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Multi Input Dynamical Modeling of Heat Flow

With Uncertain Diffusivity Parameter

MEHMET ÖNDER EFE1 AND HİTAY ÖZBAY2

ABSTRACT

This paper focuses on the multi-input dynamical modeling of one-dimensional heat conduction process with

uncertainty on thermal diffusivity parameter. Singular value decomposition is used to extract the most

significant modes. The results of the spatiotemporal decomposition have been used in cooperation with

Galerkin projection to obtain the set of ordinary differential equations, the solution of which synthesizes the

temporal variables. The spatial properties have been generalized through a series of test cases and a low

order model has been obtained. Since the value of the thermal diffusivity parameter is not known perfectly,

the obtained model contains uncertainty. The paper describes how the uncertainty is modeled and how the

boundary conditions are separated from the remaining terms of the dynamical equations. The results have

been compared with those obtained through analytic solution.

Keywords: Heat Conduction, multi-input modeling, singular value decomposition, model
reduction, infinite dimensional system.

1. INTRODUCTION

Modeling of systems displaying spatial continuum requires a careful consideration

since the physical process under investigation is of infinite dimensions. Efforts in

understanding the behavior of such systems have particularly focused on the low

dimensional models capturing the essential behavioral properties with a few Ordinary

Differential Equations (ODEs). This has been done by using modal decompositions

such as Proper Orthogonal Decomposition (POD) and Singular Value Decomposition

(SVD). Although neither the decomposition techniques nor the infinite dimensionality

are new issues in this field, obtaining a model having the boundary conditions as

external inputs is a major problem in the POD and SVD methods. More explicitly,

these approaches result in models where external control input appears in the
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dynamical equations implicitly, and this is not very useful for controller design.

Another difficulty is the presence of modeling uncertainties, which stem from varying

internal parameters or hypotheses that are not thoroughly valid. For the heat

conduction process, imprecise knowledge on thermal diffusivity parameter is a good

example to study uncertainties.

The use of decomposition techniques in modeling of spatially continuous systems

has extensively been studied in the field of aerodynamic flow control problems, [1–4].

Since the dynamics of the process under investigation is governed by Navier–Stokes

equations, obtaining closed form solutions are very difficult and the modeling studies

particularly focus on the real time observations from the process. For systems having

two or more spatial dimensions, the POD technique has been utilized with the aid of

snapshots method, [1, 2]. Alternatively, for single dimensional processes, the same

modeling procedure can be followed by exploiting the SVD technique.

Procedurally, in both of them, if the numerical data contains coherent modes, the

expansion accurately describes the temporal modes and the spatial components

distributing them over the physical domain of the process. Furthermore, the ortho-

normality of the basis functions, which describe the spatial properties, helps in finding

a set of ODEs synthesizing the temporal modes. Although the algorithmic part seems

straightforward, the final form of the ODEs depicts an autonomous system having no

external input. At this point, several modifications are needed to separate the effect

of boundary conditions, which constitute the inputs exciting the process. Single

dimensional heat conduction problem is therefore a good candidate to study how such

modeling issues are addressed.

A number of variations of this problem has been taken into consideration in former

studies, [5–7]. Atwell and King [5, 6], have considered two-dimensional heat

conduction problem with control input explicitly available in the PDE. The thermal

diffusivity parameter has been taken as a known constant and several control

strategies have been assessed with the modeling results of POD approach. In [6], the

design has been discussed from the computational point of view.

Another work focusing on one-dimensional heat conduction problem reports the

design of time-optimal boundary control, [7]. It is emphasized in [7] that the time-

optimal control has the bang-bang property, and the solution has been postulated by

the techniques of Hilbert spaces. Rösch [8], views the characterization of boundary

condition as an identification problem, and presents an iterative approach to meet the

conditions of optimality.

Although the techniques of functional analysis suggest several solutions to the

problem at hand [9], the technique presented in this paper can be generalized to a

variety of systems displaying arbitrarily complicated behavior. This is intimately

related to the fact that the approach is observation-based, that is, the dynamical

content of the resulting model is confined to what is implied in the data leading to the

model. In [10, 11], we demonstrate the modeling and control issues on 1D Burgers
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equation and 2D heat equation. The results presented in [11] are particularly

important in the sense that the parameters of the dynamic model changes if the

frequency content of the boundary conditions changes. In other words, every model is

valid only under the conditions that are effective during the process of data

acquisition. The results discussed in this paper are in good compliance with the claims

of [11], and is an important contribution to the related literature.

This paper is organized as follows: The second section presents briefly the SVD

technique and its relevance to the modeling strategy. In the third section, development

of the reduced order model for the heat conduction phenomenon is analyzed and the

infinite dimensional solution of the problem is described. The fourth section presents

the simulation results and the concluding remarks are given at the end of the paper.

2. SINGULAR VALUE DECOMPOSITION

Consider the snapshot dðthÞ ¼ uð0; thÞ; uð�x; thÞ; . . . ; uðN�x; thÞð Þ, which is the data

(uð�; thÞ) observed from a process at time t ¼ th. If the data is recorded over a grid

having S time points and N þ 1 spatial locations, the ensemble, D, will be a matrix of

dimensions S � ðN þ 1Þ; and dðthÞ will be a row of D (or a snapshot from the process)

for the observation at time t ¼ th. Singular value decomposition separates the content

of D as follows:

D ¼ U�VT; ð1Þ

where T denotes the transpose. In Equation (1), U is an S � S orthogonal matrix, � is

an S � ðN þ 1Þ matrix containing the singular values in the diagonal with rest of the

entries being equal to zero, and V is an ðN þ 1Þ � ðN þ 1Þ orthogonal matrix. The

first N þ 1 rows of � contain the singular values in decreasing order, that is,

�1 � �2 � � � � � �Nþ1.

Defining Z :¼ U� lets us rewrite Equation (1) as follows

D ¼
XNþ1

k¼1

zkv
T
k ; ð2Þ

where zk and vk correspond to the kth columns of the matrices Z and V respectively.

The representation in Equation (2) contains the full set of modes existing in the

ensemble D, if however the expansion is performed utilizing M modes, where

M < N þ 1, one can obtain an approximate reconstruction of the information content

of D; and Equation (2) can be rewritten as D �
PM

k¼1 zkv
T
k . The accuracy of this

representation is given by the percent energy captured. This measure is described as

E ¼ 100 ð
PM

k¼1 �kÞ= ð
PNþ1

k¼1 �kÞ. The most useful aspect of the representation in

Equation (2) is the fact that it contains the temporal information in Z and spatial
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information in V. Therefore, one can set desired energy percentage (E ), find the

necessary number of modes (M ) and identify the corresponding columns of Z and V to

obtain a reduced order solution given below:

uðx; tÞ �
XM
k¼1

�kðtÞ�kðxÞ; ð3Þ

where �kðtÞ is a function of time, whose value at time t ¼ i�t is equal to the value

seen in the ith entry of zk. Similarly, �kðxÞ is a function of x, and it synthesizes the

entries seen in vTk at every spatial grid point, say x ¼ j�x. Therefore, one can vi-

sualize the relation between the observed data and these new variables as ðDÞij �PM
k¼1�kði�tÞ�kðj�xÞ. This representation is useful for modeling purposes due to

the orthonormality of the columns of the matrix V. In what follows, obtaining the

reduced order models based on the approximation in Equation (3) is discussed.

3. REDUCED ORDER MODELING OF HEAT CONDUCTION PROCESS

In this section, we apply SVD technique to the one dimensional heat conduction

equation described by

@uðx; tÞ
@t

¼ c2 @
2uðx; tÞ
@x2

; ð4Þ

where c ¼ cm þ�c is the thermal diffusivity parameter with known nominal value cm

and constant uncertainty denoted by �c. The initial and boundary conditions are

specified as follows: uðx; 0Þ ¼ 0 for 8x, uð0; tÞ ¼ �0ðtÞ and uð1; tÞ ¼ �1ðtÞ where �0ðtÞ
and �1ðtÞ are the external inputs of the system.

Let C be a class of signals defined as C ¼ fgk ¼ WLh : h 2 L1; jjhjj1 � 1g, WL is

a lowpass filter with cutoff frequency fc (Hz) and k is 0 or 1. Denote the solution

uf0gðx; tÞ observed when �0ðtÞ ¼ g0ðtÞ and �1ðtÞ ¼ 0, and denote the solution uf1gðx; tÞ
observed when �0ðtÞ ¼ 0 and �1ðtÞ ¼ g1ðtÞ. The superscripts f0g and f1g refer to the

variables relevant to the boundary conditions �0ðtÞ and �1ðtÞ respectively, and

g0ðtÞ 2 C and g1ðtÞ 2 C are the arbitrarily chosen test signals. Under these conditions, it

should be clear that uðx; tÞ ¼ uf0gðx; tÞ þ uf1gðx; tÞ would be the solution of the PDE

in Equation (4) and the boundary conditions leading to this solution would be

�0ðtÞ ¼ g0ðtÞ and �1ðtÞ ¼ g1ðtÞ. Since the SVD scheme yields the decomposition

uðx; tÞ ¼
XM
i¼1

ð�f0g
i ðtÞ�f0g

i ðxÞ þ �
f1g
i ðtÞ�f1g

i ðxÞÞ; ð5Þ
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inserting this into Equation (4) results in

XM
i¼1

ð _��f0g
i ðtÞ�f0g

i ðxÞ þ _��
f1g
i ðtÞ�f1g

i ðxÞÞ

¼ c2
XM
i¼1

�
f0g
i ðtÞ @

2�
f0g
i ðxÞ
@x2

þ �
f1g
i ðtÞ @

2�
f1g
i ðxÞ
@x2

 !
: ð6Þ

Clearly, determining a useful set of basis functions from Equation (6) is very

difficult if both of the boundary conditions are arbitrarily chosen functions from C. For

this purpose, one can separate the terms in Equation (6) as follows:

XM

i¼1

_��
f0g
i ðtÞ�f0g

i ðxÞ ¼ c2
XM

i¼1

�
f0g
i ðtÞ @

2�
f0g
i ðxÞ
@x2

; ð7Þ

which is obtained when �1ðtÞ ¼ 0 and �0ðtÞ 2 C. Similarly,

XM

i¼1

_��
f1g
i ðtÞ�f1g

i ðxÞ ¼ c2
XM

i¼1

�
f1g
i ðtÞ @

2�
f1g
i ðxÞ
@x2

; ð8Þ

which is obtained when �0ðtÞ ¼ 0 and �1ðtÞ 2 C. The useful fact here is that the basis

functions seen in Equations (7) and (8) are those seen in Equation (6). Therefore, to

extract the effect of each individual boundary condition, we will analyze the spatial

effects of the chosen boundary condition by holding the other input at zero. For this

purpose, consider the case �0ðtÞ ¼ 0 and �1ðtÞ 2 C. This will let us postulate the

dynamical system responding to the stimulus at x ¼ 1. Since �0ðtÞ ¼ 0, the SVD

scheme gives the approximate solution in the following form:

uðx; tÞ ¼ uf1gðx; tÞ ¼
XM
i¼1

�
f1g
i ðtÞ�f1g

i ðxÞ; ð9Þ

which has to satisfy the PDE in Equation (4). Inserting Equation (9) into Equation (4)

yields the following relation

XM

i¼1

_��
f1g
i ðtÞ�f1g

i ðxÞ ¼ ðc2
m þ c�Þ

XM
i¼1

�
f1g
i ðtÞ	f1g

i ðxÞ; ð10Þ

where 	
f1g
i ðxÞ ¼ @2�

f1g
i ðxÞ=@x2 and c� ¼ 2cmð�cÞ þ ð�cÞ2

. Knowing that

h�f1g
i ðxÞ;�f1g

j ðxÞi ¼ 
ij ¼
1; if i ¼ j

0; otherwise

�
;
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and taking the inner product of both sides of Equation (10) with �
f1g
k ðxÞ, which

corresponds to the Galerkin projection, result in the equality in Equation (11)

_��
f1g
k ðtÞ ¼ ðc2

m þ c�Þ
XM
i¼1

�
f1g
i ðtÞh�f1g

k ðxÞ; 	f1g
i ðxÞi: ð11Þ

As mentioned earlier, the effects of the external stimuli are implicit in the above

equation. For this reason, define the grid as x ¼
SN

i¼0 ið�xÞ, where �x is the spatial

step size and N þ 1 is the number of grid points considered for the numerical solution

satisfying N�x ¼ 1. Partitioning the grid as x ¼ 0 [ ð
SN�1

i¼1 ið�xÞÞ [ 1 ¼ 0 x�T 1ð ÞT,

one can calculate the values of the functions �
f1g
k ðxÞ and 	

f1g
i ðxÞ at every grid point,

and rewrite them in the vector form as �
f1g
k ðxÞ and 	

f1g
i ðxÞ, respectively. Then the

inner product of the two functions becomes hf ðxÞ; gðxÞi ¼ f ðxÞTgðxÞ. Taking this and

the above partitioning into account, and rewriting Equation (11) yield

_��
f1g
k ðtÞ ¼ ðc2

m þ c�Þ
XM

i¼1

�
f1g
i ðtÞ�f1g

k ðx�Þ
T
	
f1g
i ðx�Þ

þ ðc2
m þ c�Þ

XM
i¼1

�
f1g
i ðtÞ�f1g

k ð0Þ	f1g
i ð0Þ

þ ðc2
m þ c�Þ

XM
i¼1

�
f1g
i ðtÞ�f1g

k ð1Þ	f1g
i ð1Þ: ð12Þ

One should notice that although we are examining the dynamics caused by the

stimulus at x¼ 1, the above expansion treats the quantities relevant to x¼ 0

separately. This is required because in realistic test conditions, both inputs may

assume nonzero values and the effects of them must perfectly be separated to observe

a good match between the approximate solution and the numerical solution.

An important observation on Equation (11) is that the external inputs are not seen

explicitly. In what follows, the terms in Equation (12) will be manipulated such that

the two dynamics are separated properly. The first one is specified independently at

the boundaries, while the second one is determined by the governing PDE, that is,

Equation (4). The information over the physical domain of the latter is not specified

independently. The driving point is to notice that the solution in Equation (9) must be

satisfied at the boundaries as well. This gives the following information;

uð1; tÞ ¼ uf1gð1; tÞ ¼ �1ðtÞ ¼
XM

i¼1

�
f1g
i ðtÞ�f1g

i ð1Þ; 8t � 0: ð13Þ

Or equivalently,

�
f1g
k ðtÞ�f1g

k ð1Þ	f1g
k ð1Þ ¼ �1ðtÞ	f1g

k ð1Þ �
XM

i¼1

ð1 � 
ikÞ�f1g
i ðtÞ�f1g

i ð1Þ	f1g
k ð1Þ: ð14Þ
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In a similar fashion, for x¼ 0, we have the following equality:

uð0; tÞ ¼ uf1gð0; tÞ ¼ �0ðtÞ ¼ 0 ¼
XM
i¼1

�
f1g
i ðtÞ�f1g

i ð0Þ; 8t � 0: ð15Þ

Or equivalently,

�
f1g
k ðtÞ�f1g

k ð0Þ	f1g
k ð0Þ ¼ �0ðtÞ	f1g

k ð0Þ �
XM

i¼1

ð1 � 
ikÞ�f1g
i ðtÞ�f1g

i ð0Þ	f1g
k ð0Þ: ð16Þ

Apparently since �0ðtÞ ¼ 0, the relevant term can be eliminated. However, for

nonzero boundary conditions at both inputs, this term introduces the cross interaction.

Therefore, due to – probably nonzero – gain 	
f1g
k ð0Þ of �0ðtÞ, the term should not be

deleted.

Now, we will analyze the last two terms of Equation (12) by utilizing Equations (14)

and (16). Firstly, rewrite the summation of the second term in Equation (12) as follows

and insert Equation (16) into the result. This gives the second line of Equation (17).

XM
i¼1

�
f1g
i ðtÞ�f1g

k ð0Þ	f1g
i ð0Þ

¼ �
f1g
k ðtÞ�f1g

k ð0Þ	f1g
k ð0Þ þ

XM

i¼1

ð1 � 
ikÞ�f1g
i ðtÞ�f1g

k ð0Þ	f1g
i ð0Þ

¼ �0ðtÞ	f1g
k ð0Þ �

XM
i¼1

�
f1g
i ðtÞð�f1g

i ð0Þ	f1g
k ð0Þ � �

f1g
k ð0Þ	f1g

i ð0ÞÞ ð17Þ

The same rearrangement for the last summation in Equation (12) by using

Equation (14) yields

XM
i¼1

�
f1g
i ðtÞ�f1g

k ð1Þ	f1g
i ð1Þ

¼ �
f1g
k ðtÞ�f1g

k ð1Þ	f1g
k ð1Þ þ

XM

i¼1

ð1 � 
ikÞ�f1g
i ðtÞ�f1g

k ð1Þ	f1g
i ð1Þ

¼ �1ðtÞ	f1g
k ð1Þ �

XM
i¼1

�
f1g
i ðtÞð�f1g

i ð1Þ	f1g
k ð1Þ � �

f1g
k ð1Þ	f1g

i ð1ÞÞ ð18Þ

Concatenate all three terms in Equation (12), using Equations (17) and (18) and

defining the state vector as �f1g ¼ ð�f1g
1 �

f1g
2 . . .�

f1g
M ÞT yields the following result:

_��f1gðtÞ ¼ ðAf1g þ�Af1gÞ�f1gðtÞ þ ðBf1g þ�Bf1gÞ�ðtÞ; with �f1gð0Þ ¼ 0 ð19Þ
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where �ðtÞ ¼ �0ðtÞ�1ðtÞð ÞT and

½Af1g�ki ¼ c2
mð�

f1g
k ðxÞ

T
	
f1g
i ðxÞ � �

f1g
i ð0Þ	f1g

k ð0Þ � �
f1g
i ð1Þ	f1g

k ð1ÞÞ

½�Af1g�ki ¼ c�ð�f1g
k ðxÞ

T
	
f1g
i ðxÞ � �

f1g
i ð0Þ	f1g

k ð0Þ � �
f1g
i ð1Þ	f1g

k ð1ÞÞ
½Bf1g�k ¼ c2

mð	
f1g
k ð0Þ 	f1g

k ð1ÞÞ
½�Bf1g�k ¼ c�ð	f1g

k ð0Þ 	f1g
k ð1ÞÞ: ð20Þ

If the procedure described through Equations (9)–(20) is repeated for the case

�0ðtÞ 2 C and �1ðtÞ ¼ 0, it yields

_��f0gðtÞ ¼ ðAf0g þ�Af0gÞ�f0gðtÞ þ ðBf0g þ�Bf0gÞ�ðtÞ; with �f0gð0Þ ¼ 0 ð21Þ

where

½Af0g�ki ¼ c2
mð�

f0g
k ðxÞ

T
	
f0g
i ðxÞ � �

f0g
i ð0Þ	f0g

k ð0Þ � �
f0g
i ð1Þ	f0g

k ð1ÞÞ

½�Af0g�ki ¼ c�ð�f0g
k ðxÞ

T
	
f0g
i ðxÞ � �

f0g
i ð0Þ	f0g

k ð0Þ � �
f0g
i ð1Þ	f0g

k ð1ÞÞ
½Bf0g�k ¼ c2

mð	
f0g
k ð0Þ 	f0g

k ð1ÞÞ
½�Bf0g�k ¼ c�ð	f0g

k ð0Þ 	f0g
k ð1ÞÞ: ð22Þ

At this point, given �0ðtÞ ¼ g0ðtÞ and �1ðtÞ ¼ g1ðtÞ, the dynamical models in

Equations (19) and (21) synthesize the temporal components, and the output is cal-

culated as described in Equation (5).

Denoting the Laplace transform operator by Lf�g and defining Lfuf0gðx; tÞg ¼
Uf0gðx; sÞ, Lfuf1gðx; tÞg ¼ Uf1gðx; sÞ, Lfuð0;tÞg¼Lf�0ðtÞg¼�0ðsÞ and Lfuð1;tÞg¼
Lf�1ðtÞg ¼ �1ðsÞ, a compact representation of the dynamics can be given as

follows:

Uf0gðx; sÞ
Uf1gðx; sÞ

� �
¼ G00ðx; sÞ G01ðx; sÞ

G10ðx; sÞ G11ðx; sÞ

� �
�0ðsÞ
�1ðsÞ

� �
ð23Þ

Considering Equation (5), the above representation takes the form below:

Uðx; sÞ ¼ G00ðx; sÞ þ G10ðx; sÞð Þ�0ðsÞ þ G01ðx; sÞ þ G11ðx; sÞð Þ�1ðsÞ ð24Þ

where Uðx; sÞ ¼ Lfuðx; tÞg. This last representation will let us compare the frequency

response of the approximate model and that of the irrational transfer functions, which

are discussed next.

The exact solution of Equation (4) with zero initial condition is expressed as

Uðx; sÞ ¼ Hf0gðx; sÞ�0ðsÞ þ Hf1gðx; sÞ�1ðsÞ ð25Þ
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where

Hf0gðx; sÞ ¼ sinh ð
ffiffi
s

p
=cÞð1 � xÞð Þ

sinh
ffiffi
s

p
=cð Þ ð26Þ

and

Hf1gðx; sÞ ¼ sinh ð ffiffi
s

p
=cÞxð Þ

sinh
ffiffi
s

p
=cð Þ ð27Þ

For a thorough investigation of this matter, the reader is referred to [9] and the

references therein. In what follows, we present the details concerning the modeling

studies with an exemplar case and the comparison of Equations (24) and (25) in

frequency domain.

4. SIMULATION STUDIES

For obtaining a set of ODEs characterizing the dominant dynamics, the PDE in Equation

(4) has been solved by using Crank-Nicholson method (see [12]) for a set of boundary

conditions according to the procedure discussed. The solution has been obtained over a

grid possessing equally spaced 100 spatial points, that is, N þ 1 ¼ 100 (�x ¼ 1=99),

and the time interval (�t) has been chosen as 1 msec (S ¼ 1001). As the test inputs, we

have considered gðtÞ ¼ 1, gðtÞ ¼ t, gðtÞ ¼ 1 � expð�6tÞ and gðtÞ ¼ sinð2�tÞ while

applying these from one end and holding the other end at zero. One should note that by

choosing these boundary conditions, which are similar to each other in frequency

content, the frequency range up to fc � 10 Hz over which the model is to be valid is

specified indirectly. In this paper, these are the cases we are interested in, and the result is

expected to capture all of them on the implied frequency range. Having obtained the

solutions, SVD procedure is applied for each case. We have observed that keeping five

modes (M ¼ 5) captured in average 99.9459% of the total energy described in the

second section.

In the simulations, the components of the thermal diffusivity parameter are taken as

cm ¼ 1 and �c ¼ 0:05. The obtained basis functions have been used to calculate the

terms in Equations (20) and (22), which are the system matrices and uncertainty terms.

In Figure 1, modeling results for an exemplar case are illustrated. The chosen boundary

conditions are �0ðtÞ ¼ sgnðsinð4�tÞÞ and �1ðtÞ ¼ cosð�tÞ cosð10�tÞ, the frequency

domain pictures of which are similar to the model derivation conditions. Despite the

excitement of slightly higher frequencies due to sgnð�Þ function and cosð10�tÞ term,

the figure clearly emphasizes a very good match in space-time domain. In Figure 2, the

comparison of frequency domain pictures is presented. For this purpose, define

Gf0gðx; sÞ ¼ G00ðx; sÞ þ G10ðx; sÞ; and Gf1gðx; sÞ ¼ G01ðx; sÞ þ G11ðx; sÞ: ð28Þ
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In upper left and upper right subplots of Figure 2, jHf0gðx; j!Þj and jHf1gðx; j!Þj are

plotted respectively. The lower left and lower right subplots illustrate what have been

obtained through SVD based approximate modeling, that is, jGf0gðx; j!Þj and

jGf1gðx; j!Þj respectively. Clearly, if one compares the results seen on each column of

the figure, it becomes evident that the approximate model is able to reconstruct the

space-frequency picture of the infinite dimensional transfer functions over the range

of interest. As depicted in Figure 2, the finite dimensional approximation exhibits

discrepancies from the infinite dimensional model. Under the conditions studied, the

mismatch seen there is not removable due to the facts discussed in the sequel.

Figure 3 depicts the quantities jHf0gðx; j!Þ � Gf0gðx; j!Þj, which is on the left

subplot, and jHf1gðx; j!Þ � Gf1gðx; j!Þj, which is on the right subplot. The surfaces

indicate that the approximation is good approximately up to 10 Hz. It is not surprising

to get symmetric error plots but one fact needs emphasis: The models in Equations

(19) and (21) perform better around the middle of the physical domain than the

locations close to the boundaries. Particularly, the model in Equation (19) reveals the

best match when x � 0:31 (refer to the right subplot) and the model in Equation (21)

does when x � 0:69 as seen in the left subplot. Although the points of best match

Fig. 1. A comparison of the numerical solution and approximate solution when �0ðtÞ ¼ sgnðsinð4�tÞÞ and

�1ðtÞ ¼ cosð�tÞ cosð10�tÞ.
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move slightly with increasing frequency, the error surfaces indicate that a stationary

error behavior is obtained over the considered frequency range.

Considering the results presented through the figures, if the signals applied from

the boundaries are not from C, the approximation accuracy decreases inevitably. The

reason for this is the lack of relevant data in the model derivation stage. If a better

accuracy at high frequencies is sought, one has to increase M, the number of modes

included and choose excitation signals that are richer in frequency content. However,

since the less effective modes contain small-in-magnitude but high-in-frequency

information, calculation of the spatial derivatives (	ðxÞ) contain higher uncertainties

and one needs to increase spatial resolution by increasing N. As a result of this, to

obtain same level of accuracy on the solution, setting a lowered simulation stepsize

(�t) will be needed inevitably. Apparently, the ultimate cost of improving the

accuracy for relatively-higher frequencies will be to give concessions from

computational complexity. In the view of all these, one should understand the

underlying trade-off between the model simplicity and better matching of the

frequency responses. From this point of view, the mismatch around x¼ 0 and x¼ 1 is

an expected result and it seems tolerable when considered with the result in Figure 1.

Fig. 2. A comparison of the magnitudes of infinite dimensional transfer functions [(Hf0gðx; j!Þ and

Hf1gðx; j!Þ) and transfer functions based on approximate model (Gf0gðx; j!Þ and Gf1gðx; j!Þ].
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Furthermore, one has to notice that since the goal is to find a reduced order model,

observing such high-frequency mismatches should not be surprising.

Our work has also proved that the approximate model can further be simplified. We

have examined the poles and the corresponding residues of the partial fraction expansion

of the nominal dynamics obtained from Equation (23) in the following form:

Gijðx; sÞ ¼
XM
k¼1

kðxÞ
s þ pk

¼ dðxÞ
s þ pd

þ
XM
k¼1

ð1 � 
kdÞ
kðxÞ
s þ pk

¼ dðxÞ
s þ pd

þ�Gijðx; sÞ; ð29Þ

and we have determined that a single pole (pd) associated with the residue (dðxÞ) is

dominating the solution in response to signals from C as the residues of the remaining

poles are observed to be small enough. Then we separated the dominant term from the

Fig. 3. Reconstruction error magnitudes: jHf0gðx; j!Þ � Gf0gðx; j!Þj on the left, and jHf1gðx; j!Þ�
Gf1gðx; j!Þj on the right.
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full transfer function containing the uncertainties. This has enabled us to suggest the

following solution as well as the uncertainty terms stemming from the imprecision on

the thermal diffusivity parameter and those stemming from the simplification to a first

order dynamics compactly.

Uðx; sÞ ¼ 11:4263dðxÞ
s þ 10:0788

�0ðsÞ þ �1ðsÞð Þ þ�ðx; sÞ; ð30Þ

where j�ðx; sÞjs¼j! < 1:2j�0ðsÞ þ �1ðsÞjs¼j!jFðsÞjs¼j! and FðsÞ ¼ 1=ðs=24 þ 1Þ. In

Equation (30), dðxÞ is the x-dependent residue of the dominant pole at

s ¼ �10:0788. One should notice that F(s) has been chosen according to the

maximal values of the uncertainty observed at every x location contained in the grid.

Therefore the above bound does not depend on x. This obviously suggests that a

controller, for instance a H1 based controller capable of rejecting the modeling

errors, can be designed to observe a predefined thermal behavior at any spatial

location. Needless to say, since the low dimensional model is valid up to fc � 10 Hz

range, the output of a controller has to lie in this frequency region.

5. CONCLUSIONS

Single dimensional heat conduction problem is studied in this paper. The conduction

domain is assumed to have uncertain thermal diffusivity parameter. The numerical

solution has been obtained by utilizing Crank–Nicholson method, and the spatial and

temporal components have been decomposed by SVD technique. The terms in the

expansion have been separated so as to observe the boundary conditions as the

external inputs. Several test cases have been considered to obtain the dynamic system

producing the temporal modes. These efforts have resulted in the nominal dynamics

and the uncertainty component due to the imprecisely known process parameter. The

results produced by the approximating dynamical model and the numerical solution

have been demonstrated to be very similar. Infinite dimensional representation has

been generated and the similarity between the frequency responses of the analytic

solution and the approximate solution has been proved. It is emphasized that in order

to observe a good match, the model-derivation conditions and test conditions must be

compatible in frequency domain. It has also been discussed that the uncertainties are

bounded and with several simplifications, the design of a thermal control system is

fairly simple. The contribution of the paper is to show how SVD (or POD) scheme

can be manipulated to separate the control terms and how the uncertainties are

characterized in such a modeling problem.

One important aspect of decomposition based approaches is that the methods SVD or

POD yield locally valid models. In other words, every model is valid under the operating

conditions that enable the synthesis of it. Since the input to the procedure is a set of
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snapshots, the dynamical content of the models become limited with what the snapshots

imply.

Our work in this field has also demonstrated that without changing anything, the

technique to separate external excitations presented in this paper is applicable to

nonlinear PDEs particularly for Navier-Stokes equations. Our future study aims to

validate those in real-time flow modeling applications.
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