
This article was downloaded by: [Bilkent University]
On: 03 December 2013, At: 17:21
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Theory and Methods
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lsta20

Adjusted Hazard Rate Estimator Based on a Known
Censoring Probability
Ülkü Gürler a & Paul Kvam b
a Department of Industrial Engineering , Bilkent University , Ankara , Turkey
b H. Milton Stewart School of Industrial Engineering , Georgia Institute of Technology ,
Atlanta , Georgia , USA
Published online: 17 Nov 2011.

To cite this article: Ülkü Gürler & Paul Kvam (2011) Adjusted Hazard Rate Estimator Based on a Known Censoring Probability,
Communications in Statistics - Theory and Methods, 40:24, 4409-4416, DOI: 10.1080/03610926.2010.513791

To link to this article:  http://dx.doi.org/10.1080/03610926.2010.513791

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/lsta20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610926.2010.513791
http://dx.doi.org/10.1080/03610926.2010.513791
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Communications in Statistics—Theory and Methods, 40: 4409–4416, 2011
Copyright © Taylor & Francis Group, LLC
ISSN: 0361-0926 print/1532-415X online
DOI: 10.1080/03610926.2010.513791

Adjusted Hazard Rate Estimator Based
on a Known Censoring Probability

ÜLKÜ GÜRLER1 AND PAUL KVAM2

1Department of Industrial Engineering, Bilkent University,
Ankara, Turkey
2H. Milton Stewart School of Industrial Engineering,
Georgia Institute of Technology, Atlanta, Georgia, USA

In most reliability studies involving censoring, one assumes that censoring
probabilities are unknown. We derive a nonparametric estimator for the survival
function when information regarding censoring frequency is available. The estimator
is constructed by adjusting the Nelson–Aalen estimator to incorporate censoring
information. Our results indicate significant improvements can be achieved if
available information regarding censoring is used. We compare this model to the
Koziol–Green model, which is also based on a form of proportional hazards for the
lifetime and censoring distributions. Two examples of survival data help to illustrate
the differences in the estimation techniques.

Keywords Hazard function; Kaplan–Meier product-limit estimator; Koziol–
Green model; Nelson–Aalen estimator; Stochastic precedence.

1. Problem Description

Suppose we have a sample of potentially right-censored observations and
lifetime distribution F with the paired censoring distribution G. If Xi ∼ F�·�
and Yi ∼G�·� with i = 1� � � � � n, suppose Xi and Yi are independent and let
Zi = min�Xi� Yi� represent the observed lifetime of the ith item with non censoring
indicator �i = I�Xi < Yi�. The Kaplan and Meier (1958) product-limit estimator is
asymptotically efficient for F in this case.

In many problems of survival analysis, it is known that values generated from F
are stochastically smaller than those generated by G in some sense. In applications,
this is evident in trials in which censoring is uncommon. With this kind of censoring,
in which the censoring conveys knowledge about F , the Kaplan–Meier estimator is
not necessarily asymptotically efficient.
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4410 Gürler and Kvam

Censored data are typical in survival and reliability studies, and there is a
vast literature on the estimation and inference methods with censored data. In
almost all of these studies it is assumed that the probability of censoring is
unknown. To reduce the uncertainty regarding the censoring mechanism, several
models have been employed by researchers. In parametric life-testing problems, for
example, the relationship between F and G can be modeled by imposing constraints
on the parameters of the lifetime distribution or the censoring distribution. In
nonparametric problems, this constraint on the relationship between censoring time
and lifetime must be modeled directly through F and G. For example, the Koziol–
Green (KG) model (Koziol and Green, 1976) stipulates that �G�t� = �F�t��, where
�F�t� = 1− F�t� and � > 0. This particular structure induces an ordering between F
and G, depending on the value of �; if � > 1, for example, the random variable X
tends to be larger than Y in a stochastic sense. One can show that � > 1 if and only
if G is smaller than F in likelihood ratio (lr) ordering. For this ordering, X is less
than Y in likelihood ratio (X ≤lr Y ) iff G�F−1� is convex. Note the order between F
and G are simply reversed in the case � ≤ 1.

Likelihood ratio is one of many stochastic orders that can distinguish rank
between the lifetime distribution and the censoring distribution when censoring is
present. Other commonly applied orders are stochastic ordering (st) and hazard rate
ordering (hr). See Shaked and Shanthikumar (1994) for a comprehensive discussion
of stochastic orders. We have X ≤st Y iff F�t� ≥ G�t��∀t, and X ≤hr Y iff �F�t�/�G�t�
decreases in t. It is known that X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y , so that likelihood
ratio ordering is the strongest of the three.

The likelihood ratio ordering is considered extremely restrictive in many
applications, and as a consequence, the Koziol–Green model can only be applied to
survival data in which the censoring variable is larger than the lifetime variable in a
strict stochastic sense. Csörgő (1989) showed that this assumption is insupportable
in typical sets of lifetime data. Extensions have been constructed to make the KG
model more applicable; e.g., Peña and Rohatgi (1987).

Arcones et al. (2002) introduced stochastic precedence betweenX and Y �X ≤sp Y�,
which occurs if P�X ≤ Y� ≥ 1/2. It is known that stochastic precedence (sp) is implied
by stochastic ordering, and is thus the weakest ordering of the four mentioned. Unlike
the censoring constraints generated by the Koziol–Green model, the sp-constraint is
relatively flexible and a wide variety of distributions can be considered for modeling
lifetime and censoring. Arcones et al. (2002) discussed applications where the sp-
constraint makes a difference in developmental testing, robust estimation of location
parameters, and tolerance-limit problems to name a few.

Although such restrictive models have been considered to link the censoring
and lifetime distributions to obtain more efficient estimators, to the best of our
knowledge, there is no study that assumes a known censoring probability. Hence,
how the estimators should be modified and what the value of this information would
be in terms of the estimators’ quality have not been discussed in the literature.
In this short note, we aim to fill this gap. Motivated by the idea of stochastic
precedence for linking F and G, we assume that rather than an available bound,
exact information regarding the censoring proportion is available from external
resources. In particular, we assume that P�X ≤ Y� = �, where 0 ≤ � ≤ 1 is specified.
This assumption may be realistic in applications where there has been sufficient data
accumulation from similar studies.

In the following section, we use an adjusted hazard rate estimator based on the
Kaplan–Meier product limit estimator of F under the constraint that P�X ≤ Y� = �
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Adjusted Hazard Rate Estimator 4411

(for some specified value of 0 ≤ � ≤ 1). The estimation of the censoring distribution
G is considered secondary. The estimator derived is illustrated with the stage-IV
prostate cancer data referenced by Koziol and Green (1976) to motivate the KG
model.

2. Adjusted Hazard Estimator

If we define the counting process N�t� =∑
I�Zi ≤ t� �i = 1� and Y�t� =∑

I�Zi ≥ t�,
the Kaplan–Meier estimator for right-censored data is

FKM�t� = 1− ∏
Zi≤t

(
1− dN�Zi�

Y�Zi�

)

and the (cumulative) hazard of F , defined as R�t� = − log��F�t��, can be expressed
in convenient Nelson–Aalen form: RKM�t� =

∫ t

0 dN�u�/Y�u�. The Nelson–Aalen
estimator does not perfectly match up with the product limit estimator, especially
after the last observation, so here we assume t such that Y�t� > 0. Because the two
estimators are asymptotically equivalent, we focus on the Kaplan–Meier estimator
to illustrate asymptotic properties. Assume that m =∑

�i, so that n−m of the n
observations are censored.

F and G are two distributions such that P�X ≤ Y� = �, for some fixed
non censoring probability of � ∈ �0� 1	. Equivalently,

∫ �G�u�dF�u� = � and∫ �F�u�dG�u� = 1− �. Let Fn be the empirical distribution function (EDF) based on
the m observed failure times, and Gn be the empirical distribution based on the
n−m censored observations. Along with Fn and Gn, define Hn as the EDF of the
combined data, i.e., Hn�t� = n−1∑ I�Zi ≤ t�. Under the assumption that P�X ≤ Y� =
�, it’s easy to show that:

1. �Fn�t� → �F ∗�t� ≡ 1
�

∫ �
t

�G�u�dF�u�;
2. �Gn�t� → �G∗�t� ≡ 1

1−�

∫ �
t
�F�u�dG�u�;

3. �Hn�t� = n−1∑ I�zi > t� → �H∗�t� ≡ �F�t��G�t�.

Note that dF ∗�t� = �G�t�dF�t�/�, dG∗�t� = �F�t�dG�t�/�1− ��. From this, R can be
expressed as

R�t� = �
∫ t

0

dF ∗�u�
�H∗�u�

� (1)

An intuitive estimator for the hazard, then, can be constructed from (1) as a
function of �̂ = m/n and the Kaplan–Meier hazard function RKM�t�:

R̂�t� = �
∫ t

0

dFn�u�

�Hn�u�
= �

n∑
i=1

m−1I��i = 1�
n−1

∑n
j=1 I�zj ≥ zi�

= �

(
n−1

∑
i

I�xi ≤ yi�

)−1 ∫ t

0

dN�u�

Y�u�

= �

�̂
RKM�t�� (2)

We call R̂�t� the adjusted hazard rate (AHR) estimator.
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4412 Gürler and Kvam

Properties of the corresponding estimator for the lifetime distribution, F̂ �t� =
1− exp
−R̂�t�� are given in the theorems that follow.

Theorem 2.1. In 
t � �H�t� > 0�, if �̂F�t� = exp
−R̂�t�� where R̂ = ��/�̂�RKM�t� is the
AHR estimator and RKM is the Kaplan–Meier (cumulative) hazard function, then with
probability 1,

sup
t

�F̂ �t�− F�t�� → 0�

Theorem 2.2. If �̂F�t� = exp
−R̂�t�� (as in Theorem 2.1), then

√
n
(
F̂ − F

)
⇒ � (3)

where � is a zero-mean Gaussian process with covariance function


2�s� t� = �F�t��F�s�
∫ s∨t

0

dF�u�

�F�u��G�u�
� (4)

Theorem 2.1 follows from the strong consistency of the KM estimator and the
strong law of large numbers for �̂. The asymptotic variance in (4) is the familiar
covariance function of the Kaplan Meier estimator for right-censored data. Because
�̂

P→ �, by Slutsky’s Theorem, Theorem 2.2 follows.
Comparisons made between estimators based on the KG model and the KM

estimator are synonymous if we substitute the AHR estimator for KM. The
nonparametric MLE for the KG model, derived by Cheng and Lin (1987) can
be expressed as �FKG�x� = �Hn�x�

�̂. Unlike the KG estimator, F̂ and FKM assign
probability mass only on non censored observations.

Cheng and Lin showed that �FKG�x� = �Hn�x�
�̂ is more efficient than the AHR

estimator in the case the KG model holds. Otherwise, the AHR estimator is more
efficient. The arguments in Csörgő (1988) hold for both cases. Both estimators
adjust the Kaplan–Meier estimator via proportional hazards. Compared to (1), the
nonparametric MLE for F in the KG model can be expressed in terms of its hazard
function (RKG) as

RKG�t� = �̂RHn
�t��

where RHn
is the cumulative hazard function for Hn. With RHn

→ RF + RG, we see
how the role of the censoring distribution in the KG estimator is clearly more
primary for the KG estimator than the AHR estimator.

3. Examples

We consider below two examples that motivated past research using censored data
and the Koziol–Green model. The first set (prostate cancer data), referenced by
Koziol and Green (1976), does not actually fit the KG model well. The second
set (retirement center data) was found to be more suited in a comparative study
by Csörgő (1989). In neither set of historic data can we informatively select
a probability that accurately reflects the true nature of the censoring that is
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Adjusted Hazard Rate Estimator 4413

expected. Furthermore, later studies have shown that the observed censoring rate
is high because it includes death by other causes. Still, the examples are helpful in
illustrating the applicability of the AHR estimator.

3.1. Prostate Cancer

The model proposed by Koziol and Green (1976) was inspired, in part, by a set of
data based on a clinical trial of 211 individuals who had Stage IV prostate cancer.
An updated version of the data are listed in Table 2 in Hollander and Proschan
(1979). Of the 211 individuals who were treated with estrogen, 90 died of prostate
cancer, 105 died of other diseases, and 16 were still alive at the end of the study.
These 105+ 16 = 121 observations were treated as right censored.

The order restriction inherent with F̂ is specified by the experimenter. Any
specification of � = P�X ≤ Y� pulls F̂ over or under the regular Kaplan–Meier
estimator FKM . Figure 1 shows the order restricted estimators based on � = 0�50
alongside the KG estimator. Survival time was measured in months. The magnitude
of difference between the curves is not strongly evident in the figure; the mean
square distance �

∫
�F1�x�− F2�x�	

2dx� between the KM estimator and the KG
estimator is more than twice that between the KM and the adjusted hazard
estimator �F̂ �. The AHR estimator makes a lesser augmentation on the KM
estimate, and since its hazard is proportional to that of the KM, the shape remains
the same. The KG estimator features a proportional hazard, but it is not the hazard
of the KM estimator, and Fig. 1 shows how the KG estimator changes the shape to
subscribe to the Koziol–Green constraint.

In this example, � = 0�50 was somewhat arbitrarily chosen without any
knowledge of the lifetime distribution’s relationship to the censoring distribution.
In fact, the data showed more-than-expected censoring; since �̂ = 0�42654, the
stochastic precedence constraint of � = 0�5 actually pulls the AHR distribution
under the KM distribution. At � = �̂, we have a “break-even point” where FKM and
F̂ are coincidental.

Figure 1. MLE of F�t� for prostate data with � = 0�50 (solid line), the Kaplan–Meier
estimator (gray line), and the KG estimator (dashed line). Time is measured in months.
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4414 Gürler and Kvam

Figure 2. MLE of F�t� for Channing House retirement data with � = 0�50 (solid line), the
Kaplan–Meier estimator (gray line), and the KG estimator (dashed line). Time (x-axis) is
measured in months.

3.2. Retirement Center Data

In contrast to the last example, we consider a set of survival data that actually
fits the KG model well. Csörgő (1989) presents a test for the proportional hazard
found in the KG model and considered several published sets of survival data to
illustrate the test, including the example above. The prostate survival data, in fact,
does not fit the KG model adequately. This fact has unforseen consequences on
Koziol and Green’s test for exponentiality because it is based on the assumption of
the proportional hazard in the KG model.

Csörgő (1989) examined the well-known Stanford heart transplant data by
Miller and Halpern (1982), censored recurrence times of myocardial infarction from
Chen (1981), pacemaker failure data described in Csörgő and Horváth (1986) and
survival data for male residents of a retirement center featured in Efron (1999).
Of these six sets of censored survival data, only the retirement center data can be
modeled well with the proportional hazard of Koziol and Green.

Figure 2 shows the estimators for the lifetime distribution based on 97 men
from the Channing House retirement center in Palo Alto, California. Lifetime is
measured in calendar months. The study kept track of resident lifetimes from the
center’s opening in 1964 until the study finished in 1975. In that time, 46 of the 97
residents died at the Channing House, 5 moved elsewhere, and 46 were alive at the
end of the study. Unlike the distributions in Fig. 1, there are really no remarkable
differences in the three plots in Fig. 2: neither the KG estimator or the AHR
estimator ��̂ = 0�4742� augment the Kaplan–Meier estimator to fit the hypothesized
model constraints, as the original data reflects those constraints naturally.

4. Simulation and Discussion

For the case when the censoring information is available, the adjusted hazard
rate estimator derived earlier has important advantages over estimators based on
the Koziol–Green model. Although the sp – constraint is weaker than the more
commonly used stochastic orderings, the choice of � in P�X ≤ Y� = � can still be a
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Adjusted Hazard Rate Estimator 4415

Figure 3. Order restricted MLE of F for Prostate data with � = 
0�10� 0�40� 0�50� 0�60� 0�90�
(solid lines from top to bottom) along with the Kaplan–Meier estimator (gray line).

crucial assumption. We have not considered the consequences of misspecifying �,
for example.

In the first example, with � = 0�5 decreased the estimated distribution function
(relative to the Kaplan–Meier estimator) because there was actually more than 50%
censoring ��̂ = 0�4665�. The difference between �̂ and 0.50 was smaller in the second
example, and the plots of the two estimators are nearly coincidental.

Figure 3 shows the AHR estimator for the prostate data again, but this time
various levels of � are used. While the plots for � = 0�40 or 0.50 are close to the KM
estimator, the heavier constraints using � = �90 (bottom CDF) or � = 0�10 (top cdf)
cause a dramatic change in the estimator.

We compared relative mean squared error (MSE) in terms of the MSE for the
Kaplan–Meier estimator. With MSE�F̂ � F� = ∫

�F − F̂ �2dF , the relative MSE for
both the AHR estimator and the Koziol–Green estimator are defined as

��F̂� FKM� =
MSE�F̂ � F�

MSE�FKM� F�
� ��FKG� FKM� =

MSE�FKG� F�

MSE�FKM� F�
�

As a function of F�x�, a smoothed version of � is plotted in Fig. 4 based on
1,000 simulations in which n = 200 lifetimes are generated from a Gamma��� 1�
distribution, with � representing the shape parameter. The censoring distribution
is Exponential with the mean adapted to achieve the desired � = P�X < Y� value,
which is either � = 0�5 (in plots a� b� c) or � = 0�7 (in plot d). Figure 4a has � = 1,
which actually fits the Koziol–Green model. Not surprisingly, this is the only setting
for which FKG performs uniformly better than the Kaplan–Meier estimator.

With � = 2 or 4, in Figs. 4b and 4c, respectively, the MSE for FKG is much
larger in the tails compared to the other estimators; near F�x� = 0�10, ��FKG� FKM�

is between 4 and 20. This is also the case for Fig. 4d, where � = 4 but � is changed
to 0.7. Perhaps most importantly, the AHR estimator performs slightly better than
the Kaplan–Meier estimator in all four settings, and is unquestionably better than
FKG in the cases � > 1.
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4416 Gürler and Kvam

Figure 4. Plot of relative MSE (wrt KM estimator) vs. 0 < F�x� < 1, where ��F̂� FKM� is
the solid line and ��FKG� FKM� is the dashed line. n = 200 data are generated from ���� 1�
with (a) � = 0�5, � = 1, (b) � = 0�5, � = 2, (c) � = 0�5, � = 4, (d) � = 0�7, � = 4.
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Csörgő, S. (1988). Estimation in the proportional hazards model of random censorship.
Statistics 19:437–463.
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