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Superhedging of European claims in incomplete markets is a well-studied
problem. The superhedging value of a European claim is known to yield a
price too large to be interesting in some cases. In this note, an alternative
hedging strategy based on an expected gain–loss criterion is studied for
European claims in infinite state space, discrete time financial markets.
A dual representation for the gain–loss hedging value is obtained.

Keywords: European claims; pricing; gain–loss hedging; superhedging;
martingales

1. Introduction

Superhedging of European claims consists in finding the smallest initial capital
required to dominate a stochastic liability at a known future date as well as
computing the portfolio weights at any given time to ensure such domination. The
superhedging strategy operates by setting up a portfolio of traded instruments, and
modifying the composition of this portfolio at discrete-time points so as to dominate
the stochastic liability at the pre-determined future date. The present value of the
superhedging portfolio constitutes the superhedging value of the stochastic future
liability. The problem has been studied in depth by several authors (e.g. [9,18]). Our
desktop reference for this article is the book by Föllmer and Schied [9].

It is well-known that the superhedging value can be unacceptably large for
practical purposes [9]. To alleviate this problem and obtain a tighter price bound, we
advocate a different criterion for hedging European claims in discrete time financial
markets, based on the gain–loss criterion of Bernardo and Ledoit [2], which does not
fit into the well-studied framework of coherent risk measures (see Chapter 4 of [9])
(we elaborate on this point later). The gain–loss criterion measures the expected value
of positive terminal values (gain) of a portfolio as well as that of the negative (loss)
terminal values. A portfolio process with a large gain–loss ratio could be acceptable to
many investors in the absence of arbitrage. Based on this observation, we subscribe to
the view that a ‘fair’ financial market should not only disallow arbitrage,
but also should not offer opportunities with a large expected gain-to-loss ratio.
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Therefore, financial instruments can be priced so as not to allow large expected gain-
to-loss ratios. More precisely, price bounds are calculated so as not to allow portfolios
with gain–loss ratios in excess of a preselected threshold �� 1. Under this setting,
Bernardo and Ledoit [2] proved a duality result that links the existence of investments
with a high gain–loss ratio to pricing kernels in a single-period framework. In two
previous papers, we studied this criterion in finite-state, multiperiod financial markets
using the linear programming (and linear-fractional programming) duality theory
[13], and in infinite state, single-period setting [14] (where ambiguity in measure is also
addressed). In the present note wework in an infinite state space, multiperiod setting in
the spirit of Föllmer–Schied [9]. We define a tightening of the super-hedging value
through the gain–loss criterion (i.e. we obtain a price bound smaller than the
superhedging value, and hence a lower and more attractive price for potential buyers
of the contingent claim), which we refer to as gain–loss hedging value. We prove two
duality results. The first one relates the absence of high gain–loss ratio investment
strategies in infinite-state, multiperiod financial markets to the existence of a special
equivalent martingale measure with bounded density and bounded away from zero.
The second one is a dual representation result for the gain–loss hedging value. Such
dual representations provide a starting point for the resolution of utility maximization
problems in mathematical finance as illustrated in a continuous-time setting in
Chapter 4 of Pham [12]. Our proof technique relies on a dual representation of the
gain–loss criterion and duality theory of convex programming in infinite-dimensional
spaces (see [10] for a reference on optimization in function spaces).

2. Background

We work in a financial market M¼ (�,F ,P,T,S, {F t}t2T) with discrete time
trading over the time set T¼ {0, 1, . . . ,T} and where (�,F ,P, {F t}t2T) is a complete
filtered probability space, P is trivial on F 0, and S¼ {St}t2T represents the non-
negative adapted price process of stocks traded in M with known current prices
S02R

dþ1, and St 2L
1
þð�,F t,P; R

dþ1
Þ for t¼ 1, . . . ,T. The first asset is the risk-free

asset (the numéraire), and its price is assumed equal to one at all times t2T for
simplicity. A price equal to one can always be achieved for the risk-free security with
a constant growth, chosen as numéraire, by dividing all other security prices and
contingent claim pay-offs by the price of that security. Let us recall that in a single
period setting, Bernardo and Ledoit [2] defined the gain–loss ratio E

P[Xþ]/E
P[X�] for

a claim X (where Xþ¼max{0,X} and X�¼max{0,�X}) from the set C(0, S) of all
claims that can be super-replicated at zero initial cost using the market-traded
securities with prices S. Their key result is the duality

sup
X2Cð0,SÞ

E
P
½Xþ�

E
P
½X��
¼ inf

Q

ess sup dQ
dP

ess inf dQdP

where the inf is over all equivalent martingale measures. Since the gain–loss hedging
criterion is invariant under multiplication by a positive scalar, the afore-mentioned
scaling does not affect the results. Additionally, we note that all equations and
inequalities in the sequel involving stochastic quantities are to be understood to
hold P-a.s.

362 M.Ç. P|nar
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Let P be the set of equivalent martingale measures in the arbitrage-free

(not necessarily complete) marketM. Let � represent the set of (dþ 1)-dimensional

predictable, self-financing portfolio processes (a.k.a. trading strategies) {�t}t¼1,. . .,T,

with �t ¼ ð�
0
t , �

1
t , . . . , �dt Þ, and we denote St � �t the inner product of vectors St and �t.

It is well known that for a predictable trading strategy � the following are

equivalent [9]:

. � is self-financing

. �t � St¼ �tþ1 � St, for t¼ 1, . . . ,T

. Vt ¼ V0 þ Gt ¼ �1 � S0 þ
Pt

k¼1 �k � ðSk � Sk�1Þ,

where Gt ¼
Pt

k¼1 �k � ðSk � Sk�1Þ is the time t component of the gains process and

Vt¼ �t �St is the time t component of the portfolio value process V. Due to the

presence of the numéraire (with value equal to one at all times), the knowledge of V0

and an arbitrary d-dimensional predictable process � suffice to construct the

associated (dþ 1)-dimensional self-financing strategy using the above characteriza-

tion. For further details we refer the reader to the opening section of Chapter 5 of [9].

For a given European contingent claim HE which is assumed to be an

FT -measurable, P-integrable, non-negative random variable throughout this article,

the superhedging value vs is defined as (Definition (1) is valid even if HE is not a non-

negative random variable.)

vs ¼ inf

�
x2Rj9�2� s.t. xþ

XT
k¼1

�k � ðSk � Sk�1Þ � HE

�
: ð1Þ

Considering the position of a seller of the contingent claim, the random payment HE

at time T is a liability. Then, vs represents the smallest price admissible to the seller of

the contingent claim since it is equal to the present value of a portfolio process f�tg
T
t¼1

whose cumulative gains xþ
PT

k¼1 �k � ðSk � Sk�1Þ dominate the payment HE due to

the investor (the holder of the contingent claim) at time T, and has the smallest

present value among all such portfolio processes. Therefore, vs is the smallest capital

requirement for the seller to undertake a portfolio trading strategy which will cover

the stochastic liability HE at maturity date T.
Under suitable assumptions on HE (e.g. HE bounded from below; see [8]

for references and details), the following dual representation is well known

(see, e.g. [9,18]).

THEOREM 1 The super-hedging value vs for a European claim HE has the following

dual representation:

vs ¼ sup
P2P

E
P
½HE�:

In the next section we shall define a gain–loss opportunity and prove a result giving

necessary and sufficient conditions for the absence of gain–loss opportunities in

financial markets using duality theory of convex optimization [10]. Then, we shall

pass to gain–loss hedging of European claims and establish a dual representation for

the gain–loss hedging value of a European claim.
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3. Gain–loss opportunity

In Föllmer and Schied [9] an arbitrage opportunity is defined as a self-financing
portfolio process with value process V that satisfies

V0 � 0, VT � 0, P½VT 4 0�4 0: ð2Þ

For �� 1 we define a �-gain–loss opportunity, �-GLO for short, as a self-
financing portfolio process with value process V satisfying

V0 ¼ 0, E
P
½ðVTÞþ � �ðVTÞ��4 0:

Since we have St 2L
1
þð�,F t,P; R

dþ1
Þ for all t¼ 1, . . . ,T, VT (or V�T ) is integrable

[3,5,6]. The market has no �-GLO (i.e. �-GLO-free) if no such portfolio process can
be found. Notice that any arbitrage opportunity is at the same time a �-GLO for any
�. However, obviously the converse is not true. Therefore, a financial market may
offer no arbitrage opportunity while for some �� 1 it has �-GLO opportunities. It is
intuitive that the market admits arbitrage opportunities if and only if investments
with infinite gain–loss ratio can be found (i.e. a �-GLO with �¼þ1) [2].

Example 1 Consider the example of the financial market depicted in Figure 1. The
number next to each node is the value of the stock price, and the risk-free asset is
assumed to be always valued at one. All scenarios are equally likely with a
probability equal to 1

6, i.e. the probability measure P is given by the vector with six
components (1/6, . . . , 1/6). The financial market does not admit arbitrage opportu-
nities ((q3, q4, q5, q6, q7, q8)¼ (0.175, 0.125, 0.2, 0.250, 0.125, 0.125) is a martingale
measure), but at �¼ 1.4 it is possible to form the following portfolio process: at
t¼ 0, no position is taken in the stock and the risk-free free asset, the same happens

0

1

2

3

4

5

6

7

8

25

21

15

14

11

9

16

12

20

Figure 1. Example of a financial market with a stock and a risk-free asset valued at one at all
time points. The number next to each node represents the value of the stock.
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at node 1. But, at node 2, we take a short position of 5 in the stock which brings 60

units to acquire 60 units of risk-free stock. This portfolio process leaves us with a

zero terminal value of VT (V2 to be precise) at nodes 3, 4 and 5. In node 7 we have a

terminal value of VT equal to 5, and in node 8 equal to 15, but in node 6, VT has

value �10. These terminal values yield exactly a gain–loss ratio equal to 1.4. The

financial market does not allow the formation of portfolio processes with a gain–loss

ratio equal or superior to 2. This is due to the fact that for �� 2 the maximum value

of E
P[(VT)þ� �(VT)�] that can be reached using a self-financing portfolio process

with value process V and initial cost V0¼ 0 is equal to zero, attained at a trivially

zero portfolio process.

One can derive a risk measure ��: L
1 � R[ {þ1} (to be minimized) from the

gain–loss criterion as ��(VT)¼E
P[�(VT)�� (VT)þ]. The risk function �� is always

finite-valued and therefore norm-continuous [7,17]. It also satisfies monotonicity,

convexity, positive homogeneity and subadditivity properties of risk measures. But,

it is easy to see that it does not satisfy the translation invariance property, and the

analysis of risk measures does not carry over directly as in [9,17]. One could certainly

undertake an analysis of this function in the spirit of, e.g. [9,15–17]. However, this is

beyond the scope of the present note and will be dealt with elsewhere.
The following useful dual expression can be found in [14].

LEMMA 1 Let Z2L1(�,FT,P,R) and �� 1. Then, we have

E½Zþ� � �E½Z�� ¼ inffE½�Z� j �2L1ð�,FT,P,RÞ, �2 ½1, ��g: ð3Þ

Proof Define �� ¼ 1fZ40g þ �1fZ�0g, which is [1, �]-valued random variable, then

we have

Zþ � �Z� ¼ Z1fZ40g � �ð�ZÞ1fZ�0g

¼ Z1fZ40g þ �Z1fZ�0g

¼ ��Z:

On the other hand, for every [1, �]-valued random variable � we have

�Z ¼ �ðZþ � Z�Þ ¼ �Z1fZ40g þ �Z1fZ�0g � Z1fZ40g þ �Z1fZ�0g

¼ ��Z ¼ Zþ � �Z�:

g

We define P(�) as the set of all martingale measures Q equivalent to P (i.e. makes

the stock price process S a martingale with respect to the filtration F t) such that the

‘scaled’ Radon-Nikodym density 1
V
dQ

dP
is a FT-measurable [1, �]-valued random

variable for some real number V> 0.

THEOREM 2 For fixed �� 1, the marketM is �-GLO-free if and only if the set P(�) is
non-empty.

Proof The plan of the proof is as follows. First, we shall derive a dual problem for

the optimization problem to verify whetherM is �-GLO-free. Then using the duality

theory of convex optimization we shall establish strong duality between the primal
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and dual problems. To check whetherM is �-GLO-free, we can solve the following
problem P0:

� ¼ sup
z

�
z2R j 9�2� s.t. S0 � �1 ¼ 0,E

�XT
k¼1

�k � ðSk � Sk�1Þþ

�

� �E

�XT
k¼1

�k � ðSk � Sk�1Þ�

�
� z

�
, ð4Þ

and we conclude that M is �-GLO-free if � is zero. We can equivalently pose
P0 as P1

�¼ sup
z,�2�

�
z2RjS0 � �1¼ 0, E

�XT
k¼1

�k � ðSk�Sk�1Þþ

�
��E

�XT
k¼1

�k � ðSk�Sk�1Þ�

�
� z

�
:

ð5Þ

The above optimization problem P1 is equivalent to the following optimization
problem P over all self-financing (predictable) portfolio processes �

sup E
P
½ðST � �TÞþ � �ðST � �TÞ��

s:t: S0 � �1¼0,

St � �t¼St � �tþ1 8t ¼ 1, . . . ,T� 1:

The convex programming dual problem D to the above optimization problem is
the following problem over variables y0 and yt2L

1(�, F t, P; R) for all t¼ 1, . . . ,T,
where yT is a (FT -measurable) [1, �]-valued random variable:

inf 0

s:t: ytSt ¼ E
P
½ ytþ1Stþ1jF t�, 8t ¼ 0, . . . ,T� 1:

We shall first derive the dual problem. To obtain the above dual problem, we
form the Lagrange function using multipliers y0 and {yt}t¼1,. . .,T�1:

Lð�1, . . . , �T, y0, y1, . . . , yT�1Þ

¼ E
P
½ðST � �TÞþ � �ðST � �TÞ�� � y0S0 � �1 þ

XT�1
t¼1

E
P
½ ytðSt � ð�t � �tþ1Þ�:

The dual function is then defined as

gð y0, y1, . . . , yT�1Þ ¼ sup
�1,...,�T

Lð�1, . . . , �T, y0, y1, . . . , yT�1Þ

with the dual problem D

inf
y0,y1,...,yT�1

gð y0, y1, . . . , yT�1Þ:

By using the dual representation of the gain–loss constraint in Lemma 1, we can
equivalently re-write the dual problem as

inf
y0,y1,...,yT�1, yT

sup
�1,...,�T

E
P
½ yTðST � �TÞ� � y0S0 � �1 þ

XT�1
t¼1

E
P
½ ytðSt � ð�t � �tþ1Þ�,
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where yT is an FT -measurable, [1, �]-valued random variable. Now, to evaluate the
inner supremum, we re-write the function using conditional expectations and after
re-grouping the terms concerning each �t:

E
P
�
E

P
½ð yTST � yT�1ST�1Þ � �TjFT�1�

þ � � � þ E
P
½ð y2S2 � y1S1Þ � �2jF 1� þ ð y1S1 � y0S0Þ � �1

�
:

Now, the supremum does not blow up, provided that

ytSt ¼ E
P
½ ytþ1Stþ1jF t�, 8t ¼ 0, . . . ,T� 1,

which are exactly the constraints of the dual problem with an identically zero
objective function.

Now, assume problem P has an optimal value of zero, i.e.M is �-GLO-free, and
an optimal solution �� (all portfolio positions identically zero achieves this zero
objective function value so we can always assume that the set of optimal solutions
sol(P) is non-empty in this case). By the Lagrange Duality Theorem (Theorem 1 in
Section 8.6 of [10]) we have that sup(P)¼ inf(D) since it is easy to see that P1 is
equivalent to P, and P0 satisfies the Slater strict feasibility condition. As a result, the
dual equations must have a solution y0, {yt}t¼1, . . . ,T (since otherwise the dual
objective function value would be þ1). The dual equations are equivalently written
as (after scaling)

St ¼ E
Q
½Stþ1jF t�, 8t ¼ 0, . . . ,T� 1,

where Q2P(�). This completes the proof of necessity.
For the converse, let us assume that the set P(�) is non-empty. As a consequence,

the system of equations in {yt}

ytSt ¼ E
P
½ ytþ1Stþ1jF t�, 8t ¼ 0, . . . ,T� 1

has a solution, which implies by the weak duality theorem of convex optimization
(sup(P)� inf(D)) that sup(P)¼ 0 and the sup is in fact attained (by the always zero
portfolio process). Therefore, the market is �-GLO-free. g

4. The dual representation for gain–loss hedging

For a fixed �� 1 we define the gain–loss hedging value vgl for a contingent claim
HE 2L

1
þð�,F t,P; RÞ as

vgl ¼ inf

�
x2Rj9�2� s.t. E

P

��
xþ

XT
k¼1

�k � ðSk � Sk�1Þ �HE

	
þ

� �

�
xþ

XT
k¼1

�k � ðSk � Sk�1

	
�HEÞ�

�
� 0

�
: ð6Þ

The gain–loss hedging value represents the present value of an optimal portfolio
process whose value at time T dominates the value of the contingent claim in the
following sense: the expected value of surplus generated by the portfolio process over
the contingent claim payment is at least as large as the � multiple of expected
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shortage with respect to the contingent claim payment. Among such portfolios, the

one resulting in the smallest present value is sought. The optimization problem in (6)

is a relaxation of the superhedging problem (1) since every predictable, self-financing

portfolio process that satisfies the constraints of the problem defining vs in

the previous section also satisfies the above gain–loss constraint. Therefore,

we have vgl� vs.
As a consequence of Lemma 1, the gain–loss constraint

E
P

��
xþ

XT
k¼1

�k � ðSk � Sk�1Þ �HE

	
þ

� �

�
xþ

XT
k¼1

�k � ðSk � Sk�1Þ �HE

	
�

�
� 0

is equivalent to

E
P

�
�

�
xþ

XT
k¼1

�k � ðSk � Sk�1Þ �HE

	�
� 0

8FT -meas. ½1, ��-valued random variables �:

Definition 1 The European claim HE is called �-attainable if the gain–loss hedging
value vgl�V0 is a finite non-negative real number.

The notion of �-attainability may be viewed as an extension of the concept of

exact replication for a contingent claim, relaxed using the gain–loss criterion. More

precisely, the requirement that all possible pay-offs at time T be replicated by a

portfolio almost surely (the present value of such a portfolio process is then the fair

price of the contingent claim since it does not allow arbitrage) is replaced by the

requirement that one finds a portfolio process which replicates a given contingent

claim in the sense of Definition 1, i.e. the value of the portfolio process in excess of

the contingent claim HE is equal to or larger than in expectation to a (�) multiple of

the value falling short of HE in expectation times. The value at time t¼ 0 of such a

portfolio process is then taken as a ‘fair’ price for the contingent claim, in the sense of

not allowing gain–loss ratio opportunities superior to � in the financial market.
If the contingent claim in question is not �-attainable, then by definition vgl is

either þ1 or �1. We shall now show that the case þ1 is impossible by

demonstrating that an admissible solution can always be found for the optimization

problem (6). Let �2� be any self-financing, predictable portfolio strategy and

denote by Z� the quantity
PT

k¼1 �k � ðSk � Sk�1Þ �HE. Now achieving feasibility

means finding an x2R such that

E
P
½ðxþ Z�Þþ� � �E

P
½ðxþ Z�Þ�� � 0:

But by Lemma 1, the above inequality is equivalent to

E
P
½�ðxþ Z�Þ� � 0, for all ½1, ��-valued, FT-measurable �:

We can rewrite the last inequality as

E
P
½�ð�Z�Þ� � xE

P
½��, for all ½1, ��-valued, FT-measurable �,
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or, equivalently as

E
P

�
�

E
P
½��
ð�Z�Þ

�
� x, for all ½1, ��-valued, FT-measurable �:

Now, we have

E
P

�
�

E
P
½��
ð�Z�Þ

�
� E

P

�
�

E
P
½��
jZ�j

�
, for all ½1, ��-valued, FT-measurable �:

Since �2 [1, �], one has 1�E
P[�]� �. Hence, we get 1

� �
�

E
P½��
� �: Therefore,

we obtain

E
P

�
�

E
P
½��
jZ�j

�
� �EP

½jZ�j� for all ½1, ��-valued, FT-measurable �:

As a result, for feasibility it suffices to choose x2R such that

x � �EP
½jZ�j�:

On the other hand, if vgl¼�1 then we can find a predictable, self-financing
portfolio process �2� with value process V, such that

E
P

��
V0 þ

XT
k¼1

�k � ðSk � Sk�1Þ �HE

	
þ

� �

�
V0 þ

XT
k¼1

�k � ðSk � Sk�1Þ �HE

	
�

�
4 0

with V0¼ 0. We can rewrite the last inequality as

E
P

�
�

�
V0 þ

XT
k¼1

�k � ðSk � Sk�1Þ �HE

	�
4 0,

8FT-meas. ½1, ��-valued random variables �,

or, equivalently

E
P

�
�

�
V0 þ

XT
k¼1

�k � ðSk � Sk�1Þ

	�
4 E

P
½�HE�,

8FT-meas. ½1, ��-valued random variables �:

But, we have E
P[�HE]� 0 for all FT -measurable [1, �]-valued random variables �

since HE is a non-negative random variable. Therefore, we have

E
P

�
�

�
V0 þ

XT
k¼1

�k � ðSk � Sk�1Þ

	�
4 0,

8FT-meas. ½1, ��-valued random variables �,

or, equivalently

E
P

��
V0 þ

XT
k¼1

�k � ðSk � Sk�1Þ

	
þ

� �

�
V0 þ

XT
k¼1

�k � ðSk � Sk�1Þ

	
�

�
4 0,

with V0¼ 0. Hence, the market is not �-GLO free. Therefore, the set P(�) is empty by
Theorem 2.
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Now, assume the market is �-GLO free (and hence arbitrage-free) and any

European contingent claim satisfying our assumptions is �-attainable. We can re-

write the problem (6) as the following optimization problem (P2):

inf S0 � �1

s:t: St � ð�tþ1 � �tÞ¼0 8t ¼ 1, . . . ,T� 1,

E
P
½ðST � �T �HEÞþ � �ðST � �T �HEÞ���0,

where P2 is a convex, semi-infinite optimization problem. Without repeating the

details of the computation (they are very similar to those in the proof of Theorem 2)

we obtain the convex programming dual of P2 as the following problem D2, over

positive dual variables {yt}t¼1,. . .,T such that yt2L
1(�,F t,P;R) for all

t¼ 1, . . . ,T� 1, with � an FT -measurable [1, �]-valued (random) dual variable:

sup yTE
P
½�HE�

s:t: S0 ¼ E
P
½ y1S1jF 1�,

ytSt¼E
P
½ ytþ1Stþ1jF t�, 8t ¼ 1, . . . ,T� 2

yT�1ST�1 ¼ yTE
P
½�STjFT�1�:

According to the duality theory of convex programming (Theorem 1, Section 8.6

of [10]), we have inf(P2)¼ sup(D2) and the sup in (D2) is attained since (P2) satisfies

the Slater strict feasibility condition. Finally, it remains to observe that the dual

problem (D2) is equivalent to the following problem by a straightforward scaling

transformation using yT:

sup
P
� 2Pð�Þ

E
�
½HE�:

Therefore, we get

vgl ¼ max
P
� 2Pð�Þ

E
�
½HE�: ð7Þ

Hence, we have proved the following main result of the present note.

THEOREM 3 In a �-GLO-free market M all European contingent claims HE are

�-attainable, and the gain–loss hedging value vgl admits the dual representation (7),

i.e. we have the duality relation

max
P
� 2Pð�Þ

E
�
½HE� ¼ inf

�
x2Rj9�2� s:t: EP

��
xþ

XT
k¼1

�k � ðSk � Sk�1Þ �HE

	
þ

� �

�
xþ

XT
k¼1

�k � ðSk � Sk�1Þ �HE

	
�

�
� 0

�
:

The following example illustrates the fact that the gain–loss hedging value can be

smaller than the superhedging value.

Example 2 Consider the financial market of Example 1, and a European call option

with strike equal to 11. The superhedging value vs of the option is 5.4, and it is
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obtained by evaluating the expectation of the option pay-off at the martingale
measure given by (q3, q4, q5, q6, q7, q8)¼ (0, 0.417, 0.083, 0.3, 0, 0.2). Evaluating vgl at
�¼ 2, we obtain a price equal to 5.25 attained at the measure (q3, q4, q5, q6, q7, q8)¼
(0.125, 0.208, 0.167, 0.250, 0.125, 0.125) which belongs to P(2) with V ¼ 3/4.

It was pointed out by an anonymous referee that the results of this article can be
re-derived in the framework of continuous time trading departing from the existing
results on superreplication of sufficiently integrable claims, representation of risk
measures and hedging with risk measures given in [1,4,7,11]. We shall undertake this
endeavour in a future paper.
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