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We propose an approach for computing the arbitrage-free interval for the price of
anAmerican option in discrete incomplete market models via linear programming.
The main idea is built replicating strategies that use both the basic asset and
some European derivatives available on the market for trading. This method goes
under the name of calibrated option pricing and it has given significant results for
European options. Here, we extend the analysis to American options showing that
the arbitrage-free interval can be characterized in terms of martingale measures
and that it gets significantly reduced with respect to the non-calibrated case.

Keywords: American option; incomplete market; arbitrage-free interval;
calibrated option pricing; dual theory; martingale measures

1. Introduction

In this work, we apply a linear programming method to price American options in a discrete
and incomplete market model. The linear programming theory has been used in contexts of
completeness by Naik [1], Ortu [2] and by Baccara et al. [3]. As it is well known, we are
no longer able to exhibit a unique price for derivatives. In the literature an arbitrage-free
interval is usually given by characterizing its endpoints as infimum and supremum of the
expected values of the pay-off with respect to a family of martingale measures. Hence, an
appropriate criterion to select a specific measure (minimal variance, minimal martingale
measure etc.) is used (see Föllmer and Schweizer [4] and Frittelli [5]).

A possible alternative approach is to study the values of all possible admissible invest-
ment strategies, trying to select those that replicate an arbitrage-free pricing of the derivative
(see Cont [6]). This leads to setting up two optimization problems, known as the buyer’s and
seller’s problem. The optimal values of these problems represent the maximum price and
the minimum price that allow, respectively the buyer and the seller of the contract to exploit
an arbitrage opportunity. Once they pass these levels they are in no arbitrage conditions (see
King [7]). The values of the optimal solutions of these two problems will give the endpoints
of the arbitrage-free price interval for the considered derivative.

More precisely in incomplete arbitrage-free markets, the price of an option is not unique
but should lie somewhere between the least cost of a super replication strategy (seller’s price)
and the greatest amount that the buyer would pay for it without facing the risk of a negative
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1434 F. Antonelli et al.

terminal wealth (buyer’s price). When frictionless trading is possible, these bounds can be
expressed as the supremum and infimum of the discounted expected future cash-flows of the
option on the set of all pricing measures. Having focused on strategies, linear programming
becomes the natural tool to look for those values in finite-state discrete-time markets, also
providing a setting of easy implementation.

In practice, the resulting problems are often quite big and sometimes, even though the
computational time is not high, they do not provide a significant outcome, meaning that the
computed arbitrage-free interval is quite large.

To answer this problem, King et al. in [8] employ a modified approach, inspired by
what actually happens in real financial markets. In conditions of incompleteness, since the
basic assets are not sufficient to devise a replicating strategy for each derivative, agents
incorporate derivatives in their hedging portfolios. Hence, King et al. introduce the so-
called calibrated option pricing. In their work, for European options, they write new linear
programming problems for the buyer and the seller, where they include in the hedging
strategy the possibility of selling and buying other European options with respective bid
and ask prices and maturities. The authors prove again that the optimal solutions may be
characterized in terms of the average values with respect to martingale measures that may
belong, now, to a much smaller set. This reduces sensibly the arbitrage-free interval and the
advantage of the method is illustrated numerically.

In this paper, the hedging problem is modelled as a stochastic problem using the math-
ematical technique of conjugate duality or alternatively Lagrange duality (ref. Rockafellar
[9]). The first to use this technique to price an American contingent claim in incomplete
markets were Pennanen and King [10] and Flåm [11]. Pennanen and King, in particular,
studied the linear programming problems for the buyer’s and the seller’s prices, but in
the buyer’s case their proof is valid only for the American options, a more general proof
was given by Camci and Pinar [12] later on. The main contribution of the present paper
is to show that the calibrated option bounds for American options can be computed by
solving two linear programming problems, improving the numerical results. Moreover,
we show that the end points of the no arbitrage interval may be characterized again by
infimum and supremum of the expected pay-off with respect to an appropriate set of
martingale measure. The main results are contained in Theorems 3.1 and 3.2. Especially,
Theorem 3.1, while similar in spirit to the aforementioned results in the utilization of duality,
requires a careful proof. We substantiate our results with numerical illustrations using real
data.

The outline of the paper is as follows. Section 2 describes the market model. In Section 3,
we study the calibrated option bounds for American contingent claims pointing out the
relations between hedging and martingale measures in incomplete markets. In Section 4,
we present some numerical results applied to the pricing of S&P500 options. Section 5
is devoted to the concluding remarks about the advantages and the weaknesses of the
model.

2. Discrete market models

We consider the same discrete finite-dimensional market model as in King [7]. There are
J + 1 securities tradable at discrete times k = 0, . . . , K . We denote by Sk = (S0

k , . . . , S J
k )

the price process, whose first component represents the price of the riskless asset, thus it is
always strictly positive. Thanks to this assumption, we can define the discount processes
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Optimization 1435

βk = S0
0

S0
k

. Moreover, Sk is adapted with respect to a given filtered probability space

(�,F , {Fk}, P), such that |�| < ∞.
The market is arbitrage-free, frictionless and investors are small, comparatively to the

market dimension.
To have a finite sample space, � simplifies the analysis and allows a natural description

of the market model in terms of a scenario tree. Here, we assume that the tree is non-
recombinant, which might be important in incomplete markets, where trading strategies are
in general path dependent. The atoms of Fk , denoted by Nk , are the nodes of the scenario
tree at time k. At time 0, the set N0 consists of the root node n = 0; since the tree is non-
recombinant, each outcome is uniquely identified by its path, the nodes n ∈ NK correspond
one-to-one to the probability atoms ω ∈ �. The collection of all nodes will be denoted by
N = ∪K

k=0Nk . Since the scenario tree is non-recombinant, we have that for k = 1, . . . , K ,
each node n ∈ Nk comes from a unique element a(n) ∈ Nk−1, thus we can define the
set C(n) = {m ∈ N |a(m) = n} ∈ Nk+1 of the first descendants of a node n ∈ Nk with
k = 1, . . . , K . We denote by A(n) the collection of ascendant nodes or path history of node
including n itself and D(n) the set of descendant nodes of n, again including n itself. From
now on, we focus our attention no longer on times but on nodes, hence we will denote by
Sn , n ∈ Nk the value of the assets at each single node of the tree at time k.

The probability measure P gives weight pK
n > 0 to each node n ∈ NK so that∑

n∈NK
pK

n = 1. The probability of each node n ∈ N \ NK is determined by conditioning
so pk

n = ∑
m∈C(n) pk+1

m for k = 0, . . . , K − 1. Hence, each non-leaf node has a probability
mass equal to the combined mass of its child nodes. The expected value of Sk given P is
given by the finite sum

EP[Sk] =
∑

n∈NK

pk
n Sn .

The conditional expectation of Sk+1 on Nk is hence obtained by

EP[Sk+1|Nk] =
∑

m∈C(n)

pk+1
m

pk
n

Sm .

Definition 2.1 A probability measure Q = {q K
n }n∈NK , such that

βk Sk = EQ[βk+1Sk+1|Nk] (k ≤ K − 1)

is called a martingale probability measure.

A measure Q is said to be equivalent to P if qk
n > 0. To simplify the notations, from

now on we write pn for the probability, i.e. we will omit the index k.
A trading strategy is an RJ+1-valued {Fk}K

k=0-adapted process θ = (θ0
k , . . . , θ J

k )K
k=0,

where the value of θ
j

k is the fraction of security j held in the portfolio during the period
(k, k + 1]. The value of the portfolio θk = (θ0

k , . . . , θ J
k ) at time k is the scalar product

Sk · θk :=
J∑

j=0

S j
k θ

j
k .
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1436 F. Antonelli et al.

An arbitrage opportunity is the possibility to find a trading strategy which starts from zero
initial wealth and whose final value is positive with positive probability. In mathematical
terms, this means that there exists a trading strategy θ such that

S0 · θ0 = 0,

Sk · (θk − θk−1) = 0, k = 1, . . . , K ,

SK · θK ≥ 0, P − a.s.,

EP[SK · θK ] > 0.

By the fundamental theorem of asset pricing (see [7]) the absence of arbitrage is equivalent
to the existence of a martingale measure Q equivalent to P for the discounted prices βk Sk .
We will denote the set of martingale measures for the discounted price processes by M.
From [9] in an arbitrage-free market, the set of equivalent martingale measures is exactly
the relative interior, ri-M, of M.

3. The calibrated option bounds for American options

An American contingent claim associated with a real-valued stochastic process
X = {Xk}K

k=0 is a security whose owner can, at any stage k = 0, . . . , K , choose to take Xk

euros, after which the security expires. Pennanen and King in [10] and Camci and Pinar in
[12] characterize the end points of the arbitrage-free interval for an American contingent
claim with payoff X by appropriate linear programming problems constructed considering
the point of view of the buyer and of the seller.

We want to evaluate an American option in a market where other European options
are available for trading (using the same methodology introduced by King et al. in [8] for
European pricing problems). It is natural for an investor in a real market to try to include
these in the hedging strategies. If everything remains unchanged, this can only improve the
investor’s situation. In particular, these tools should make the buyer’s price higher and the
seller’s price lower, thus the arbitrage interval becomes smaller. With this in mind, let us
see how the linear programming problems produced in [10] have to be modified.

Let Gh , h = 1, . . . , H be European contingent claims with bid-ask prices Ch
b ≤ Ch

a and
pay-offs Gh

n . The first step is to consider the buyer’s point of view, he is interested in finding
the maximum amount one could pay for it without the risk of having negative terminal
wealth. If he includes those derivatives in the admissible hedging strategy, the price V can
be characterized by the following optimization problem:

max
V,θ,e,ξ+,ξ−

V

s.t. S0 · θ0 + Ca · ξ+ − Cb · ξ− = X0e0 − V,

Sn · (θn − θa(n)) = Gn · (ξ+ − ξ−) + Xnen n ∈ Nk, k ≥ 1

Sn · θn ≥ 0 n ∈ NK ,∑
m∈A(n)

em ≤ 1 n ∈ NK

en ∈ {0, 1} n ∈ Nk, k ≥ 0,

ξ+, ξ− ≥ 0,

θ, e, ξ+, ξ− are Fk-adapted,

(1)
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Optimization 1437

where ξ h+ and ξh− are the bought and sold amounts of the European option indexed h with
pay-off Gh at time k >= 1 and ek denotes the amount of the American contingent claim
exercised at time k. The constraints on e mean that the claim is exercised at most one
time. Every number below the optimal value of this problem is not an arbitrage-free price.
Indeed, if the claim could be bought for a price lower than V , then the agent could pocket
the difference and, following the strategy of the optimal solution of (1), still obtain a non-
negative terminal wealth. On the other hand, to buy the claim at a price above the optimal
value does not lead to arbitrage opportunity, indeed this is the maximum price that allows
the buyer to have a positive final wealth. The optimum value is called buyer’s price of X .

We can describe the exercise strategy for anAmerican contingent claim through stopping
times instead of using the variables e. The relation en = 1 for some n ∈ Nk ⇔ τn = k,
defines a one-to-one correspondence between stopping times and processes e ∈ E , where

E =
⎧⎨
⎩e|e is Fk-adapted,

∑
m∈A(n)

em ≤ 1 for all n ∈ NK and e ∈ {0, 1}P-a.s.

⎫⎬
⎭ .

We will denote with T the set of all stopping times between 0 and K .
It is possible to relax the problem (1) to have a convex optimization problem. Indeed,

if we replace the constraint en ∈ {0, 1} with en ≥ 0 we obtain

max
V,θ,e,ξ+,ξ−

V

s.t. S0 · θ0 + Ca · ξ+ − Cb · ξ− = X0e0 − V,

Sn · (θn − θa(n)) = Gn · (ξ+ − ξ−) + Xnen n ∈ Nk, k ≥ 1

Sn · θn ≥ 0 n ∈ NK ,∑
m∈A(n)

em ≤ 1 n ∈ NK

e, ξ+, ξ− ≥ 0,

θ, e, ξ+, ξ− are Fk-adapted.

(2)

This is equivalent to ask that e ∈ Ẽ with

Ẽ =
{

e|e is Fk-adapted,
K∑

k=0

ek ≤ 1 and e ≥ 0 P-a.s.

}
.

Note that E is the set of extreme points of Ẽ . The following result shows that this relaxation
does not affect the buyer’s price. Indeed, we may view multiple fractional exercise as the
exercise of more than one claim at different times by the buyer and the following theorem
shows that this decision does not lead to pay a higher initial value.

Theorem 3.1

(a) The set of solutions of (2) contains at least a solution of (1). In particular, the
optimum value of (2) equals that of (1).

(b) In an arbitrage-free market, the buyer’s price of X can be expressed as:

max
τ∈T

min
Q∈MC

EQ[βτ Xτ ] = min
Q∈MC

max
τ∈T

EQ[βτ Xτ ],
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1438 F. Antonelli et al.

where

MC =
{

Q ∈ M|Ch
b ≤ EQ

[ K∑
k=1

βk Gh
k

]
≤ Ch

a , h ∈ {1, . . . , H}
}

.

In particular, the buyer’s price is finite if and only if MC 	= ∅.

Proof (a) We begin noting that if en = 0 for each n ∈ N at the optimal solution of (2)
(relaxed problem), then this is automatically an optimal solution also for the non-relaxed
problem (1) and there is nothing to prove. Hence, we assume the en > 0 for at last one
n ∈ N .

Keeping e fixed in (2) and maximizing only with respect to V and θ , we reduce (2) to
a linear programming problem for the buyer of a European contingent claim with pay-offs
{Xkek}K

k=0. Writing the Lagrangian of this problem (considering xn ≥ 0), we have:

L(V, θ, x, w) = V − w0(S0θ0 + Ca · ξ+ − Cb · ξ− − X0e0 + V )

−
K∑

k=1

∑
n∈Nk

wn

[
Sn(θn − θa(n)) − Xnen − Gn(ξ+ − ξ−)

]
+
∑

n∈NK

xn Snθn

= (1 − w0)V +
K∑

k=0

∑
n∈Nk

wn Xnen

+
∑

n∈NK

(xn − wn)Snθn −
K−1∑
k=0

∑
n∈Nk

[
Snwn −

∑
m∈C(n)

wm Sm

]
θn

+
[ K∑

k=1

∑
n∈Nk

wnGn − Ca

]
ξ+ −

[ K∑
k=1

∑
n∈Nk

wnGn − Cb

]
ξ−,

deducing that wn = xn for all n ∈ NK , we obtain the following dual problem

min
w

K∑
k=0

∑
n∈Nk

wnen Xn

s.t. w0 = 1,

Snwn = ∑
m A(n)

Smwm n ∈ Nk, k = 0, . . . , K − 1

∑
n∈N

Gh
nwn ≤ Ch

a h = 1, . . . , H,

∑
n∈N

Gh
nwn ≥ Ch

b h = 1, . . . , H,

wn ≥ 0 n ∈ NK .

The first and the fourth constraint imply that wn = βnq̃n , where βn is the discount factor
and Q = {q̃n}n∈Nk ,k=0,...,K is a probability measure in MC .
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Optimization 1439

Hence, minimizing on the admissible w is equivalent to minimizing on the probability
measures Q ∈ MC , the optimum of the problem therefore can be written as:

min
Q∈MC

EQ

[
K∑

k=0

βk Xkek

]
.

We are interested in finding the optimal value of (2), but the values of the optimal solutions
of the primal and dual problems coincide therefore it can be written as:

max
e∈Ẽ

min
Q∈MC

EQ

[
K∑

k=0

βk Xkek

]
. (3)

Since minQ∈MC EQ

[∑K
k=0 βk Xkek

]
is continuous in en , we have that the component in

Ẽ of the optimal solution of (2) is given by

{e∗
n}n∈N = arg max

Ẽ
min

Q∈MC
EQ

[
K∑

k=0

βk Xkek

]
. (4)

We want to show that {e∗
n} is in E . For this reason, we go back to the problem (2) and

construct its dual problem considering z, x ≥ 0 and writing the associated Lagrangian

L(V, θ, e, ξ+, ξ−, x, y, z)

= V − y0(S0θ0 + Ca · ξ+ − Cb · ξ− + V − X0e0)

−
K∑

k=1

∑
n∈Nk

yn
[
Sn(θn − θa(n)) − Gn · (ξ+ − ξ−) − Xnen

]

+
∑

n∈NK

xn Snθn +
∑

n∈NK

zn

(
1 −

∑
m∈A(n)

em

)

= V (1 − y0) +
∑

n∈NK

(xn − yn)Snθn −
K−1∑
k=0

∑
n∈Nk

θn

(
Sn yn −

∑
m∈C(n)

Sm ym

)

+
∑
n∈N

(
yn Xn −

∑
m∈D(n)∩NK

zm

)
en +

( ∑
n∈N

Gn yn − Ca y0

)
· ξ+

−
( ∑

n∈N
Gn yn − Cb y0

)
· ξ−+

∑
n∈NK

zn .

From the second term we deduce yn = xn and, since we know that xn ≥ 0 for all n ∈ NK ,
we get the dual problem
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1440 F. Antonelli et al.

min
z,y

∑
n∈NK

zn

s.t. y0 = 1,

Sn yn = ∑
m∈C(n)

Sm ym n ∈ Nk, k = 0, . . . , K − 1,

yn Xn ≤ ∑
m∈D(n)∩NK

zm n ∈ N ,∑
n∈N

Gh
n yn ≤ Ch

a h = 1, . . . , H,∑
n∈N

Gh
n yn ≥ Ch

b h = 1, . . . , H,

zn, yn ≥ 0 n ∈ NK .

(5)

Since the constraints are valid also for the riskless asset S0
n > 0 for all n ∈ N and yn ≥ 0

for n ∈ NK , from the second constraint we find recursively that yn ≥ 0 for all n ∈ N . For

any n ∈ NK−1, we have yn =
∑

m∈C(n) S0
m ym

S0
n

≥ 0 since m ∈ C(n) ⊆NK , on the other hand
starting from n = 0 and and applying the first constraint for all k, there must be at least an
n ∈ Nk such that yn > 0.

The constraints imply that if yn is part of an admissible solution, yn = βnqn , where βn

is the discount factor and Q = {qn}n∈Nk ,k=0,...,K is a martingale measure in MC . Thus,
problem (5) becomes

min
z,q

∑
n∈NK

zn

s.t. q0 = 1,

Snβnqn = ∑
m∈C(n)

Smβmqm n ∈ Nk, k = 0, . . . , K − 1,

βnqn Xn ≤ ∑
m∈D(n)∩NK

zm n ∈ N ,

Q ∈ MC ,

zn ≥ 0 n ∈ NK .

Let us consider the optimal solution that contains the e∗ found before. From the initial part
of the proof, we can suppose that e∗

n > 0 for some n ∈ N , we want to prove that e∗
n = 1.

Let us denote by k′ the first time with some strictly positive e∗
n and let us denote by n′ ∈ Nk′

one of the nodes where this happens. By the complementary slackness theorem, it holds⎛
⎝βn′qn′ Xn′ −

∑
m∈D(n′)∩NK

zm

⎞
⎠ e∗

n′ = 0,

thus, since e∗
n′ > 0, we have

qn′βn′ Xn′ =
∑

m∈D(n′)∩NK

zm .

Therefore, the objective function verifies

min
z,q

∑
m∈NK

zm = min
z,q

⎛
⎝ ∑

m∈D(n′)∩NK

zm +
∑

m∈NK \D(n′)
zm

⎞
⎠ (6)

= min
z,q

⎛
⎝qn′βn′ Xn′ +

∑
m∈NK \D(n′)

zm

⎞
⎠ .
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Optimization 1441

Moreover, note that D(n) ∩ NK ⊂ D(n′) ∩ NK for all n ∈ D(n′) \ {n′}, so we can break
the constraint βnqn Xn ≤ ∑

m∈D(n)∩NK
zm n ∈ N in three pats

βn′qn′ Xn′ = ∑
m∈D(n′)∩NK

zm

βnqn Xn ≤ ∑
m∈D(n)∩NK

zm n ∈ D(n′) \ {n′}

βnqn Xn ≤ ∑
m∈D(n)∩NK

zm n /∈ D(n′) \ {n′},

and we can eliminate the second constraint, since it is redundant it does not appear in
the objective function. Using complementary slackness again we conclude e∗

n = 0 for
n ∈ D(n′) \ {n′}.

Let us consider k′′ the first time with some strictly positive e∗
n in N \D(n′) (i.e. without

considering n′) and let n′′ ∈ Nk′′ be one of the nodes, such that e∗
n′′ > 0. Applying the

slackness theorem, we can write (6) in the following form

min
z,q

⎛
⎝qn′βn′ Xn′ + qn′′βn′′ Xn′′ +

∑
m∈NK \(D(n′)∪D(n′′))

zm

⎞
⎠ ,

and as before we may say that e∗
n = 0 for all n ∈ D(n′′) \ {n′′}.

Iterating our procedure, we find a finite set of nodes {n′, n′′, . . . , n(N )}, with N ≤ |N |,
such that e∗

n = 0 for n ∈ ∪N
i=1(D(n(i)) \ {n(i)}). Since these are the nodes corresponding to

the first times with a strictly positive exercise, we can say that for n ∈ N \ (∪N
i=1D(n(i)))

there aren’t nodes such that e∗
n > 0, that is e∗

n = 0 except the nodes in the set
{n′, n′′, . . . , n(N )}. So we may conclude that (6) is equal to

min
z,q

⎛
⎜⎝ N∑

i=1

qn(i)βn(i) Xn(i) +
∑

m∈NK \(∪N
i=1D(n(i)))

zm

⎞
⎟⎠ .

Let us define the function v : N → {0, 1} by

vn =
{

1 n ∈ {n′, n′′, . . . , n(N )}
0 otherwise

,

substituting in (6) we obtain

min
z,q

⎛
⎝ N∑

i=1

qn(i)βn(i) Xn(i)vn(i) +
∑

m∈NK \(D(n′)∪D(n′′))
zm

⎞
⎠ .

Let us note that {vn} ∈ E and, since e∗
n = 0 except for the nodes in the set {n′, n′′, . . . , n(N )},

we have that for all n ∈ N
e∗

n 	= 0 ⇐⇒ v(n) 	= 0.

Considering expression (3), we find

max
e∈Ẽ

min
Q∈MC

EQ

[
K∑

k=0

βk Xkek

]
= max

e∈Ẽ
min

Q∈MC

K∑
k=0

∑
n∈Nk

qnβn Xnen

= max
e∈Ẽ

min
Q∈MC

K∑
k=0

∑
n∈Nk

qnβn Xnvnen = max
e∈Ẽ

min
Q∈MC

N∑
i=1

qnβn(i) Xn(i)vn(i)en(i) ,
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1442 F. Antonelli et al.

but (6) and (3) must be equal (the solutions are the optimal value of the same linear
programming problem), so

max
e∈Ẽ

min
Q∈MC

N∑
i=1

qn(i)βn(i) Xn(i)vn(i)en(i)

= min
z,q

⎛
⎝ N∑

i=1

qn(i)βn(i) Xn(i)vn(i) +
∑

m∈NK \(D(n′)∪D(n′′))
zm

⎞
⎠

= min
q

N∑
i=1

qn(i)βn(i) Xn(i) = vn(i) + min
z

∑
m∈NK \(D(n′)∪D(n′′))

zm .

Since we know 0 ≤ en ≤ 1, it holds

max
e∈Ẽ

min
Q∈MC

N∑
i=1

qn(i)βn(i) Xn(i)vn(i)en(i) ≤ min
Q∈MC

N∑
i=1

qn(i)βn(i) Xn(i)vn(i) ,

thus

min
q

N∑
i=1

qn(i)βn(i) Xn(i)vn(i) + min
z

∑
m∈NK \(D(n′)∪D(n′′))

zm

≤ min
Q∈MC

N∑
i=1

qn(i)βn(i) Xn(i)vn(i) .

We must have
∑

m∈NK \(D(n′)∪D(n′′)) zm = 0 (the constraints of the dual problem say that
this quantity is non-negative), and it is also true that

min
q

N∑
i=1

qn(i)βn(i) Xn(i)vn(i)en(i) = min
Q∈MC

N∑
i=1

qn(i)βn(i) Xn(i)vn(i) ,

with vn ∈ {0, 1}, 0 ≤ e∗
n ≤ 1, e∗

n 	= 0 ⇐⇒ v(n) 	= 0 and Xn, qn, βn ≥ 0, which finally
implies en = vn for all n ∈ N .

We found there is an optimal solution for (2) that is admissible for (1), but the set defined
by the constraints of (2) is larger than the set defined by the constraints of (1), so this must
be also an optimal solution for (1). In conclusion we can write the optimal value of (1) as

max
e∈E

min
Q∈MC

EQ

[
K∑

k=0

βk Xkek

]
,

and the correspondence between stopping times and the processes e ∈ E gives the first part
of the equality in (b).

(b) By Part (a), we can replace E by Ẽ without changing the value of (3). Both Ẽ and MC

are bounded convex sets, so we can change the order of max and min without affecting
the value in (3). For each fixed Q ∈ M, the objective function is linear in e, thus its
max is achieved on the boundary of Ẽ that is for e ∈ E , yielding the second part of the
equality. �
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Optimization 1443

Let us consider the problem of the seller of the option, he wants to know what is the smallest
amount of cash required by a strategy not allowing a loss. Moreover, he must hedge against
any future exercise that may result from the contract. For this reason he is interested in an
optimization problem given by

min
V,θ,ξ+,ξ−

V

s.t. S0 · θ0 + Ca · ξ+ − Cb · ξ− = V,

Sn · (θn − θa(n)) = Gn · (ξ+ − ξ−) n ∈ Nk, k ≥ 1

Sn · θn ≥ 0 n ∈ NK ,

Sn · θn ≥ Xn n ∈ N ,

θ, ξ+, ξ− are Fk-adapted.

(7)

Thanks to the constraint Snθn ≥ Xn , the solution of this problem hedges against any future
exercise of the American contingent claim. The constraint Snθn ≥ 0 n ∈ NK implies that
any number below the optimum value of (7) is an arbitrage price for the seller. On the other
hand, selling X for a lower price does not lead to arbitrage opportunities, since the optimal
value of (7) is the smallest price that allows to have an investing strategy θ∗ (that is a part
of the optimal solution) that respects the constraint Snθn ≥ 0 n ∈ NK , i.e. selling X at a
lower price means to force the seller to construct an investing strategy that can lead to a
negative terminal wealth with a positive probability. The optimal value of (7) will be called
the seller’s price.

As before, convex duality yields the following expression for the seller’s price.

Theorem 3.2 In an arbitrage-free market, the calibrated seller’s price of the option can
be expressed as:

max
τ∈T

max
Q∈MC

EQ[βτ Xτ ] = max
Q∈MC

max
τ∈T

EQ[βτ Xτ ].

Proof We begin by writing the Lagrangian of problem (7)

L(V, θ, ξ+, ξ−, x, y, z)

= V + y0(S0θ0 + Ca · ξ+ − Cb · ξ− − V )

+
K∑

k=1

∑
n∈Nk

yn
[
Sn(θn − θa(n)) − Gn · (ξ+ − ξ−)

]

−
∑

n∈NK

xn Snθn +
K∑

k=1

∑
n∈Nk

zn(Xn − Snθn)

= V (1 − y0) +
∑

n∈NK

(yn − xn − zn)Snθn

+
K∑

k=0

K−1∑
n∈Nk

θn

⎛
⎝Sn yn − Snzn −

∑
m∈A(n)

Sm ym

⎞
⎠

+
(

Ca y0 −
∑
n∈N

Gn yn

)
ξ+ −

(
Cb y0 −

∑
n∈N

Gn yn

)
ξ−+

K∑
k=0

∑
n∈Nk

Xnzn,
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1444 F. Antonelli et al.

where we are supposing that z, x ≥ 0, so we get the dual

max
y,z

K∑
k=0

∑
n∈Nk

Xnzn

s.t. y0 = 1,

Sn(yn − zn) = ∑
m∈C(n)

Sm ym n ∈ Nk, k = 0, . . . , K − 1,

yn − zn ≥ 0 n ∈ NK ,∑
n∈N

Gn yn ≤ Ca,∑
n∈N

Gn yn ≥ Cb,

zn ≥ 0 n ∈ N .

(8)

Let us suppose that the set MC 	= ∅, thus there exists a strictly positive vector q , such that
Snqn = ∑

m∈C(n) Smqm . Then, we set yn = qn and zn = 0 for all n ∈ N . Multiplying the
resulting pairs (y, z) by 1

y0
one obtains a feasible solution of (8) that satisfies the strictly

inequality yn − zn > 0 for all n ∈ NK , moreover the positivity of S0 and the second
constraint imply that yn − zn > 0 for all n ∈ N . Since the optimal solution of a linear
programming problem is achieved at the extreme points of the set defined by the constraints,
we get that the seller’s price equals the optimal value of

max
y,z

K∑
k=0

∑
n∈Nk

Xnzn

s.t. y0 = 1,

Sn = ∑
m∈C(n)

ym
yn−zn

Sm n ∈ Nk, k = 0, . . . , K − 1,∑
n∈N

Gn yn ≤ Ca,∑
n∈N

Gn yn ≥ Cb,

yn > zn ≥ 0 n ∈ N .

The second constraint means that there exists a Q ∈ riMC , such that

ym

yn − zn
= qmβm

qnβn
⇐⇒ ym

qmβm
= yn

qnβn
− zn

qnβn
.

Applying the change of variables

fn = yn

qnβn
and en = zn

qnβn
,

we can express the seller’s price as

max
y,z

K∑
k=0

∑
n∈Nk

Xnqnβnen

s.t. f0 = 1,

fn = fa(n) − ea(n) n ∈ Nk, k = 1, . . . , K ,

fn > en ≥ 0 n ∈ N ,

Q ∈ riMC .
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Optimization 1445

Table 1. European call and put options on the S&P500.

Call Put

STR MAT Cb Ca STR MAT Cb Ca

890 17 31.5 33.5 750 17 0.4 0.6
900 17 24.4 26.4 790 17 1 1.3
905 17 21.2 23.2 800 17 1.3 1.65
910 17 18.5 20.1 825 17 2.5 2.85
915 17 15.8 17.4 830 17 2.6 3.1
925 17 11.2 12.6 840 17 3.4 3.8
935 17 7.6 8.6 850 17 3.9 4.7
950 17 3.8 4.6 860 17 5.5 5.8
955 17 3 3.7 875 17 7.2 7.8
975 17 0.95 1.45 885 17 9.4 10.4
980 17 0.65 1.15 750 37 5.5 5.9
900 37 42.3 44.3 775 37 6.9 7.7
925 37 28.2 29.6 800 37 9.3 10
950 37 17.5 19 850 37 16.7 18.3
875 100 77.1 79.1 875 37 23 24.3
900 100 61.6 63.6 900 37 31 33
950 100 35.8 37.8 925 37 41.8 43.8
975 100 26 28 975 37 73 75
995 100 19.9 21.5 995 37 88.9 90.9
1025 100 12.6 14.2 650 100 5.7 6.7
1100 100 3.4 3.8 700 100 9.2 10.2

750 100 14.7 15.8
775 100 17.6 19.2
800 100 21.7 23.7
850 100 33.3 35.3
875 100 40.9 42.9
900 100 50.3 52.3

The constraints on f and e mean that e ≥ 0 and
∑

m∈A(n) en < 1 for n ∈ NK . Thus, we
can write the seller’s problem as

max
y,z

K∑
k=0

∑
n∈Nk

Xnqnβnen

s.t. f0 = 1,∑
m∈A(n)

en < 1 n ∈ Nk, k = 1, . . . , K ,

fn > en ≥ 0 n ∈ N ,

Q ∈ riMC .

Since f is involved only in the third constraint and en must be necessarily less than 1, we
can impose fn = 1 without loss of generality.
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1446 F. Antonelli et al.

Table 2. Non-calibrated and calibrated bounds with a three-period model.

Non cal. Cal

STR MAT Bp Sp INT Bp Sp INT

Call

900 37 17.32 329.42 321.10 40.58 81.55 40,97
925 37 5.87 321.53 315.66 26.38 68.16 41.78
950 37 0.15 313.64 313.49 13.82 52.99 39.06
875 100 43.22 337.32 294.10 75.48 99.11 23.63
900 100 27.84 329.42 301.58 59.88 82.83 22.95
950 100 8.41 313.64 305.23 32.72 55.03 22.31
975 100 3.48 305.75 302.27 23.70 42.56 18.86
995 100 0.96 299.44 298.48 17.72 35.40 17.68
1025 100 7.74 292.15 284.41 8.01 28.13 20.12
1100 100 0.00 276.39 276.39 0.00 21.11 21.11

Put

750 37 0.00 227.98 227.98 3.80 22.98 19.18
775 37 0.00 242.11 242.11 6.33 28.02 21.36
800 37 0.00 256.23 256.23 7.90 34.88 26.98
850 37 0.00 285.63 285.63 13.49 51.73 38.24
875 37 0.00 302.74 302.74 21.77 61.85 40.08
900 37 0.00 319.84 319.84 32.72 71.97 39.25
925 37 21.29 336.95 315.66 43.62 83.58 39.96
975 37 65.42 371.17 305.75 72.24 107.23 34.99
995 37 85.42 384.86 299.44 87.09 121.31 34.22
650 100 0.00 171.48 171.48 2.60 10.42 7.82
700 100 0.00 199.73 199.73 6.65 15.69 9.04
750 100 0.00 227.98 227.98 11.79 22.70 10.91
775 100 0.00 242.11 242.11 16.95 28.48 11.53
800 100 0.00 256.23 256.23 20.06 35.74 15.58
850 100 2.04 285.63 283.59 32.74 53.09 20.35
875 100 8.64 302.74 294.10 42.52 61.85 19.33
900 100 18.26 319.84 301.58 52.02 74.32 22.30

Noting that MC and Ẽ are convex sets, we can express the seller’s price as

sup
e∈Ẽ

sup
Q∈MC

EQ

[
K∑

k=0

βk Xkek

]
= sup

Q∈MC

sup
e∈Ẽ

EQ

[
K∑

k=0

βk Xkek

]
.

Since EQ

[∑K
k=0 βk Xkek

]
is linear in e, the max over e is attained at an extreme point of

Ẽ . Let us note that these extreme points are exactly E and, since E and MC are closed
sets, we obtain the desired expression. �

The real interval bounded by the buyer’s and the seller’s price is called the arbitrage-free
interval, because every point that belongs to it is an arbitrage-free price for the claim. It is
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Optimization 1447

Table 3. Calibrated bounds with a 4-period model and branching structure (20, 10, 10, 10).

Call Put

STR MAT Bp Sp INT STR MAT Bp Sp INT

900 37 40.58 84.99 44.41 750 37 3.80 22.96 19.16
925 37 26.38 70.57 44.19 775 37 6.33 26.30 19.97
950 37 13.82 56.17 42.35 800 37 7.95 38.86 30.91
875 100 75.48 105.50 30.02 850 37 13.25 55.44 42.19
900 100 59.88 86.90 27.02 875 37 21.71 65.42 43.71
950 100 31.97 58.19 26.22 900 37 32.72 75.41 42.69
975 100 23.71 45.60 21.89 925 37 43.62 86.15 42.53
995 100 17.50 38.13 20.63 975 37 72.27 110.28 38.01
1025 100 7.97 30.47 22.50 995 37 86.49 122.57 36.08
1100 100 0.00 22.58 22.58 650 100 2.60 10.30 7.70

700 100 6.65 16.45 9.80
750 100 11.74 26.38 14.64
775 100 16.95 32.42 15.47
800 100 20.07 39.66 19.59
850 100 32.74 56.95 24.21
875 100 42.52 65.42 22.90
900 100 52.02 80.34 28.32

not a priori clear whether the buyer’s and seller’s prices themselves are arbitrage-free or not.
When problems (1) and (7) have the same optimal solution, the price of X is unique and the
claim is said to be replicable. Finally, let us note that the interval determined by the optimal
solutions of problems (1) and (7) is smaller than that defined by the non-calibratedAmerican
programming problems in [10] and [12], since the set MC of calibrated martingale measures
is smaller than M. The keypoint is that the previous results hold and when we calibrate we
fall into M, hence the set MC can be thought of as a set of martingale measures calibrated
by the observed market prices.

4. Numerical tests with S&P500 options

In this section, we summarize the most meaningful numerical results obtained considering
the 48 European option used by King et al. in their work. In particular, we consider the bid
and ask closing prices of 21 European call and 27 European put options on the S&P500 index
on September 10, 2002, in turn one of the European options will be considered American
and all the others used for calibrating. In Table 1, we summarize our data-set, the columns
labeled STR and MAT give the strike prices and maturities and those labeled with Ca and Cb

give the bid and ask prices. To price each ‘American’ we solve the seller’s and the buyer’s
problems 38 times, indeed we exclude the options with maturity 17 days because they are
indistinguishable from the European case.

4.1. A three-period model

The risky asset is denoted by S1 and it is the S&P500 index, while we assume the riskless
asset to be constant. The period structure in the model is chosen according to the maturities
of the options. That is, we assume that trading occurs at 0,17,37, and 100 days, which
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1448 F. Antonelli et al.

Table 4. Calibrated bounds with a 4-period model and branching structure (30, 10, 10, 10).

Call Put

STR MAT Bp Sp INT STR MAT Bp Sp INT

900 37 40.58 88.36 38.95 750 37 3.80 29.20 25.40
925 37 26.58 73.96 41.78 775 37 6.33 35.09 28.76
950 37 13.82 59.59 45.71 800 37 7.90 42.10 34.20
875 100 75.48 109.85 34.37 850 37 13.26 58.74 45.48
900 100 59.88 90.88 31.00 875 37 21.68 68.76 47.08
950 100 31.91 61.60 29.69 900 37 32.72 78.78 46.06
975 100 23.83 49.05 25.68 925 37 43.62 89.40 45.78
995 100 17.74 41.26 23.52 975 37 72.51 113.73 41.22
1025 100 7.99 33.73 25.74 995 37 87.02 126.04 39.02
1100 100 0.00 26.08 26.08 650 100 2.60 11.33 8.73

700 100 6.65 19.58 12.93
750 100 11.76 29.57 17.81
775 100 16.95 35.64 18.69
800 100 20.07 42.89 22.82
850 100 32.74 60.45 27.71
875 100 42.52 68.76 26.24
900 100 52.02 84.64 32.62

are the expiration dates of the options in Table 1. The scenario tree is built by using the
Gauss-Hermite procedure. We choose the branching structure (50, 10, 10). All the
computations have been performed in GAMS 23.7, using CPLEX for the numerical
solution and on a personal computer equipped with a Pentium Dual-Core 2.17 GHz and 3
GB RAM.

We begin considering in Table 2 the Non-calibrated and calibrated option bounds for
American options. In the following table the columns Bp, Sp, INT give, respectively the
buyer’s price, the seller’s price and the length of the arbitrage free interval. We note that
the non-calibrated arbitrage interval can be quite large.

Comparing the calibrated columns of Table 2 with the table for European options in the
work by King et al. we note that the buyer’s problems have the same optimal value. We
believe this happens because we are not considering in the money options, thus the buyer
prefers to carry the options to maturity. If we observe the values of the variables en , we
notice that the number of nodes of early exercise is irrelevant compared to the total number
of nodes. It seems that the approximation works better with the negative moneyness, that
is to say the more out of the money the option is and the smaller the interval is. This is in
line with the fact that the more out of the money the option is and more the behavior of the
option is similar to the European case.

In both calibrated and non-calibrated case the average time for the routines is about
15 seconds for the buyer’s problem and about 10 seconds for the seller’s problem.

4.2. A four-period model

We also studied the calibrated problem in a four-step model (the steps are in the days 8th,
17th, 37th and 100th). We considered the case of a scenario tree with a branching structure
(20, 10, 10, 10) in Table 3 and (30, 10, 10, 10) in Table 4.
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Optimization 1449

Table 5. Calibrated bounds with a 4-period model and branching structure (10, 10, 10, 30).

Call Put

STR MAT Bp Sp INT STR MAT Bp Sp INT

900 37 40.58 83.37 40.38 750 37 3.80 22.96 19.16
925 37 26.38 68.24 41.86 775 37 6.33 28.26 21.93
950 37 13.82 53.98 40.16 800 37 7.90 35.37 27.47
875 100 75.48 100.87 25.39 850 37 13.26 52.38 39.12
900 100 59.88 83.86 23.98 875 37 21.68 62.58 40.90
950 100 31.91 56.02 24.11 900 37 32.72 72.79 40.07
975 100 23.83 43.61 19.78 925 37 43.62 84.00 40.38
995 100 17.74 36.33 18.59 975 37 72.51 108.30 35.79
1025 100 7.99 28.73 20.10 995 37 87.02 121.37 34.35
1100 100 0.00 22.09 22.09 650 100 2.60 11.26 8.66

700 100 6.65 15.51 8.86
750 100 11.76 22.70 10.94
775 100 16.95 28.75 11.80
800 100 20.07 36.23 16.16
850 100 32.74 53.79 21.23
875 100 42.52 62.58 20.06
900 100 52.02 75.71 23.69

The average running time for the (20,10,10,10) tree is about 9 minutes for the buyer’s
problem and 7 minutes for the seller’s problem and about 25 minutes for the buyer’s problem
and 20 minutes for the seller’s problem for the (30,10,10,10) tree.

The average time for the (30,10,10,10) routines is instead about 25 minutes for the
buyer’s problem and about 20 minutes for the seller’s problem.

We see that the option bounds do not improve generally. In particular, the buyer’s
problem has a solution similar to that of the three-stage model and the seller’s price is
higher, probably due to the constraint Sn · θn ≥ Xn, n ∈ N . The increase in the number
of nodes in the seller’s problem implies the strategies have to verify a higher number of
constraints, thus their initial value will be higher, and this accounts also for the higher
computational times. To confirm our conjecture we can see that in the case (10, 10, 10, 30)

in Table 5.

5. Conclusions

The main idea of the paper is to extend the calibrated option pricing technique, originally
used for European options by King et al. [8], toAmerican contingent claims, whose arbitrage
interval for the price is determined by appropriate buyer’s and seller’s stochastic linear
programming problems such as in Pennanen and King [10] and Camci and Pinar [2]. This
framework still allows a characterization of the end points of the arbitrage interval in terms
of expectation with respect to an appropriate subset of martingale measures.

Numerically the set up linear programming problems are easy to be implemented and
computational times still remain rather short for three-period branching structure. The
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1450 F. Antonelli et al.

reduction of the arbitrage interval is remarkable and the endpoints in many cases may
provide a satisfactory approximation of the actual price.

Unfortunately an increase of the number of time periods does not necessarily correspond
to a further reduction in size of the arbitrage interval. This is probably due to the fact that
increasing the time steps we are at the same time increasing the range of the underlying.
Also, we pay this refinement of periods in terms of computational times.

It would be desirable to test the procedure against a data-set of prices of actually traded
American options, but these data are hardly free to retrieve.
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