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The problem of quantile hedging for American claims is studied from the perspective of the
buyer of a contingent claim by minimizing the ‘expected failure ratio’. After a general study of
the problem in infinite-state spaces, we pass to finite dimensions and examine the properties of
the resulting finite-dimensional optimization problems. In finite-state probability spaces we
obtain a bilinear programming formulation that admits an exact linearization using binary
exercise variables. Numerical results with S&P 500 index options demonstrate the compu-
tational viability of the formulations.
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1. Introduction

A fundamental problem of financial economics is the
pricing of financial instruments called ‘contingent claims’.
When an arbitrage-free financial market is not complete,
it is well-known that there exists a set of ‘risk-neutral’
probability measures that make the (discounted) prices of
traded instruments martingales. An important feature of
the set of risk-neutral measures is that the value of the
cheapest portfolio to dominate the pay-off at maturity of
a contingent claim coincides with the maximum expected
value of the (discounted) pay-off of the claim with respect
to this set. This value, called the ‘super-hedging price’,
allows the seller to assemble a portfolio that achieves a
value at least as large as the pay-off to the claim holder at
the maturity date of the claim in all non-negligible events.
By a similar reasoning, the largest price that a potential
buyer is willing to disburse to acquire a contingent claim
is called a ‘sub-hedging price’ (or lower hedging price),
which is equal to the value of the most precious portfolio
that is dominated by the contingent claim pay-off at
maturity. (If the claim is attainable, then the smallest price
to super-hedge and the largest price to sub-hedge are
equal to the hedging price, and the expected value does
not depend on the chosen risk-neutral measure, so the
previous statement still applies.) The super-hedging price
is the natural price to be asked by the writer of a
contingent claim and, together with the bid price obtained

by considering the analogous problem from the point of

view of the buyer, it constitutes an interval that is

sometimes called the ‘no-arbitrage price interval’ for the

claim in question.
A writer may not always ask for the whole

super-hedging price to ‘sell’ a claim with pay-off FT

(see, e.g., Föllmer and Schied 2004, chapters 7 and 8 for a

discussion and examples showing that the super-hedging

price may be too high). On the other hand, some

economic considerations such as pre-existing endowments

or liabilities may induce a buyer to pay a larger price than

the sub-hedging price to acquire the claim. It may also be

the case that the no-arbitrage buyer price, i.e. the

sub-hedging price, may be too low to be interesting for

any potential seller. In such a case, neither buyer nor

seller will be able to set up sub-hedging or super-hedging

portfolios, which implies that they will face a positive

probability of ‘falling short’, i.e. for the writer his/her

portfolio will take values VT smaller than those of the

claim on a non-negligible event, and for the buyer his/her

portfolio will take values VT larger than those of the claim

on a non-negligible event. Thus, the writer and the buyer

will need to choose hedging strategies according to some

optimality criterion to be decided. One such criterion that

has been widely studied comes from the idea of quantile

hedging, which consists of choosing a hedge portfolio that

minimizes the probability of a shortfall in the case of a

writer. The problem has been studied in several papers

(Spivak and Cvitanić 1999, Föllmer and Leukert 2000,

Nakano 2003, 2004, Rudloff 2007, 2009) in discrete time*Email: mustafap@bilkent.edu.tr
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and infinite state spaces or in continuous time, almost
exclusively—to the best of this author’s knowledge—from
the viewpoint of a writer of a European claim.
Pérez-Hernández (2007) studied the problem of quantile
hedging for American contingent claims in an infinite-
state space setting from the perspective of the writer of the
claim.

The purpose of this paper is to study quantile hedging
portfolio strategies from a buyer’s perspective under
discrete-time trading in incomplete markets for American
claims. We analyse the problem both in infinite- and
finite-state spaces. In the latter case, we formulate the
associated optimization problems as problems that can be
treated numerically by available software, and investigate
their properties. The resulting bilinear programming
formulations for lower quantile hedging of American
contingent claims are new, and appear for the first time in
the present paper, to the best of the author’s knowledge.

The rest of the paper is organized as follows. In section
2 we recall briefly the quantile hedge problem from a
writer’s point of view. Section 3 is devoted to the quantile
hedge problems of American contingent claims in general,
and section 4 to the same problems in finite-dimensional
spaces, from a buyer’s perspective. An interesting aux-
iliary—but important in its own right—result allows us to
obtain a compact, bilinear, continuous optimization
formulation. Using the binary nature of variables that
represent exercise strategies for the American claim, we
obtain a linear mixed-integer programming formulation
that is equivalent to the bilinear continuous formulation.
Finally, section 5 is devoted to the numerical testing of the
formulations of the paper using data from S&P 500
options. It appears that the linearized version of the
bilinear formulation, while giving rise to large optimiza-
tion problems, may be processed numerically by available
software.

A common criticism leveled against the criterion of
quantile hedging is that it ignores the magnitude of the
losses (Föllmer and Schied 2004). In response to this
criticism, several authors have studied the criterion of
expected shortfall minimization (see, e.g., Nakano (2003),
Föllmer and Schied (2004) and Rudloff (2007, 2009)).
We will investigate this criterion in the spirit of the
present paper, that is, from a buyer’s perspective, in a
subsequent work.

2. Background on writer’s quantile hedge for

European claims

In the present paper, we work in a financial market
M¼ (�,F ,P,T,S, {F t}t2T) with discrete-time trading
over the time set T¼ {0, 1, . . . ,T } and where
(�,F ,P, {F}t2T) is a complete filtered probability space,
and S¼ {St}t2T is an R

2
þ asset price process over the time

set T adapted to the filtration {F}t2T. We assume without
loss of generality that the first component of S is the
numéraire security, i.e. S0

t ¼ 1 for all t2T. Let Q be the
set of equivalent martingale measures in the arbitrage-free

(not necessarily complete) marketM. For the rest of the

paper we make the following blanket assumption.

Assumption 2.1: The market is arbitrage free, i.e. the set

Q is non-empty.

Let us recall the problem of quantile hedging from the

point of view of the writer of a contingent claim. The

problem in the form that we will address was studied by

Föllmer and Leukert (2000). The idea is the following. Fix

a capital v smaller than the no-arbitrage price for the

contingent claim H with (discounted with respect to the

numéraire) pay-offs {Ht}t2T, i.e. v5�"(H )� supQ2Q

E
Q[HT], and find a hedge policy that maximizes the

probability of success, where the probability of success is

the probability of the event that the value of an admissible

portfolio strategy at the time of expiration of the claim is

at least as large as the value of the claim. A self-financing

trading strategy is called admissible if its value process is

non-negative at the time of expiration of the contingent

claim (Föllmer and Schied 2004, definition 8.1). Hence,

the problem is to construct an admissible strategy ��� such
that its value process V� satisfies

P½V�T � H� ¼ maxP½VT � H�, ð1Þ

where the maximum is searched for in the set of all

admissible portfolio strategies satisfying

V0 � v: ð2Þ

The set {VT�H} is termed the success set. Föllmer and

Schied (2004) show that the problem is guaranteed to

admit a closed-form solution for complete markets, under

a technical condition that may not always be verified

(Föllmer and Leukert 2000). More precisely, let Q be a

singleton, i.e. Q¼ {Q�}. Assuming that A� maximizes the

probability P[A] among all sets A2FT satisfying the

constraint

E
Q
�

½H11A� � v,

the replicating strategy ��� of the knock-out option

H� ¼ H11A� solves the above optimization problem. To

construct the optimal set A� using the Neyman–Pearson

theory, an auxiliary measure Q� is introduced, given by

dQ�

dQ
� ¼

H

E
Q
�

½H�
:

The set A� was explicitly pointed out by Föllmer and

Schied (2004, chapter 8). If

Q�½A�� ¼
v

E
Q
�

½H�
,

then A� maximizes P[A] among all sets A2FT satisfying

the constraint

E
Q
�

½H11A� � v,

and the replicating strategy of H11A� solves the prob-

lem (1)–(2). However, in general it may be impossible to

find such a set A� with probability under Q� exactly equal

to v=EQ
�

½H�. Hence, Föllmer and Leukert introduced
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an extended version of the problem where the so-called
‘expected success ratio’ is minimized.

For an admissible strategy � and its value process V we
define the success ratio  V of � by

 V :¼ 11fVT�Hg þ
VT

H
11fVT5Hg ¼

VT

H
^ 1:

For an amount v5�"(H ), the writer’s problem consists
of searching among all admissible strategies, with initial

endowment equal to at most v, for one that maximizes the
expected success ratio. In other words, the problem of
interest to the writer is problem [WECP] over variables �
that are admissible adapted portfolio strategies � (and

their value processes V )

sup

s:t:

E
P
½ V�,

V0 � v:

The set { V¼ 1} coincides with the success set

{VT�H} of V. Instead of solving the above problem,
Föllmer and Leukert (2000) and Föllmer and Schied
(2004) advocate solving the auxiliary problem

sup E
P
½ �,

s:t: sup
Q2Q

E
Q
½H � � v,

 2 ½0, 1� P-a.s.

They show that a solution  � exists and the value
process of a super-hedging strategy for the modified claim
H � leads to the optimal success set corresponding to
initial capital v. The details can be found in Föllmer and

Schied (2004, chapter 8). The above ideas were extended
to the case of American contingent claims from the
viewpoint of the writer by Pérez-Hernández (2007).

3. Quantile hedging: Buyer’s view for American claims

The study of American contingent claims poses an

additional challenge due to the presence of the early
exercise possibility. For an in-depth treatment of
American contingent claims in discrete time, our desktop

reference is Föllmer and Schied (2004). One common way
to describe exercise strategies of American claims is by
stopping times. These are functions � :

�! {0, . . . ,T}[ {þ1} such that {!2� | �(!)¼ t}2F t,
for each t¼ 0, . . . ,T. Let T denote the set of stopping
times. It is well-known that the buyer lower hedging price
of an American claim with pay-off process C¼ {Ct}t2T is

given by

�#ðCÞ ¼ sup
�2T

inf
Q2Q

E
Q
½C��:

We shall refer to �#(C) as the sub-hedging price for
American claim C. Chalasani and Jha (2001) show that

�#(C) can be obtained as the optimal value of the
following optimization problem:

max
�2�
f�V0ð�Þ j 9� 2 T s.t. V�ð�Þ þ C� � 0g,

where � represents the set of self-financing portfolio

strategies �. Assuming �� is an optimal portfolio strategy

and �� an optimal exercise rule, the buyer borrows the

amount V0(�
�) at time 0 to pay the seller for the

contingent claim, and acquires the claim. At the time ��

of exercise of the claim, the buyer repays his/her debt

incurred at time 0. We refer to the optimal portfolio

strategy of the buyer as a ‘sub-hedging strategy’. A sub-

hedging strategy �� has the property that Vt(�
�)�Ct on

{Ct40} for all t2T, and VT� 0 (Chalasani and Jha 2001,

Föllmer and Schied 2004, Pennanen and King 2006).
Following Pérez-Hernández (2007), let the American

contingent claim C¼ {Ct}t2T be a given non-negative

adapted and P-integrable process. For a portfolio strat-

egy � we define the ‘failure ratio’ process  � of � by

 �t :¼ 11fVtð�Þ�Ctg þ
Vtð�Þ

Ct
11fVtð�Þ4Ctg ¼

Vtð�Þ

Ct
_ 1:

For an amount v4�#(C ), the buyer’s problem consists of

searching among all self-financing portfolio strategies,

with initial endowment equal to at least v, for one that

minimizes the maximum of the expected failure ratio over

all stopping times. In other words, the problem of interest

to the buyer is problem ACP (American Claim Problem)

inf sup
�2T

E
P
½ �� �,

s:t: V0ð�Þ�v:

We define by R the set of [1, 1]-valued adapted

processes, i.e.

R¼f ¼f tgt2T : t 2 ½1,1�, andF t-measurable, 8t2Tg:

For the American claim C we define the subset R0 of R

R0 ¼  2 R : inf
Q2Q

sup
�2T

E
Q
½C� � � � v

� �
:

We are interested in solving the problem [PACP] as a

proxy to [ACP]

inf sup
�2T

E
P
½ � �,

s:t: inf
Q2Q

sup
�2T

E
Q
½C� � � � v,

 2 ½1,1� P-a.s.

As an elementary observation note that, if  ̂t solves

[PACP], every process � 2 R0 with � t �  ̂t, 8t2T, also

solves [PACP].

Theorem 3.1: Let the infimum in PACP be finite. Then we

have the following.

(1) The problem [PACP] has an optimal solution, i.e.

there exists a  ̂ 2 R0 with

sup
�2T

E
P
½ ̂�� ¼ min

 2R0

sup
�2T

E
P
½ � �

� �
:

(2) For an optimal solution  ̂ of [PACP], a sub-hedging

strategy �̂ for the adjusted American claim

Ĉ ¼ C �  ̂ is a solution of problem ACP.

Buyer’s quantile hedge portfolios in discrete-time trading 3731
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Proof: For part 1, observe that in [PACP] the functional

f ð Þ � E
P
½ ̂�� is a linear functional in  � for fixed �. Since

the supremum of an arbitrary collection of linear func-

tionals is convex and piecewise linear (Van Tiel 1984), the

objective function in [PACP] is a convex functional in  .
Now fix �4 inf 2R0

f . Since the level set lev( f, �)¼ { |

f ( )� �} is convex, and closed (Van Tiel 1984), the set

lev( f, �)\ { | 2 [1,1] P-a.s.} is closed and bounded,

and hence compact using the assumption that

inf 2R0
f4�1. On the other hand, the set { | infQ2Q

sup�2T E
Q[C� �]� v} is closed, hence its intersection with

lev( f, �)\ { | 2 [1,1] P-a.s.} is a compact set. Since

PACP is equivalent to minimizing f over lev( f, �)\ { |

 2 [1,1] P-a.s.}\ { | infQ2Q sup�2T E
Q[C� �]� v}, a

compact set by the previous assertion, f attains its

infimum over this set by the Weierstrass’ theorem. This

proves part 1.
For part 2, let � be a self-financing portfolio strategy

with V0(�)� v and VT� 0, and � 2T be a stopping time.

Using Doob’s Stopping Theorem (Föllmer and Schied

2004, theorem 6.17) on the Q-martingale V(�) we

have that

E
Q
½C� 

�
�� ¼ E

Q
½V�ð�Þ _ C�� � E

Q
½V0ð�Þ� � v,

hence  �2R0, and as a feasible point of [ACFP] we obtain

sup
�2T

E
P
½ ��� � sup

�2T
E

P
½ ̂��: ð3Þ

Now let us consider a sub-hedging strategy �̂ for the

adjusted American claim Ĉ � C ̂. Using the correspond-

ing failure ratio  �̂ we have

Ct �  
�̂
t ¼ Ct _ Vtð�̂Þ � Ct _ ðCt ̂Þ ¼ Ct ̂:

Therefore,  �̂t is dominated by  ̂t on the set {Ct40}.

Moreover, any failure ratio is equal to 1 on {Ct¼ 0}

following a reasoning similar to Pérez-Hernández (2007).

Hence, we obtain

 �̂t �  ̂t, P-a.s.

Now, since every process � such that � t �  ̂t for all t2T

is also a solution to PACP we obtain that �̂ solves [PACP].

Combined with (3), we have that sup�2T E
P
½ �̂�� ¼

sup�2T E
P
½ ̂� � and �̂ solves [ACP]. h

For an optimal  �, the sub-hedging portfolio strategy

for the scaled-up claim C � is the optimal quantile hedge

strategy corresponding to initial capital v. We next
investigate the ramifications of this result in finite-state

markets.

4. Buyer’s problem for American claims in finite-state

markets

In finite-state markets, we can transform PACP into a

finite-dimensional optimization problem that can be

processed numerically by existing optimization algo-
rithms and software.

4.1. The finite-state market

Now we assume � has a finite number of atoms, i.e.
�¼ {!1, . . . ,!K}. More precisely, we assume as in King
(2002) that security prices and other payments are discrete
random variables supported on a finite probability space
(�,F ,P) whose atoms are sequences of real-valued
vectors (asset values) over discrete time periods
t2T¼ {0, 1, . . . ,T}. The market evolves as a discrete,
non-recombinant scenario tree in which the partition of
probability atoms !2� generated by matching path
histories up to time t corresponds one-to-one with nodes
n2N t at level t in the tree. The set N 0 consists of the root
node n¼ 0, and the leaf nodes n2N T correspond one-to-
one with the probability atoms !2�. While not needed in
the finite probability setting, the �-algebras F t generated
by the partitions N t are such that F 0¼ {;, �}, F t	F tþ1

for all 0� t�T� 1 and FT¼F . A stochastic process is
said to be ðF tÞ

T
t¼0-adapted if, for each t¼ 0, . . . ,T, the

outcome of the process only depends on the element of F t

that has been realized at stage t. Similarly, a decision
process is said to be ðF tÞ

T
t¼0-adapted if, for each t2T, the

decision depends on the element of F t that has been
realized at stage t. In the scenario tree, every node n2N t

for t¼ 1, . . . ,T has a unique parent denoted �(n)2N t�1,
and every node n2N t, t¼ 0, 1, . . . ,T� 1, has a non-
empty set of child nodes C(n)	N tþ1. We denote the set of
all nodes in the tree by N . The set A(n) denotes the
collection of ascendant nodes or the unique path leading
to node n (including itself) from node 0 and the set D(n)
denotes the collection of descendant nodes of node n
including itself. The probability distribution P is obtained
by attaching positive weights pn to each leaf node n2N T

so that
P

n2N T
pn ¼ 1. For each non-leaf (intermediate

level) node in the tree, i.e. for all ‘2N nN T, the
probability is determined recursively by

p‘ ¼
X

m2CðnÞ

pm, 8n 2 N t, t ¼ T� 1, . . . , 0:

Hence, each non-leaf node has a probability mass equal to
the combined mass of its child nodes.

A stochastic process {Xt} is a time-indexed collection of
random variables such that each Xt is a random variable
with realizations Xn for all n2N t. The expected value of
Xt is uniquely defined by the sum

E
P
½Xt� :¼

X
n2N t

pnXn:

The conditional expectation of Xtþ1 on N t is given by the
expression

E
P
½Xtþ1 j N t� :¼

X
m2CðnÞ

pm
pn

Xm:

The market consists, as in the previous section, of a bond
and a single risky security with prices at node n given by
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the two-dimensional vector Sn ¼ ðS
0
n,S

1
nÞ

T. The number of
shares of securities held by the investor in state (node)
n2N t is denoted �n2R

2. Therefore, to each state n2N t

is associated the two-dimensional real vector �n. The value
of the portfolio at state n is Sn � �n. We assume without
loss of generality that prices at all nodes have been scaled
so that S0

n ¼ 1 for all n2N . The assumption of a single
risky security can easily be relaxed, and the development
of the paper can be repeated for multiple securities,
mutatis mutandis.

Definition 4.1: If there exists a probability measure
Q ¼ fqngn2NT such that

St ¼ E
Q
½Stþ1 j N t� ðt � T� 1Þ,

then the process {St} is called a martingale under Q, and
Q is called a martingale probability measure for the
process {St}.

We denote (as usual) by Q the set of all equivalent
probability measures that make S a martingale over
[0, 1, . . . ,T ].

4.2. Lower hedging price for the buyer of an American
claim

Before embarking on this transformation we need an
auxiliary result that is important in its own right and will
let us formulate the pricing problem of the buyer as a
linear program with all the nice duality theory attached
to it.

We define the sets of exercise strategies

E ¼

�
e j e is ðF tÞ

T
t¼0-adapted,

XT
t¼0

et � 1 and

et 2 f0, 1g P-a.s.

�
,

~E ¼

�
e j e is ðF tÞ

T
t¼0-adapted ,

XT
t¼0

et � 1 and

et � 0 P-a.s.

�
:

The relation et¼ 1 , �¼ t defines a one-to-one corre-
spondence between stopping times and decision processes
e2E. Now, let us recall that an arbitrage seeking buyer’s
problem for an American contingent claim C with pay-
offs Cn for all n2N , i.e. the computation of the
sub-hedging price �#(C) and the sub-hedging strategy,
can be formulated as the following problem that we will
refer as AP1 (Pennanen and King 2006, Camci and
Pinar 2009):

maxV,

s:t: S0 � �0 ¼ C0e0 � V,

Sn � ð�n � ��ðnÞÞ ¼ Cnen, 8n 2 N t, 1 � t � T,

Sn � �n � 0, 8n 2 N T,X
m2AðnÞ

em � 1, 8n 2 N T,

en 2 f0, 1g, 8n 2 N :

The optimal value of the variable V is the largest
amount that a potential buyer is willing to disburse for
acquiring a given American contingent claim C, i.e. it
gives the sub-hedging price. The optimal values of the
variables �n give the sub-hedging strategy for
the American contingent claim C. The computation of
the sub-hedging price via the above integer programming
problem is carried out by the construction of an optimal
(adapted) portfolio process that satisfies the requirements
described in the previous section. Such a portfolio process
replicates the proceeds from the contingent claim
(if exercised) by self-financing transactions using the
market-traded securities so as to avoid any terminal
losses. The first constraint expresses the value of the
portfolio process at time 0. The second set of constraints
are the self-financing portfolio rebalancing constraints at
each subsequent trading date, and each node of the
scenario tree at that trading date. The third set of
constraints ensure that the value of the portfolio process
at time T (end of the horizon) is non-negative. The
integer-valued variables en and related constraints repre-
sent the one-time exercise of the American contingent
claim (see Pennanen and King 2006 for further details).
Alternatively, we can view the buyer implementing a
sub-hedging strategy as follows. He/she borrows the
amount �#(C) to acquire the claim, and tries to close the
debt positions with self-financing transactions and pro-
ceeds from the exercise of the claim in subsequent time
periods in all states of the market.

A linear programming relaxation of AP1 is the follow-
ing problem AP2:

maxV,

s:t: S0 � �0 ¼ C0e0 � V,

Sn � ð�n � ��ðnÞÞ ¼ Cnen, 8n 2 N t, 1 � t � T,

Sn � �n � 0, 8n 2 N T,X
m2AðnÞ

em � 1, 8n 2 N T,

en � 0, 8n 2 N :

Theorem 4.2: There exists an optimal solution to AP2
with en2 {0, 1}, 8n2N .

The proof of this theorem is somewhat involved and
published elsewhere (Camci and Pinar 2009).

A direct consequence of the above result is the
following. We denote by ~Q the set of all martingale
measures (not necessarily equivalent to P) that is the
closure of Q in discrete-time finite-state markets
(King 2002).

Assuming no arbitrage in the financial market, the
buyer’s price for American contingent claim F can be
expressed as in the following theorem (see Pennanen and
King 2006 and Camci and Pinar 2009 for a proof).

Theorem 4.3:

max
�2T

min
Q2 ~Q

E
Q
½C� � ¼ min

Q2 ~Q
max
�2T

E
Q
½C��: ð4Þ
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Corollary 4.4: infQ2Q sup�2T E
Q[C�]¼OPT(AP1)¼

OPT(AP2).

4.3. Formulation of the buyer quantile hedge for
American claims

We now return to the problem [PACP]

inf sup
�2T

E
P
½ � �,

s:t: inf
Q2Q

sup
�2T

E
Q
½C� � � � v,

 2 ½1,1� P-a.s.

In finite-state markets we are facing the following

problem:

inf sup
e2E

E
P
½ � e�,

s:t: inf
Q2Q

sup
e2E

E
Q
½C �  � e� � v,

 2 ½1,1� P-a.s.

We shall now transform this problem step by step into

an optimization problem that can be processed numeri-

cally by off-the-shelf optimization software.
Let us first treat the objective function

inf
 
sup
e2E

E
P
½ � e�:

We first transform the inner maximization problem

supe2E E
P[ � e]. Note that E is a discrete set. It is a set

of binary vectors satisfying the one-time exercise inequal-

ities
P

m2A(n) em� 1, 8n2N T. On the other hand, the set
~E, which is the continuous relaxation of E, is the convex

hull of the e’s (Chalasani and Jha 2001, Pennanen and

King 2006). This result follows from the fact that the

matrix obtained from the one-time exercise inequalities

above is an interval matrix (Schrijver 1986). Hence, it is a

totally unimodular matrix, which implies that the set ~E

has binary extreme points coinciding with the binary

vectors that constitute the set E. As a consequence of this

property, optimizing a linear function over E and ~E yields

the same result, and since ~E is compact the sup is attained.

Therefore, we have

max
e2E

E
P
½ � e� ¼ max

e2 ~E
E
P
½ � e�:

In other words, for fixed  we face the linear program-

ming problem

max
e2 ~E

X
n2N

pn nen

�����
X

m2AðnÞ

em � 1 8n 2 N T, en � 0 8n 2 N

( )
:

Now, attaching the non-negative Lagrange multipliers �n
to the constraints

P
m2A(n) em� 1 8n2N T we obtain the

Lagrange function

Lðen, �nÞ ¼
X
n2N

pn nen þ
X
n2N T

�n
X

m2AðnÞ

em � 1

 !
:

Maximizing the function L over non-negative en for n2N

we obtain the dual problem

min
�n�0,n2N T

X
n2N T

�n

������
X

m2DðnÞ\N T

�m � pn n 8n 2 N T

8<
:

9=
;:

Since the set ~E is non-empty and compact, by the duality

theorem of linear programming (Ben-Tal and Nemirovski

2001, theorem 1.3.2) we have

max
e2 ~E

E
P
½ � e�

¼ min
�n�0,n2N T

X
n2N T

�n

������
X

m2DðnÞ\N T

�m � pn n 8n 2 N T

8<
:

9=
;:

This completes the first step of our transformation of the

problem. Our problem now consists of minimizing with

respect to variables  n� 1 and �n� 0 the functionX
n2N T

�n

over the constraintsX
m2DðnÞ\N T

�m � pn n, 8n 2 N T,

and

inf
Q2Q

sup
e2E

E
Q
½C �  � e� � v: ð5Þ

We now transform the constraint (5) above. By

theorem 4.2 the left-hand side of the inequality is equal

to the optimal value of problem AP2 for the adjusted

claim C ! That is, we have, for fixed  ,

inf
Q2Q

sup
e2E

E
Q
½C �  � e� ¼ sup�S0 � �0 þ C0e0 0,

where the sup on the right-hand side is computed over the

constraints

Sn � ð�n � ��ðnÞÞ ¼ Cnen n, 8n 2 N t, 1 � t � T, ð6Þ

Sn � �n � 0, 8n 2 N T, ð7Þ

X
m2AðnÞ

em � 1, 8n 2 N Ten � 0, 8n 2 N : ð8Þ

Therefore, we have the constraint

sup�S0 � �0 þ C0e0 0 � v,

and constraints (6)–(8) equivalent to the constraint (5).

Since we can omit the sup without changing the problem,

and using the dual transformation in the objective

function described above, we obtain the main result of

the paper.

Theorem 4.5: The buyer quantile hedge problem [PACP]

for an American claim C in discrete-time finite-state
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markets is posed as the problem [BPACP] (Bilinear PACP)

min
X
n2N T

�n,

s:t:
X

m2DðnÞ\N T

�m � pn n, 8n 2 N T,

�S0 � �0 þ C0e0 0 � v,

Sn � ð�n � ��ðnÞÞ ¼ Cnen n, 8n 2 N t, 1 � t � T,

Sn � �n � 0, 8n 2 N T,X
m2AðnÞ

em � 1, 8n 2 N T,

en � 0, 8n 2 N ,

 n � 1, 8n 2 N ,

�n � 0, 8n 2 N :

Furthermore, any optimal portfolio strategy �� to BPACP

solves problem ACP.

Note that the problem BPACP involves only continu-

ous variables! But it is a bilinear and hence non-convex

problem (Bard 1998). Such problems can be notoriously

difficult to solve numerically. On the other hand, we could

have equally stated the above result as follows.

Theorem 4.6: The buyer quantile hedge problem [PACP]

for an American claim C in discrete-time finite-state

markets is posed as the problem [BBPACP] (Bilinear

Binary PACP)

min
X
n2N T

�n,

s:t:
X

m2DðnÞ\N T

�m � pn n, 8n 2 N ,

�S0 � �0 þ C0e0 0 � v,

Sn � ð�n � ��ðnÞÞ ¼ Cnen n, 8n 2 N t, 1 � t � T,

Sn � �n � 0, 8n 2 N T,X
m2AðnÞ

em � 1, 8n 2 N T,

en 2 f0, 1g 8n 2 N ,

 n � 1, 8n 2 N ,

�n � 0, 8n 2 N :

Furthermore, any optimal portfolio strategy �� to BBPACP
solves problem ACP while the optimal e� give the optimal

exercise strategy.

Proof: The proof is identical to that of the previous

theorem since we could equally represent the buyer

no-arbitrage value,

inf
Q2Q

sup
�2T

E
Q
½C� ��,

using problem AP1 by corollary 4.4. h

It is known that some numerical algorithms and

software exist for the numerical solution of the problems

BPACP and BBPACP. On the other hand, as we shall see

in section 5, an exact linearization of BPACP that uses the

binary nature of the exercise variables e gives a mixed-

integer linear formulation for which many well-developed
algorithms and software are available. We treat this
topic next.

4.4. An exact linearization

Consider the following linear mixed-integer program
[LBPACP]:

min
X
n2N T

�n,

s:t:
X

m2DðnÞ\N T

�m � pn n, 8n 2 N ,

�S0 � �0 þ C0w0 � v,

Sn � ð�n � ��ðnÞÞ ¼ Cnwn, 8n 2 N t, 1 � t � T,

Sn � �n � 0, 8n 2 N T,X
m2AðnÞ

em � 1, 8n 2 N T,

en 2 f0, 1g, 8n 2 N ,

wn �Men, 8n 2 N ,

wn �  n, 8n 2 N ,

 n � 1, 8n 2 N ,

�n � 0, 8n 2 N ,

where M can be chosen to be a suitable positive constant
times v in our computational experience.

Theorem 4.7: OPT(BPACP)¼OPT(LBPACP).

Proof: Let ��,  �, ��, e� be feasible for BPACC. Assume
e� 2E after recalling that we can equally solve BPACC as
a mixed-integer nonlinear optimization problem follow-
ing theorem 4.6. Define w�n ¼  

�
ne
�
n for all n2N . For

suitable M, this is feasible for LBPACC.
For the converse, assume you have �L,  L, �L, eL, wL

that are feasible for LBPACC. If for all n2N we have
wL
n ¼ eLn 

L
n , then �

L,  L, �L, eL, wL is clearly feasible for
BPACC. On the other hand, if there exists 	2N such that
wL
	 6¼ eL	  

L
	 where eL	 ¼ 1, we have that wL

	 6¼  
L
	 , i.e.

wL
	 5 L

	 . Consider the corresponding constraint where w	
occurs on the right-hand side:

S	 � ð�
L
	 � �

L
�ð	ÞÞ ¼ C	w

L
	 5C	 	,

i.e. we have

S	 � ð�
L
	 � �

L
�ð	ÞÞ þ 
 ¼ C	 

L
	 ,

for some 
40. But, since S0
n ¼ 1 for all n2N we can

absorb the slack 
 by adding 
 to �L	 , i.e. �
L
	 ¼ �

L
	 þ 
.

This operation does not affect the portfolio values in the
nodes leading to node 	, i.e. the nodes in A(	)n	. The
impact on the portfolio positions in the descendant nodes
D(	) is an increase in the net portfolio value, which
propagates into the leaf nodes’ portfolio position as a net
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increase and thus preserves feasibility. Hence, we have
obtained a new set of portfolio positions, and hence a
feasible solution to BPACC with objective function value
identical to the objective function value of LBPACC at
�L,  L, �L, eL, wL. h

Let RLBPACC denote the linear programming relax-
ation of LBPACC.

Proposition 4.8:

OPTðLBPACCÞ

OPTðRLBPACCÞ
�

v

�#ðCÞ
:

Proof: It is clear that 1 is a lower bound on the optimal
value of RLBPACC. On the other hand,  ¼ v/�#(C) is
feasible in BPACC and hence in LBPACC with objective
function value v/�#(C). h

Remark 1: The lower bound equal to 1 for
OPT(RLBPACC) is tight. To see this, consider the
following numerical example with three time periods
t¼ 0, 1, 2. The market consists of a risky stock and a bond
with zero interest rate. The stock trades at 10 at time t¼ 0,
and moves to one of the values in {20, 15, 7.5} at t¼ 1
with equal probability. If it is valued at 20 at t¼ 1 it
moves to one of {22, 21, 19} at t¼ 2. If it is valued 15 it
moves to one of {16, 14, 13}. Finally from 7.5 it can move
to one of {9, 8, 7}. All nine sample paths are equally
probable. Assume an American option with strike equal
to 11 is priced by a potential buyer. Setting up and solving
the problem RLBPACC with v¼ 8/3 and M¼ 3, one
obtains an optimal value equal to one.

5. Computational results with S&P 500 options

In this section we demonstrate that the models advocated
in the previous sections can be solved numerically. For
simplicity of exposition we use the basic pricing models of
the previous sections with a slight modification involving
the ‘calibrated option bounds’ model proposed by King et
al. (2005).

5.1. Calibrated option bounds

In the setting of King et al. (2005), liquid options traded
in the market are used for hedging purposes in addition to
securities. These liquid options give the investor the
possibility of forming buy-and-hold strategies in the
hedging portfolio sequence. In other words, every liquid
option can be bought or shorted by the investor at time
zero with the purpose of hedging a contingent claim, and
no intermediary trading is available for these options.
Assuming there are K such liquid options, we denote them
by Gk, k¼ 1, . . . ,K. Bid and ask prices observed in the
market at time 0 for option k are denoted by Fk

b and Fk
a,

respectively, with the latter greater than or equal to the
former. Gk

n is the payoff of option k at node n of
scenario 3 and Gn is the vector of option payoffs at
node n. Under these assumptions the buyer problem
[BPACC] should be modified as [CBPACC]

(Calibrated Bilinear PACP)

min
X
n2N T

�n,

s:t:
X

m2DðnÞ\N T

�m� pn n, 8n2N T,

�S0 � �0�Fa � �þþFb � ��þC0e0 0� v,

Sn � ð�n� ��ðnÞÞ ¼Gn � ð�þ� ���ÞCnen n, 8n2N t, 1� t�T,

Sn � �n� 0, 8n2N T,X
m2AðnÞ

em� 1, 8n2N T,

en40, 8n2N ,

 n� 1, 8n2N ,

�þ;�� � 0,

�n� 0, 8n2N :

where �þ, ��2R
K denote the long and short option

portfolio position vectors, respectively.
The passage to the linearized, mixed-integer model can

be accomplished as in the previous section.

5.2. Numerical results

We use 48 European options written on the S&P 500
index (table 1) in our computational experimentation.
The option data were available in the market on
September 10, 2002. The first 21 of the options are call
options and the remainder are put options. Strikes and
maturities as well as actual bid and ask prices (columns Fb

and Fa) of these options are given in table 1. To create a
test case close to reality we treat a given option C as an
American option, while the remaining 47 options are
taken as European options to be used in buy-and-hold
policies in hedging C. We repeat this exercise for 14 of the
options given in table 1, namely call options numbered
15–20 and those put options numbered 41–48.

We use a four period setting where we assume that
investors can trade at days 0, 17, 37 and 100. We use
S¼ (1, S1) as the traded securities. Having S0

¼ 1 for all
dates means that the interest rate is zero. We assume that
the price of the S&P 500 index (i.e. S1) follows a geometric
Brownian motion. Under this assumption, we generate a
scenario tree by the Gauss–Hermite process discussed by
Omberg (1988) and King et al. (2005) in detail. The
procedure works as follows. We assume that the value S1

of the S&P 500 index evolves as a geometric Brownian
motion with daily drift d and volatility �. Let l be the
length of period t in days. Then, the logarithm �t ¼ lnS1

t

evolves according to

�t ¼ �t�1 þ dt þ �t,

where dt¼ ltd, and �t is normally distributed with zero
mean and standard deviation �t ¼

ffiffiffi
lt
p

�. Using given
parameters �0 and the initial values of �, lt, t¼ 1, . . . ,T, d
and �, we construct a scenario tree approximation to the
stochastic process �t using Gauss–Hermite quadrature as
advocated by Omberg (1988), Pennanen and Koivu (2002)
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and King et al. (2005). The scenario tree generation
procedure consists of using Gauss–Hermite quadrature to
obtain a sample ð�i11 Þ

�1
i1¼1

of dimension �1 with associated
positive probabilities ð�i11 Þ

�1
i¼1. Hence, we obtain an approx-

imation of possible values of the index at time t¼ 1 using
the equation

�i11 ¼ �0 þ d1 þ �
i1
1 , i1 ¼ 1, . . . , �1:

For time period t¼ 2 we generate a sample ð�i22 Þ
�2
i2¼1

of
dimension �2 with associated positive probabilities
ð�i22 Þ

�2
i2¼1

to obtain the possible values of the logarithmic
index as

�i1,i22 ¼ �i11 þ d2 þ �
i2
2 , i1 ¼ 1, . . . , �1, i2 ¼ 1, . . . , �2:

Repeating this procedure for all time points up to time T,

we obtain a scenario tree where the nodes N t at time t are

labeled by the t-tuple (i1, . . . , it). In the notation of

section 3, we have that the set N of all nodes in the tree is

given as the union of all nodes for each time point t, i.e.

N ¼N 1[ ��� [N T. The parent node a(i1, . . . , it) of

(i1, . . . , it) is the node labeled (i1, . . . , it�1); the child

nodes D(i1, . . . , it) of the node (i1, . . . , it) is the set

{(i1, . . . , itþ1)2N tþ1 | itþ12 {1, . . . , �tþ1}}. Finally, the

probability distribution P for the leaf nodes is specified

as pði1, . . . , iTÞ ¼ �
i1
1 � � ��

iT
T , and Sn ¼ e�n for all n2N .

This completes the specification of the scenario tree.

As the number of branches � increases, the tree converges
weakly to a discrete-time geometric Brownian motion, as

shown by Pennanen and Koivu (2002).
We assume a branching structure of (50, 10, 10), which

means that the tree divides into 50 nodes in the first

period. Then, each node branches into 10 nodes in the

second period, hence there are an additional 500 nodes in

the third period. Then again each node of the second

period is divided into 10 and there are 5000 leaf nodes of

the tree. The resulting bilinear optimization models have

27,299 constraints and 37,299 variables. The linearized

model has 32,850 constraints and 53,952 variables.

We use d¼ 0.0001, �¼ 0.013175735 and S1
0 ¼ 909:58,

which was the closing value of the index on 10.9.2002.
We use the GAMS modeling language (Brooke et al.

1992) with the MOSEK (Mosek 2009) mixed-integer

linear programming solver to solve the linearized

version of CBPACC, and the nonlinear programming

solver CONOPT (Drud 2007) to solve CBPACC with

no guarantee of global optimality. We used the solvers

with the default parameters. The results are reported in

table 2. We give the results obtained by choosing the

option price v as 1.05v� and 1.1v�, respectively, where v�

denotes the no-arbitrage lower hedging price for the

option in question. We singled out options with longer

maturity (100 days) to make more interesting test cases,

and therefore we report results with only a subset of

the 48 options. In table 2 the CONOPT results are

given under the heading ‘BPACC’, and those of

MOSEK under ‘LBPACC’. For all runs with the

mixed-integer model we use M¼ 2v�. It appears that

CONOPT is able to find an optimal or nearly optimal

solution in several cases, and MOSEK is able to solve

to optimality a majority of the test instances (to be

precise 18 out of 28, i.e. approximately 65% of the test

instances) in reasonable computing times. The cases

indicated by an asterisk are the instances where either

MOSEK was not able to find an optimal solution due

to numerical difficulties (it stops with the best possible

mixed-integer solution in that case) or a solution is

reported with an objective function value higher than

that given by CONOPT. The numerical difficulties are

attributed to the potentially very small values of the

probabilities calculated during the Gauss–Hermite-based

scenario tree generation procedure described above.

Further algorithmic research is needed to address these

numerical issues.

Table 1. Option data.

Option No. Type Strike Maturity Fb Fa

1 Call 890 17 31.5 33.5
2 Call 900 17 24.4 26.4
3 Call 905 17 21.2 23.2
4 Call 910 17 18.5 20.1
5 Call 915 17 15.8 17.4
6 Call 925 17 11.2 12.6
7 Call 935 17 7.6 8.6
8 Call 950 17 3.8 4.6
9 Call 955 17 3 3.7
10 Call 975 17 0.95 1.45
11 Call 980 17 0.65 1.15
12 Call 900 37 42.3 44.3
13 Call 925 37 28.2 29.6
14 Call 950 37 17.5 19
15 Call 875 100 77.1 79.1
16 Call 900 100 61.6 63.6
17 Call 950 100 35.8 37.8
18 Call 975 100 26 28
19 Call 995 100 19.9 21.5
20 Call 1025 100 12.6 14.2
21 Call 1100 100 3.4 3.8
22 Put 750 17 0.4 0.6
23 Put 790 17 1 1.3
24 Put 800 17 1.3 1.65
25 Put 825 17 2.5 2.85
26 Put 830 17 2.6 3.1
27 Put 840 17 3.4 3.8
28 Put 850 17 3.9 4.7
29 Put 860 17 5.5 5.8
30 Put 875 17 7.2 7.8
31 Put 885 17 9.4 10.4
32 Put 750 37 5.5 5.9
33 Put 775 37 6.9 7.7
34 Put 800 37 9.3 10
35 Put 850 37 16.7 18.3
36 Put 875 37 23 24.3
37 Put 900 37 31 33
38 Put 925 37 41.8 43.8
39 Put 975 37 73 75
40 Put 995 37 88.9 90.9
41 Put 650 100 5.7 6.7
42 Put 700 100 9.2 10.2
43 Put 750 100 14.7 15.8
44 Put 775 100 17.6 19.2
45 Put 800 100 21.7 23.7
46 Put 850 100 33.3 35.3
47 Put 875 100 40.9 42.9
48 Put 900 100 50.3 52.3
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6. Conclusions

We have addressed the problem of quantile hedging for
American contingent claims from the perspective of the
buyer of a contingent claim in discrete-time financial
markets. After a general exposition in a discrete-time
infinite-state space setting we specialize our results to the
finite-dimensional probability setting. The specialization
resulted in finite-dimensional optimization problems
which turn out to be bilinear or mixed-integer linear
programming problems. We have shown that the prob-
lems can be processed numerically by state-of-the art
solvers with default parameters for the case of finding
buyer quantile hedge price bounds for S&P 500 options
using other such options as part of the hedge portfolio.
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Table 2. Numerical results with S&P 500 options using MOSEK and CONOPT solvers.

Results for %5 Expanded prices Results for %10 Expanded prices

Option properties BPACC LBPACC BPACC LBPACC

Type Strike Objective value Time Objective value Time Objective value Time Objective value Time

Call 875 1.0177 268.50 19.26� 478.43 1.1543 155.12 2.40� 423.77
Call 900 1.0153 276.04 12.49� 507.38 1.0306 298.62 13.17� 562.34
Call 950 1.0042 458.61 1.0042 308.28 1.0123 396.01 1.0123 631.49
Call 975 1.0035 405.30 1.0034 146.50 1.0101 349.37 1.0101 1314.68
Call 995 1.0027 417.43 1.0027 41.00 1.0079 287.57 1.0079 1248.10
Call 1025 1.0002 316.85 1.0002 136.39 1.0010 301.88 1.0010 69.68
Put 650 1.0001 124.80 1.0001 155.97 1.0001 145.55 1.0002� 35.22
Put 700 1.00002 21.25 1.00003� 112.74 1.00002 22.01 1.0002� 31.88
Put 750 1.00002 82.06 1.00002 116.65 1.00002 82.47 1.00002� 967.43
Put 775 1.00003 103.19 1.00003 125.29 1.00005 133.31 1.00006� 22.91
Put 800 Infeasible 1.0001 583.10 1.00005 152.51
Put 850 1.0001 796.48 1.0001 151.05 1.0001 1266.20 1.0001 208.56
Put 875 1.0001 1020.71 1.00005 774.50 1.0001 1254.80 1.0001 1093.06
Put 900 1.0001 995.81 1.0001 775.39 1.0001 1751.11 1.0001 189.83
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