines a two-dimensional surfacelif,

3
x=F(uv;\), j=1,23, F=iY Fyoy, (12)
k=1

whereo are the usual Pauli matrices

0 1 0 —i 1 0
"1:(1 o)’ ”Zz(i o)’ "3:(0 —1)' (13

The first and second fundamental formsSoére
(ds)?=(A,A)du®+2(A,B)du dv +(B,B)dv?, (14

(ds))?=(A,+[A,U],C)du?+2(A,+[A,V],C)du dv+(B,+[B,V],C)dv?, (15

where
(A,B)=—1itracdAB), |A|=\(AA), (16)
and
_ [AB]
“=laEl 7

A frame on this surfac&, is
¢ AD, O BP, P ICP. (18

The Gauss and mean curvaturesSaire given by

diy dip) (911 12| *
. (19

K=de{G), H=tracdG), G=(
( ¢ dip dy/\d12 92

The following theorem gives an explicit construction of functignsB and of the immersion
function F from the symmetries of Eq$8) and(10):

Theorem 2.2: (Ref. 2 Suppose that)(u,v) andV(u,v) can be parametrized in terms ®f
and of the scalar functio®(u,v) in such a way that Eq8) is equivalent to a single PDE for
0(u,v) independendf \. This equation, which by definition is callédtegrable PDE possesses
the Lax pair defined by Eq10). Define the s(2) valued functionsA(u,v,\) andB(u,v,\) by

A= aU+aM+MU+U’ 20
=@ S MU, (20)
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N M
B=a——+——+[M\V]+V's, (22)

wherea(\) is an arbitrary scalar function af, M (u,v;\) is an s@2) valued arbitrary function of

u, v, \, the scalarg is a symmetry of the partial differential equatiRDE) satisfied by the
function 6(u,v), and the prime denotes Tteet differentiation. Then there exists a surface with
immersionF(u,v;\) defined in terms oA, B and ® by Egs.(20) and (21). FurthermoreF to
within an additive constant, is given by

F=¢ ! a@-I—M(IH-(I)’qS (22
I\ '

Example:Let
M=f1U+f2V+M0, (23)

whereMy is an sy2) valued constant matrix and(\),f1(\),fo(\) are scalar functions of the
arguments indicated. Then Eq20)—(21) and(22) become

A= M, ey, ' 24

a(?\)—+—U gy FogViieg F 3[Mo,U]+U" ¢, (24

TR AL T R ASNLAL VIR LA RV IRV RRYY 25

a(h) o+ = UH T+ =2V fye -+ 15[ Mo, V] + V7 g, (25)
Jd

F=0 Y a—+1,0,0+1,0,P+Mqg®P+D'¢]|. (26)

2N

We now study the surfaces generated by constant mietgixvhich corresponds to constant &Y
rotations ofd.

Theorem 2.3:Let A=[My,U] andB=[M,,V], whereM is an s§2) constant matrix. Then
K=1/Mq|? andH = —2¢/|Mg|, wheree==*1 and|M|=(My,M,). Hence all such deformed
surfaces are spheres with rafi|.

Proof: It is easy to prove that

[A,B]=aMy, (27)
where « is the scalar defined by m-(4Xv). Herem, G, andu are the corresponding three-
vectors of the matricelsl o= (|/2)E —1Mjoj, U= (|/2)2J 1u aj, =—(i/2)2 _,vjo;. Letting
e=dal|a|, we find

C= < M

M|
hence
(A,,C)=(A,.,C)=(B,,C)=0. (28
Using these equations it follows that
€
dij:_mgij- (29)

Hencedg = (—€/|Mg|)I, wherel is the identity matrix. Hence
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1
K=de(dg‘1)=w, (30)
2e
H=tr(dg*1):—m. (31
QED

This theorem implies that the rigid $2) rotations define a map from all integrable equations to
the surface of the sphere with a parametrizaiosuch that the coefficients of the first fundamen-
tal form takes the form

gy =3[ M6, d;— (- 1)) (- G)], 323

wherem?=m-m, andd;=(0,7). The immersion function is given biy=® M ®.

Ill. DEFORMATION OF SINE-GORDON SURFACES

Consider the motion of the curve with curvatyre 6, and constant torsion=A\. It is shown
in example B.1 that if the velocity of this curve is given t&;—(1/\)sin 6,(1/\)cos ), the motion
of this curve is characterized by the sine-Gordon equation

a
Jdudv

=sing, (33
whered(u,v) is a real scalar function and time is denotedvbyDefineU (u,v,\), andV(u,v,\)
by

U= iz(— 0,01+ No3), V= Zi—)\(sinﬁoz—00800'3). (34
Let ¢ be a symmetry of Eq33), i.e., lety be a solution of

0290
Jdudv

= ¢ cosd. (35

Solutions of (35 contain the geometrical and generalized symmetries of the sine-Gordon
equatiort®3® Then for eachy, theorem 2.2with =0, M=0) implies the surface constructed
from

i do B i ) 36
BCETREY = ch(cosaaﬁsm 0as), (36)

where the immersion function is given By=® 1®’(¢). Equation(33) is an integrable equation

and hence it admits infinitely many symmetries usually referred to as generalized symmetries.
Indeed, there exist infinitely many explicit solutions of E85) in terms of# and its derivatives.

The first few are

6> 63
au,ov,auuu+7“,0vw+?”,.... (37)

We now study the surfaces corresponding to these generalized symmetries.

Lemma 3.1:Let S be the surface generated by a generalized symmetry of the sine-Gordon
equation. That is, leB be the surface generated by V, A, B defined by Eqs(34)—(36). The first
and second fundamental forms, the Gaussian, and the mean curvatures of this surface are given by
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1 1 1 1
dsf:Z ¢3du2+{2¢2d02), dS|2|=§()\(puSin6du2+Xgoﬁvdvz : (39)

K_4)\26Usin0 H_Z)\(qouf)v-l-(psinﬁ)
I PPy '

(39

An immediate corollary of the above lemma is:
Corollary 3.2: Let S be the particular surface defined in Lemma 3.1 corresponding to
=46, . This surface is the sphere with

2 2
ez oaes Bave ae(sieoqus B ay?
ds? 7| Sif 0du+ 5 dv?|, dsj==| sif gdu?+ 5 dv? |, (40)
K=4\2, H=4\. (41

Let Sbe a surface generated by the symmetries of the sine-Gordon equation and defined by the
mappingF:Q—R3. HereQ CR? is defined by the regular solutions of the sine-Gordon equation
(33). We now present a global result regarding such surfaces.

Theorem 3.3: Let S be a regular surface defined in lemrt&l) in terms of a generalized
symmetry of the sine-Gordon equationSfs an oriented, compact, and a connected surface then
it is homeomorphic to a sphere.

Proof: All compact connected surfaces with the same Euler—Poincare character are
homeomorphié® For compact surfaces the Euler—Poincare charagctsrgiven by

1
XZELJ vdetg)K du dv. (42

Sinceg=detg; = ¢®¢/A% i,j=1,2, then the integrandgK in (42) simply becomes
JgK=\8, siné. (43

Hencey is independent of the deformatiogs i.e.,

N
X:ngf 0,sinddu dv. (44)

This proves thay has the same value for all generalized symmetries and hence for all sine-Gordon
deformed surfaces. Thus in order to calculaieis enough to choose the simplest case. According
to Corollary 3.2 the choicep= 6, leads to a sphere with radius 1/2where y=2. Hence all
deformed surfaces have the Euler—Poincare charget@r Therefore they are all homeomorphic
to a sphere. This completes the proof of the theorem. QED
Compact connected surfaces wkh>0 are calledovaloids They all havey=2. Hence we
have a corollary to theorem 3.3 concerning such surfaces.
Corollary 3.4: Surfaces defined in Theorem 3.3 are also homeomorphic to ovaloids.
Solitonic solutions of the sine-Gordon equation satisfy the rapidly decaying conditions,
0(*=0)=0, 6,(x»)=0, §,(=»)=0,.... Then for such a case we have the following lemma.
Lemma 3.5.Let S be the surface defined in Lemnga.1). Suppose that this surface is non-
compact. If the associated solutiétu,v) of the sine-Gordon equation satisfies the conditions that
0,0,,0,,...tend to zero asl— =, then

ﬁc vdetg)K du=0.
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We now consider a different class of surfaces which are also constructed from solutions of the
sine-Gordon equation.

Lemma 3.6:Let S be the surface constructed frobh, V given by Eq.(27) and fromA
=u(dUldN), B=u(dVIdN) wherepu is a scalar depending on This surface has the following
fundamental forms and curvatures:

,u,2 2 1 I
dslzzT du2+pcos¢9dv dv + dez : dsﬁ:thmﬁdv do, (45)
4\? 4N
K=——, H==*—cot6). (46)
n I

Corollary 3.7: Let 0 be a rapidly decaying solution of the sine-Gordon equation &ue the
surface defined in Lemm@.6). Then

fx Vdei{g)K du=0.

Proof: This is a consequence of

Vvdetg)K=—sing=—14,,.

QED

We now consider yet a different class of surfaces associated with solutions of the sine-Gordon
equation.
Lemma 3.8Let S be the surface constructed frdthandV defined by Eq(34) and from

A=f£+E[ U] B=5ﬂ+E[ V] (47)
Kooy T2t Koax T2tV

where . andp are scalars depending an The immersion functior is given by

(48)

This surface is parallel to a surface of negative constant curvature. The distance between these
surface isp/4.
Proof: A straightforward but lengthy calculation implies that for this surface

(u?+N\?p?)K+2pN2H+4N2%=0. (49

Let Ky andHq be the Gaussian and mean curvatures of a sui$gagith constant curvatur&g
and letS be parallel toS,, therf®

Ko= K Ho= —ak 50
07 1-2aH+a%k’ % 1—-2aH+a’K’ (50

wherea is a constant. Hence comparing the first equation in(&@). and (49) we find that

p 16\2

a=y Ko= 3,2

HenceSis parallel to a surfac&, with negative constant curvaturp/4 is the distance between
the surfaces.
There exists a particular case where the geometrical quantities become simpler:
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Lemma 3.9Let S be the surface in Lemmg.8) with w=\p. Then

2 1
dsfz% A2du?—2singdu dv+de2>, (51)
P 2 2 H 1 2
o|sﬁ=E \? du?—2(sin 6+ cosg)du dv+ -5 dv?|, (52
K 2 tang, H 2 2t 0 (53
=— —tané, = —— —tané.
p’ PP
The curvature density/det@)K has a form similar to the one in Corollary 3.7. Thydet@)K
=—sinf=—46,,.
The following corollary of the Lemmd3.9) is for solitonic solutions of the sine-Gordon
equation:

Corollary 3.10:Let 0 be a rapidly decaying solution of the sine-Gordon equationSinel the
surface defined in Lemm@.9). Then

fw Vdei{g)K du=0.

IV. SURFACES ASSOCIATED WITH THE SINH-GORDON EQUATION

The sinh-Gordon equation is defined by

a20+(920+1 H2e2i_ 20— e
uz t gpz g (HeETme =0, 59

where 6(u,v) is a real scalar function andy#0 is a real constant. This equation is usually
associated with surfaces of constant mean curvaiyreln what follows we will show that this
equation can also be used to construct several other classes of interesting surfaces.
Lemma 4.1:Let the real scalar functiofi(u,v) be a solution of the hyperbolic sine-Gordon
equation(54), whereH,# 0 is a real constant. Define the(8uvalued functiondJ, V, A, B by

i
U=Z[cos)\(Hoe“’+efg)al—sin)\(Hoea—e*G)oan20Ua3], (55)
P
V=—Z[sm)\(HOe9+e"’)al+cos)\(H0e"—e"’)az+20ua3], (56)
A=2 &U+ip U B=2 &V+ip V 5
=2p =+ o log U], B=2u—=+ o [0o3,V], (57)

whereu andp are real constants. The immersion functioms given by

F=d 12 o + 'p d 58
= po T 5 osdl. (58
The associated surfachas the following fundamental forms and curvatures:
1 ) )
9117 7gg2 ([€*"Ho(20+ ) +(p—21) ]+ 4Ho(4* — p?)sir? N ), (59)
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_ Ho(4u?—p?)sin 21

Ji2 3 ; (60)
1 260142 2 2 2\ o 26
920~ 7gg20 ([€7"Ho(20+p) = (p—2u) J"= 4Ho(4n"—p )sir? N e??), (62)
—H2e*%(p+2u)—p+2u—2pH, cos 2e??
11~ ge2f ) (62)
—H2e*%(p+2u)—p+2u+2pHg cos 2e??
22— ge2f ) (63
Hgsin 2
dlzzpoT, (64)
K=4 o1 (65)
e*"H3(2u+p)? = (2u—p)*’
e*Hi(2u+p)+(2pn—p)
H=—4—5— T~y (66)
e""Ho(2u+p) = (2u—p)
It is easy to show thaK andH satisfy the following Weingarten relation:
(p?—4u?)K+2pH+4=0. (67)

There exists some interesting particular limiting casep#=*=2u, Sis a surface of constant
mean curvature

1 e*’Hi-1

p=2u, H:—;, sz, (69)
1 e*'H5—1

p=-2u, H:;’ K:_—4,U~2 . (69)

If p=0, Sis a surface of constant Gaussian curvature,

1
K=—, (70
Mm

(2)H§e4"+1 1
e ()

If =0, Sis a sphere.
Surfaces Associated with the Liouville equati@ie Liouville equation can be obtained from
the sinh-Gordon equation in the lintity=0,

—— e %=0. (72)

Lemma 4.21Let the real scalar functiofi(u,v) be a solution of the Liouville equatiofY2).
DefineU, V, A, B by
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U:Z(e_aCOS)\0'1+e_0Sin)\O-2+20vU3)’ (73

i
V=—Z(e*”sin)\al—e*”cos)\aﬁZeuos), (74

whereA andB are given in(57) with p# *=2u. The immersion functiorF is given in(58) with
Ho=0. Then the associated surfaBéas the following fundamental forms and curvatures:

ds=fe 2(2u—p)A(du?+dv?), (75
dsy=—3e 2%(2u—p)(du?+dv?), (76)
__ 4 (77)
-~ (2u—p)*’
Heo 2 (78)
© 2u—p

Thus for anyu, p with p#2u, Sis a sphere.

V. DEFORMATIONS OF THE NONLINEAR SCHRO DINGER SURFACES

The nonlinear Schidtinger (NLS) equation is an equation for a complex functiéu,v).
Letting #(u,v)=r(u,v)+is(u,v), the real valued functions ands satisfy

r,=Suut2s(r?+s?), (79
S,=—Tyu—2r(r2+s?. (80)

The associatetd andV matrices defining its Lax pair are given by

Y i —2\ 2(s—ir) a1
~ 2\ 2(s+ir) 2n ) 8D
i [ —4NZ+2(r%+$?) v1—ivs
V=—_ _ : 82
2 vitiv, AN2—2(r2+5%) 82
where
v1=2r,+4\S, v,=—25,t4Ar. (83

Lemma 5.1lLet U andV be defined by Eqs81) and (82), wherer,s satisfy the integrable
nonlinear equation$79) and (80) andv,,v, are defined by(83). Let A, B be defined byA
=u(dUldN), B=u(dVIIN), whereu is a real constant, i.e.,

i[—2u O i [ —8Aum  Au(s—ir)
A== , B=—=2 . (84)
2\ 0 2u 2\ 4pu(s+ir) 8\ u
Let the new variableg and ¢ be defined in terms aof ands by
r=qcos¢, s=qsindg. (85)

In terms of these variables the NLS equati¢i8) and (80) become
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FIG. 1. Weingarten surfaces of the fori®4) with A\=0.

A, = —Quu—20°+q e}, (86)

d,=qPuut2qudy- (87)

Then the geometrical quantities of the surf@8eassociated with the §2) valued functions
U,V,A,Bdefined in(81), (82), and(84) can be expressed in terms of the new varialjesd ¢
through the following equations:

ds?= u?[(du—4\ dv)?+4qg? dv?], (89
ds?=—2uq[du—(— ¢y+ 2N\ )dv ]+ 2uq,, dv?, (89
quu
— 90
©°q %0
- quu_q(¢u+2)\2)_4q3
H= 20 : (91)

The immersion function is given by=® ~1u(a®/oN). In particular if ¢=vv, wherev is a real
constantg=q(u), thenqg(u) satisfies(Fig. 1)

duu=—29%- 1. (92

Lemma 5.3:Let U,V,A,Bbe defined by Eqs(81), (82), and (84) wherer =q(u)sin(w), s
=qg(u)cos@v), \,v,u are constants and(u) satisfies(92). Then the associated surfales a
Weingarten surface satisfying the relation

2u?H?(u?K—v)=(Bu?K+4\%—2v)2, (93
If v=—4\2 the above-mentioned Weingarten relation becomes quadratic,

2, 4\2
K—=H2+

9 9_,LL2 =0. (94)
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VI. DEFORMATIONS OF THE MODIFIED KORTEWEG-DE VRIES SURFACES
Let p(u,v) satisfy the so-called modified Korteweg—de Vri@sKdV) equation
pv:puuu+%pZPU' (95

The associatet! andV matrices defining its Lax pair are given by

T B (96)
=3, )
A2

: BN v1—lvs

i 2
vit+iv, ——23

where
PE
v1=puu+?—)\2p, V2="ANpy- (98

Lemma 6.11et U andV be defined by Eq996) and (97) where the scalar functiop(u,v)
satisfies the mKdV equatiof®5) andv,,v, are defined by Eq98). Let A andB be defined by
A= pu(dUldN), B=u(dVIaN), wherep is a real constant, i.e., let

ifm O
_ , 99
510 _M) (99
— pp?
i > +3uN?  —2uhptiup,
B=— — ) (100
2| B up? )
2ukp—ippy  ———3ul

2

The geometrical quantities of the surfa8associated with thedd,V,A,Bare given by

4\?
K= m[‘lpspuuuu_ 4pzpupuuu_ 4'F)2(Puu)2+“'I)I)ﬁpuu_4)\2P3Puu+417517uu_pi11
u
2
+8ppgl, (10D
4N 2 3 2 2 2 2 4 2 2 4
H:m[_PPuuuu+pupuuu_3)\ PPuu— P Puut 2N py—3ppy— 4N —4N“p7],
u
(102
,LL2 1 2
ols,2=T du+§(p2—6)\2)dv +(p2+4N2p?)dv?|, (103
ds,2=)\—M[— 2du+ (—2ppuyt pat 2022 —phHdu dv + 5 (— 4 +4
| (P5+47\2P2)1/2 P PPuuT Py p—p z PPuuuu™ FPuPuuuu
+ 1202 ppuy—8p puu— 4N7pg—6p7pl— 4N *p? +4N7p* — p®)dv”. (104
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The immersion function is given b =® 1u(ad/d\). A particular reduction of the above-
mentioned surface is a Weingarten surface with a complicated Weingarten relation.

Lemma 6.21 et U, V be defined by Eqg96) and(97) where\, u, a are constants anal(u)
satisfies

p?

Puu=ap— 5" (109

Then the associated surfaBas a Weingarten surface satisfying the relation

wPH?p[4(a+4N?) = p?3=16N?[ p*— 6p”(a+4N%) —BA*(a+4N%)]?, (106)

?=4 +4>\2+16)\2\/ at 4 10

It is interesting that using a different Lax pair for E4.05) it is possible to obtain a Wein-
garten surface simpler than the above:
Lemma 6.3Let U, V be defined by

where

T (108
=3l ., )
p?
i ?—(a-i-a)\-f—)\z) (a+N)p—ipy
V=— - e , (109
(a+N)p+ip, —7+(a+a)\+)\2)

where \, a are constants ang(u) satisfies Eq.(105. Let A and B be defined byA
=u(dU/dN) andA=u(dV/dN), whereu is a constant, i.e., let

—i w0 110

2o —u) (110
_ i (apt2uN) mp (112
2 mp au+2uN/’

The geometrical quantities of the surfa8associated with thedd,V,A,Bare given by

K=£[p2—2a] H=i[3p2+2()\2—a)] (112
w ' wp ’
Mz
ds,2=T[(du+(a+2)\)dv)2+p2dvz], (113
dsﬁ=%[du+(a+)\)dv]2+ %(pz—Za)dvz. (114

The immersion function is given blf=® ~1u(a®/oN). This surface is a Weingarten surface
satisfying the relation

2uPH?(uPK+4a)=[3u’K+4N%+8a]?. (115
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In the special caser=\2, this relation becomes
2uPH?=9[ u?K+4N2?]. (116

VII. INTEGRABLE SPHERICAL CURVES

Consider the motion of a curve on a sphere of radids Assume thap ,# 0. Then, using the
results of Proposition A.1 it follows that its motion is characterized by

6( COSs HU COSs 2u u 0 50 u u (COSH) t ) 2Yu | (
0 , =20, . ( )

The velocitiesvV, andV; are given in terms o¥/, and ¢ by

_4[A\sin6 cosé
V=4, matJrvzau +¢Cp, V3:—T(V2u+vlau), (119

wherecy is an arbitrary constant.
Proof: Spherical curves can be parametrized(by8), since for spherical curvés,

Pu 21 1

The last equation i1144) can be written a¥ 3= —(V,,+V17)/p, which is the second equation

(119. The first two equations if144) imply (117) and the first equation dfL19). QED
An integrable motion of a spherical curvEhe motion of the curve on a sphere of radilis.)

is characterized by Eq§117)—(119), whereV, is an arbitrary function. Hence each choice of this

function yields a spherical surface. Let the velocity compongnof this curve be given by

V,=—\ cosé(6,cosh),, (121
and letc,=\3, then @ evolves according to the integrable equation

sing

1
(cos0)2 i) + 5( 6, cos6)>+ cosé[ cosh( h, cosh),],=0. (122

6,— 6, cosfa, *

It seems that Eq.122) has not appeared before in the soliton literature. We note that in the small
6 limit this equation reduces to the potential modified KdV equation.

We note that the motion of curves on a sphere was studied recently in Ref. 8 by demanding
that the geodesic curvature of these curves is constant and equal toddn be shown that this
requirement is equivalent t@=1/\, (i.e., p,=0). Thus the integrable evolutions obtained in Ref.

8 coincide with the modified KdV hierarchy.

VIll. CURVES FROM SURFACES

Appendices A and B show that it is possible to construct surfaces from the motion of curves.
It is also possible to associate a curve evolution with a given surface. For this purpose it is more
suitable to introduce the Darboux frame on curifes.
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Let Sbe an oriented regular surface amd — S be a curveC parametrized by its arc length.
At the point p=«a(s) consider the following three unit vectors, called tharboux trihedron:
T(s) is the tangent vector t&€ at p, n(s) is the normal vector t&S at p, and b(s)=n(s)
X T(s). These vectors satisfy the Darboux equations

dT

ds — PabF pol, (123
db
FT —pgT+7gn, (124
dn
FT —pnT —7gb, (125

wherepg=pgy(S), pn=pn(S), 74=74(S), sel. The geometrical meaning of these coefficients is
the following: The scalary= —dN/ds- b is called the geodesic torsion of the cu@eThis curve
is a line of curvature o§if and only if 7y=0. p, andpy are the normal and geodesic curvatures
of C, respectively, at a pointe S.

Let p be the curvature of(s) at p which is defined bydT/ds=pN, andN be the principle
normal to the curve gb. Using the first equatiofl23) in the Darboux equationd23)—(125 we
find

pP=pgtpi. (12

Since the tangent vectdr to the curveC is common in both frames it is possible to pass from the
Frenet trihedronto the Darboux trihedronby a special local S@) transformation. Lefl, b, n
define the Darboux trihedron aid N, B denote the Frenet—Serret triad of orthogonal vectors.
Then

n=sinN+cosfB, b=cosdN—sinéB. (127

This enables us to connect the torsioand curvature of the curveC to its geodesic torsiom,
geodesic and normal curvaturgg, p, .

This transformation induces a local 8) gauge transformation on the Lax equatighd5):
Letting @' =S®, we find

U’'=Sust+s,s? (128
V'=SvsSl+s st (129

The matrixSis given as

1 e—i 02 ei 012
o e -

E e i02 bR

In what follows we given an example of how a curve motion can be identified from a given
surface.

Proposition 8.1:Consider the surface described in Theorem 2.2 of Ref. 1. This surface is
associated with the motion of a curve with curvature and torsion given by

2 2

Ys , (131

a

Us

pA(st)=|
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Uz)

U, Us s

(s)=—- 0,2 (132
1+ U_3)

wheret=v anda=ds/du. Heres denotes the arc length. The componeéws V,, andV; of the
velocity of this curve are defined in terms pfand 7 by the differential equationgAl). An
orthogonal frame on this curve is

AR -1 -1
T=£=—ICD o1®, B=—i® “g,®, N=—id “03D. (133

Proof: Usinga=ds/du and the definitions o> andF to computeF ¢ andNg, it follows that

U, U, Us
<FssaN>:?v <NSIB>:?’ <FSS’B>:_?' (139

Let T, b, n define the Darboux trihedron associated with the matrieg®,N defined in
(133). Using the Frenet—Serret equations

Ts=pN, Ng=—pT+7B, Bg=-—7N, (135

it follows that
(Fss,NY=Tg-n=pn-(sin N+ coséB)=p sin ¥, (136
(Fss,BY=Ts-b=pcosb, (137
(Ng,B)=ng-b=(sin N+ coséB) - (cosdN—sin §B) (138
=0s— . (139

Comparing these equations witA4), we find

Yi_, Y2 sing, 2=psing 140
g —0s—7  =psing, —==psing. (140

Eliminating 6, Egs.(131) and (132 follow. It is now possible to identify the geodesic curvature
pg., the normal curvaturp,,, and the geodesic torsian of the curveC in terms of the parameters

of S:
Us
pg=pCOSO)=—, (141
. U,
pn=—pSIn(0)=?, (142
_g_ Ut 143
Tg= = (143
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APPENDIX A: THE MOTION OF CURVES

Let u denote the arclength of a curveltf. This curve can be uniquely characterized, within
a rigid motion inR3, by its curvature and its torsion. This characterization is expressed by the
classical Frenet—Serret equations which define the dependence of the associated fuaitie on
Proposition A.l:Let the scalar real functiong(u,t) and 7(u,t), which are differentiable
functions ofu andt for every(u,t) in some neighborhood dt?, denote the curvature and torsion
of a curve with arclength denoted by Let the real scalar functiong;, which are differentiable
functions ofu andt for every(u,t) in some neighborhood dt?, denote the velocity of this curve.
The motion of this curve is defined by

A au TVer=0 Gt gy T Vep=0 Gt VartVep=0. (A1)

These equations are the compatibility conditions of the following equations for t(2 S&lued
function ®(u,t),

Vs  Vi—iV,
Vi+iV, =V . (A2)

oo i T —p I
ot 2

W 2l—p —r

Proof: Let x;, j=1,2,3, be a point on a curve iR® whose arclength is denoted by This
leads to

i (9XJ 2_ 1
=1\ du -

The Serret—Frenet frame is a triad of orthonormal veciy$\, B, whereT is the tangent vector,

N is the principal normal unit vector, perpendicularftavhich lies in the oscillating plane of the

curve, and is the binormal unit vector, perpendicular to bdttandN. The components of these
vectors satisfy the condition

T2+NP+Bl =1, j=1,23, (A3)

and the classical Frenet—Serret equations

; T; 0O p O T,
—[Nj|=[ =p 0O —7|[N;|, j=1,23. (A4)
au

B; 0 r 0/ \B

Suppose that the above curve is allowed to evolve in time and that it does not stretch during the
motion. Since the frame is orthogonal, its time evolution is given by

ST 0 Vi —Va\ /T,
Bj V, -V O B;

Using the s(2) representation of $8), these equations yielgA2).
Proposition A.2:Let the complex valued functiong(u,t,A) andV(u,t,\), be differentiable
functions ofu andt for every (u,t) in some neighborhood dt?. Assume thaiy andV satisfy
p=Vyticy—ilV, (AB)

whereo is defined by
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cru=_7i<7¢+vm (A7)

Equationg/A6) and(A7) are the compatibility conditions of the following equations for the(&U
valued function® (u,t,\):

oD 1( in Y ) ob 1
— . ] q), —
—¢ —IA

u - 2
Equations/A6) and (A7) describe the motion of a curve with=|y|, 7= (arg),+\. The velocity
of this curve satisfies

ic V
vV —io

gt 2 (A8)

Vi+iV,=Vexd —id,'r—i\u], Vg =—r+oy,.
Proof: Substituting the relations
= peiaglrﬂ)\u, V=(V1+iV2)ei‘9§17+”‘u, (A9)
into Egs.(A6) and (A7) we find (A2) and

V2U+ VlT

a7 tr
‘ p

u +o, o,=Vap, (A10)
Whereajl denotes integration with respecttoEliminating o from these equations we find that
the equation obtained from the equationgA®) after eliminatingVs.

Example A.1{Constant torsionThe motion of a curve of constant torsier\ is character-
ized by

1 2 2 -1

pr="AVo= = (dy+p +pudy ")V, (A11)
where the velocitie¥; andV; can be expressed in terms 8§ and p by
1 -1 -1
Vi=— 5 (Vautpdy " (Vap)),  V3=d, " (Vap). (A12)
Proof: If 7=\ Eq. (A2) becomes

1

p-=V1y—AVy, Vg, =Vyp, Vi=- X(Vzu"’PVs)- (A13)

These equations yield E¢A11).

APPENDIX B: INTEGRABLE CURVE MOTIONS

It is well known that there exist many curve evolutions which are integrable. We call a curve
evolution integrable if the motion is defined in terms of an integrable PDE. Integrable evolutions
of curves have been studied extensively in the recent litefaturée turns out that for particular
velocities, the motion of curves is defined by certain integrable equations, which include the
sine-Gordon, the modified Korteweg-de Vries, the nonlinear Sthger, and the Hirota equa-
tions. An obvious approach for obtaining integrable curve evolutions is to choose the fungtions
in such a way that the nonlinear equatidAd.) [or (A6) and(A7)] are independent of.

Example B.1{(Integrable evolutions of curves with constant torsiorThe motion of curve
with constantr=N\ is characterized by Eq$Al1l) and (121). Let its velocity be specified as
follows:
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Case 1:If
1 1
V]_:O, V2= - XS”] 0, V3=XC050, (Bl)

thenp evolves according to the sine-Gordon equation,
p=0,, 0,=sind. (B2)
Case 2:If
Vi=puut3p®=Np, Vo=—\py, Vi=—3Ap>+\% (B3)
thenp evolves according to the modified KdV equation,
Pt=Puuut 3 p%py- (B4)
Case 3:If A=1 and
Vi=putzp’—p, Vo=—py, Vs=—3p°+1, (B5)
thenp evolves according to the Painlave Il equation
p=tPAW(¢), E=u(t) 13 Wg+3eW+3iW3=C, (B6)

whereC is a constant.
Example B.2(Integrable curve evolutions associated with the INL&t

V=igy—Np,o0=3|¢]?+\?, (B7)

in Egs. (A7) and(A8), then ¢ evolves according to the nonlinear Sollirer equation,

[
Y=ot 5 U2, (B8)

This describes the integrable curve motion with|¢l, 7= d, arg@)+\.
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