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Abstract
Most algorithms for magnetic resonance electrical impedance tomography
(MREIT) concentrate on reconstructing the internal conductivity distribution
of a conductive object from the Laplacian of only one component of the
magnetic flux density (∇2Bz) generated by the internal current distribution.
In this study, a new algorithm is proposed to solve this ∇2Bz-based MREIT
problem which is mathematically formulated as the steady-state scalar pure
convection equation. Numerical methods developed for the solution of the
more general convection–diffusion equation are utilized. It is known that
the solution of the pure convection equation is numerically unstable if sharp
variations of the field variable (in this case conductivity) exist or if there are
inconsistent boundary conditions. Various stabilization techniques, based on
introducing artificial diffusion, are developed to handle such cases and in this
study the streamline upwind Petrov–Galerkin (SUPG) stabilization method is
incorporated into the Galerkin weighted residual finite element method (FEM)
to numerically solve the MREIT problem. The proposed algorithm is tested with
simulated and also experimental data from phantoms. Successful conductivity
reconstructions are obtained by solving the related convection equation using
the Galerkin weighted residual FEM when there are no sharp variations in the
actual conductivity distribution. However, when there is noise in the magnetic
flux density data or when there are sharp variations in conductivity, it is found
that SUPG stabilization is beneficial.

(Some figures may appear in colour only in the online journal)

1. Introduction

In magnetic resonance electrical impedance tomography (MREIT), current is injected into a
conductive object via surface electrodes. The resulting internal current generates a magnetic
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flux density distribution both inside and outside the object. The magnetic flux density inside
the object is measured using a magnetic resonance imaging (MRI) system, and from this
measured magnetic flux density distribution, the internal electrical conductivity distribution of
the object is reconstructed. An MRI scanner is capable of measuring only one component of
the magnetic flux density, namely Bz, where z is the direction of the main static magnetic field
of the scanner. Measurement of the other components requires object rotations which are not
desirable because of possible misalignments and which are in fact impossible for long objects
in a conventional closed-bore MRI system. Therefore, most algorithms today concentrate on
the reconstruction of the conductivity distribution from Bz only (Birgul and Ider 1995, Ider
and Birgul 1998, Seo et al 2003, Oh et al 2003, Ider and Onart 2004).

Many Bz-based MREIT algorithms utilize the Laplacian of Bz, which can be expressed
as ∇2Bz = μ(Jx

∂σ/∂y
σ

− Jy
∂σ/∂x

σ
) (Scott et al 1991), where Jx and Jy are the x- and y-

components (transverse components) of the injected current density distribution, σ is the
electric conductivity distribution and μ is the magnetic permeability which is taken to
be μ0 = 4π × 10−7 H m−1. This expression can also be written in its modified form as
∇2Bz = μ0(Jx

∂R
∂y − Jy

∂R
∂x ) where R = ln σ (Ider and Onart 2004). If Jx and Jy are known for a

certain slice (intersection of the object with a certain z = constant plane), then the transverse
gradient of R, ( ∂R

∂x , ∂R
∂y ), can be calculated from the ∇2Bz data obtained for that slice only. This

is the major advantage of ∇2Bz-based algorithms because reconstruction of conductivity at a
certain slice is possible. However, the calculation of Jx and Jy for a certain slice requires the
solution of the magnetic resonance current density imaging (MRCDI) problem. It was shown
by Park et al (2007) that the transverse current density distribution cannot be fully recovered
using only Bz information unless the difference between the z-components of the actual
current density and the current density calculated for homogeneous conductivity is negligible.
Nevertheless, Park et al (2007) have developed an algorithm by which Jx and Jy distributions
can be estimated for a certain slice given the ∇2Bz data for that slice. In their algorithm,
the ‘projected current density’ which is the recoverable portion of the actual current density
is reconstructed. Nam et al (2008) used the transverse component of this ‘projected current
density’ in the ∇2Bz = μ0(Jx

∂R
∂y −Jy

∂R
∂x ) relation to find the transverse gradient of R for the slice

of interest. Starting from the gradient distribution, Nam et al (2008) utilized a layer potential
technique, first suggested by Oh et al (2003), to reconstruct the conductivity distribution on that
slice. Other investigators have suggested utilizing line integrals for reconstructing conductivity
from its gradient (Seo et al 2003), or solving for R using the finite difference approximation
(Ider and Onart 2004), or other approximations (Oran and Ider 2010) of the above
relation.

In this study, it is observed that the relation ∇2Bz = μ0(Jx
∂R
∂y − Jy

∂R
∂x ) is in the form of

the steady-state scalar convection equation. The convection equation is a special case of the
more general convection–diffusion equation. The convection–diffusion equation describes the
distribution of a physical quantity (e.g. concentration and temperature) under the effect of two
basic mechanisms, convection and diffusion. The convection–diffusion equation arises in many
physical phenomena such as distribution of heat, fluid dynamics, etc. Although physically
no convection mechanism exists in the MREIT problem, it can nevertheless be handled as
a convection problem solely from a mathematical point of view. Furthermore, because the
convection equation by itself does not always yield stable numerical solutions, introduction of
a diffusion term as a stabilization technique is customary. In this study, therefore, the MREIT
problem is handled as a convection–diffusion problem and the existing advanced numerical
methods for the solution of the convection–diffusion equation by using the finite element
method (FEM) are used for solving the MREIT problem. The methods are then tested with
simulated and experimental data.
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2. Methods

2.1. Problem definition

The forward problem for Bz-based MREIT and MRCDI is given as follows: let � be a
connected and bounded domain in R3 with the boundary ∂�. With unit outward normal along
the boundary ∂� being n, and non-zero conductivity in � being σ (x, y, z) in units of S m−1, the
potential field, φ(x, y, z), obeys Laplace’s equation ∇ · σ∇φ(x, y, z) = 0 in � and satisfies the
Neumann condition σ

∂φ

∂n = g on ∂� where g is the boundary injected current density in units
of A m−2 which is non-zero only on the boundary regions where current is injected and sunk
and its integral on ∂� is zero.

The electrical field E is given by E = −∇φ and it is related to the current density J by
J = σE. The z-component of the magnetic flux density due to the transverse component of
the current density is given by the Biot–Savart integral:

Bz(x, y, z) = μ0

4π

∫
R3

(y − y′)Jx(x′, y′, z′) − (x − x′)Jy(x′, y′, z′)
[(x − x′)2 + (y − y′)2 + (z − z′)2](3/2)

dx′dy′dz′. (1)

The inverse problem of Bz-based MRCDI is to find Jx and Jy from available measurements of
Bz(x, y, z) on a finite number of spatial locations in �, and the inverse problem of Bz-based
MREIT is to find σ (x, y, z) from the same data.

2.2. MREIT based on the solution of the convection equation

Taking the curl of both sides of Ampere’s law (J = ∇ × H), and using the vector identity
∇ × ∇ × H = ∇(∇ · H) − ∇2H together with the facts that ∇ · H = 0 and H = B/μ0, the
following expression, which relates the x- and y-components of the current density distribution
to the Laplacian of the measured magnetic flux density (Bz), is obtained:

∂Jx

∂y
− ∂Jy

∂x
= ∇2Bz

μ0
. (2)

Since current density is given by J = σE and ∇ × E = 0, we also have

1

σ

(
Jx

∂σ

∂y
− Jy

∂σ

∂x

)
= ∇2Bz

μ0
. (3)

Defining R = ln σ , and J̃ = (−Jy, Jx), (3) can be put into the form of the scalar pure convection
equation, which is introduced and discussed in appendix A.1, as

J̃ · ∇R = ∇2Bz

μ0
. (4)

In this ‘MREIT convection equation’, J̃ may be recognized as the convective field in (A.1), R
is the scalar field to be solved and ∇2Bz

μ0
is the source term.

Apart from R, the J̃ vector is also unknown in (4) since the current density is not known. The
actual current density consists of two components, namely J0 and Jd , where J0 is the current
density distribution obtained by solving the forward problem for the homogenous conductivity
distribution and Jd is defined as the difference current density such that Jd = J − J0. Since
only Bz is utilized, only an estimate for the transverse component of the difference current
density, namely J∗, can be calculated (Park et al 2007). J∗ is calculated from the relation
J∗ = (

∂β

∂y ,− ∂β

∂x

)
, where β is the solution of the two-dimensional (2D) Laplace equation given

as

∇2β = ∇2Bz

μ0
in �′ and β = 0 on ∂�′, (5)
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where �′ is the intersection of � with a z = constant plane (the slice of interest) and ∂�′ is the
boundary of the intersection. Once J∗ is obtained, the transverse component of the projected
current density which is defined as JP = J∗ + (J0

x , J0
y ) is calculated. J̃ = (−JP

y , JP
x ) is then

substituted into (4) so that it can be solved for R.
For the numerical solution of (4) on the slice of interest, the FEM is used. Using FEM, (4)

is transformed into a linear matrix system Sn×nRn×1 = fn×1, where n is the number of nodes
in the triangular mesh at the slice of interest, and R is the vector of unknown nodal R values. In
the FEM formulation, either the standard Galerkin weighted residual method, or the Galerkin
weighted residual method with streamline upwind Petrov–Galerkin (SUPG) stabilization is
used. If the standard Galerkin weighted residual method is used, S and f are equal to Sg and fg

which are introduced and derived in appendix A.2. If, on the other hand, the Galerkin weighted
residual method with SUPG stabilization is used, S and f are equal to Ssupg and fsupg as given
in appendix A.3.

In MREIT, in general, at least two current injections are used in order to ‘guarantee’
unique conductivity reconstruction apart from a constant factor (Ider et al 2003). For the case
of two current injections, if S1 and f1 denote S and f for the first current injection, and if S2

and f2 denote S and f for the second current injection, the final matrix system to be solved is[
S1

S2

]
2n×n

Rn×1 =
[

f1

f2

]
2n×1

. (6)

In solving (4), boundary conditions must also be considered. When Dirichlet boundary
conditions are used, corresponding nodes on the boundary are assigned conductivity values
and the matrix system in (6) is reduced accordingly. The reduced system is solved using
singular value decomposition (SVD) without truncation (all singular values of the final matrix
are used). The use of SVD also provides information about the singular values and hence the
conditioning of the inverse problem. Some results regarding the condition numbers of various
cases are given in section 4.

2.3. Simulation methods

For simulations, a cylindrical phantom of height 20 cm and diameter 9.4 cm is modelled
(figure 1(a)) using Comsol Multiphysics (Comsol AB, Sweden) software package in order to
solve for electric potential in the three-dimensional (3D) forward problem explained in section
2.1. The regions into which the current is injected are 3 cm recessed from the body of the
phantom to model the phantom which is used in the experiments. Current is injected through
circular electrodes of diameter 1 cm located at the ends of recessed parts. Cross-section of
the recessed parts is square with edges of 2.5 cm long. Current is applied between electrodes
facing each other and two current injection ‘directions’, I1 (horizontal) and I2 (vertical), are
used as shown in figure 1(c). Magnitude of injected current is 10 mA.

Background conductivity of the simulation phantom is taken to be 1 S m−1 and two
cylindrical regions of conductivity anomaly are modelled inside the phantom. Figure 3(d)
shows the conductivity distribution of the simulation phantom for the z = 0 slice. The
conductivities of the low and high conductivity anomalies are 0.4 and 2.5 S m−1, respectively.
However, in one case, the change of conductivity from the background value to the low and
high values in the anomalous regions is not sharp but it is tapered as shown in figures 3(b)
and (d). In another case, change in conductivity is sharp as shown in figure 4(b). Tetrahedral
elements with quadratic shape functions are used for the FEM formulation of the 3D problem.
There are 1159 225 tetrahedral elements and 212 007 nodes (1608 578 degrees of freedom since
quadratic shape functions are used) in total. Once the forward problem is solved, current density
distribution is obtained, by interpolation, on the nodes of a 2D triangular mesh representing
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(a) (b) (c)

Figure 1. (a) The phantom model drawn using Comsol Multiphysics. Two cylindrical regions which
have different conductivity from the background are also seen. The height of the first cylindrical
region is 10 cm, while the height of the other cylindrical region is 8 cm. The z-direction is the
direction of the main magnetic field of the MRI system. (b) Picture of the experimental phantom
for the first experimental setup explained in section 2.4. The balloon inside the phantom acts as
an insulator and it isolates its inside solution from the background solution. (c) Illustration of the
central transverse slice of the empty phantom where z = 0. The horizontal current injection (I1)
and the vertical current injection (I2) are also shown.
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Figure 2. MR magnitude images: (a) first experimental setup and (b) second experimental setup.
Units for axes are metres.

the plane at z = 0 and the relation given in (2) is then used to calculate the simulated ∇2Bz.
There are 5088 triangles and 2657 nodes in the 2D triangular mesh which are also used for the
solution of the convection equation (using linear shape functions).

In addition to the simulation phantom which has the same geometry as the phantom used
in the experiments, other simulation phantoms which are shown in figures 6 and 7 are also
utilized. Their details are explained in the respective parts of section 3.1.

The simulated ∇2Bz at the slice of interest is the input data for reconstructing the projected
transverse current density on that slice. Conductivity distribution is then reconstructed by
solving (4) using the proposed method. Errors made in the transverse component of the
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Figure 3. Simulation results at the central slice of the simulation phantom shown in figure 1(a)
when the conductivity transitions are not sharp: (a) Simulated ∇2Bz for the horizontal current
injection, (b) profiles of the actual (broken line) and the reconstructed conductivity (solid line) on
the x = y line, (c) the x = y line on which the actual and reconstructed conductivity profiles are
drawn and the cross-sections of two objects in the phantom, (d) actual conductivity distribution,
(e, f) quiver and magnitude plots of the actual transverse difference current density for the horizontal
current injection, (g) reconstructed conductivity distribution, (h, i) quiver and magnitude plots of
the reconstructed J∗ for the horizontal current injection. Units for axes are metres and units for
∇2Bz, current density and conductivity are T m−2, A m−2 and S m−1, respectively.

reconstructed projected current density and in the reconstructed conductivity at the slice of
interest are calculated using the relative L2-error formulae:

EL2 (JP) = 100

[∑M
i=1

((
Ja

xi
−JP

xi

)2
+
(

Ja
yi
−JP

yi

)2)
∑M

i=1

(
Ja

xi
2+Ja

yi
2
) ]1/2

EL2 (σ ) = 100

[∑N
j=1 (σ a

j −σ j )
2∑N

j=1 σ a
j

2

]1/2

,

(7)
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Figure 4. Simulation results at the central slice of the simulation phantom shown in figure 1(a)
when the conductivity transitions are sharp: (a) Reconstructed conductivity distribution when
stabilization is not used, (b) the corresponding reconstructed (solid line) and the actual (broken
line) conductivity profiles on the x = y line. (c) and (d) are the same as in (a) and (b) but SUPG
stabilization is utilized. Units for axes are metres and the unit for conductivity is S m−1.

where Ja
xi

and Ja
yi

are the x- and y-components of the actual current density at the centre of
the ith triangle, JP

xi
and JP

yi
are the x- and y-components of the reconstructed projected current

density, σ a
j and σ j are the actual and reconstructed conductivity distributions at the jth node,

respectively, N is the number of nodes in the 2D mesh and M is the number of the triangles in
the 2D mesh.

2.4. Experimental methods

Two different experimental setups are prepared for the experiments. For the first experimental
setup, a phantom, dimensions of which are the same as the simulation phantom explained in
section 2.3, is manufactured. The phantom is first filled with the background solution (12 gl−1

NaCl and 1 gl−1 CuSO4.5H2O). An insulator object is then obtained by filling a cylindrical-
shaped thin rubber balloon with the background solution so that the solutions inside and
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Figure 5. Simulation results at the central slice of the simulation phantom shown in figure 1(a)
when the conductivity transitions are not sharp and when ∇2Bz is corrupted with noise (SNR = 180
and TC = 42 ms): (a) noisy ∇2Bz for the horizontal current injection, (b, c) quiver and magnitude
plots of the reconstructed J∗ for the horizontal current injection, (d) reconstructed conductivity
distribution at the central slice when stabilization is not used, (e) the corresponding reconstructed
(solid line) and the actual (broken line) conductivity profiles on the x = y line. (f) and (g) are the
same as in (d) and (e) but SUPG stabilization is utilized. Units for axes are metres and units for
∇2Bz, current density and conductivity are T m−2, A m−2 and S m−1, respectively.
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Figure 6. Results of the simulations made for the comparison of low-pass filtering and SUPG
stabilization: (a) ∇2Bz for the horizontal current injection (four electrodes are shown with thick
lines on the boundary), (b) filtered ∇2Bz for the horizontal current injection (kmax = 300 m−1),
(c)–(f) the reconstructed conductivity profiles on the x = y line for four different cases: (c) no
low-pass filter or stabilization is used, (d) only low-pass filter is used, (e) only SUPG stabilization
is used and (f) both low-pass filter and SUPG stabilization are used. Units for axes are metres and
units for ∇2Bz is T m−2.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7. Results of the simulation made for the Shepp–Logan model. (a) Actual conductivity
distribution. The conductivity values are labelled and four electrodes are shown with thick lines on
the boundary. (b) ∇2Bz for the horizontal current injection. (c)–(f) The reconstructed conductivity
distributions for four different cases: (c) no stabilization is used, (d) SUPG stabilization is used,
(e) noisy ∇2Bz (SNR = 180 and TC = 42 ms) is used with no stabilization, (f) noisy ∇2Bz is
used with SUPG stabilization. (g) For the horizontal current injection, ∇2Bz image in which noise
is confined to three circular (radius is 2 mm) regions which are centred, respectively, at (0.04 m,
0.04 m), (−0.04 m, −0.04 m) and (−0.02 m, 0.02 m), (h) reconstructed conductivity distribution
when noise in ∇2Bz is confined to these circular regions. Units for axes are metres and units for
∇2Bz and conductivity are T m−2 and S m−1, respectively.

outside the balloon have no contact (figure 1(b)). Current is injected through electrodes facing
each other and data are obtained for two current injections. The MR magnitude image for
this experimental setup is given in figure 2(a). Since the balloon is filled with the background
solution, the region inside the balloon is indistinguishable from the background, with the thin
boundary of the balloon being slightly perceptible. Bz is measured at three consecutive (no gap)
transverse slices of thickness 5 mm. ∇2Bz is calculated at the middle slice which is centred to
z = 0 plane of the phantom. For the Laplacian operator, the finite difference approximation is
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utilized:

∇2Bzc(m, n) = Bzc(m + 1, n) − 2Bzc(m, n) + Bzc(m − 1, n)

(�x)2

+ Bzc(m, n + 1) − 2Bzc(m, n) + Bzc(m, n − 1)

(�y)2

+ Bzu(m, n + 1) − 2Bzc(m, n) + Bzl(m, n − 1)

(�z)2
, (8)

where m = 1, . . . , N, n = 1, . . . , N, Bzu, Bzc and Bzl are Bz matrices obtained at the upper,
central and lower slices, respectively, �x and �y are the sizes of an MR image pixel in x- and
y-directions, respectively, �z is the slice thickness and N is the size of the MR image matrix
in both directions. The standard spin-echo MREIT pulse sequence (Scott et al 1991) is used
where currents are applied in the form of two pulses having different polarizations. The positive
current pulse is applied between the excitation and refocusing RF pulses and the negative
current pulse is applied between the refocusing RF pulse and the readout. The experiment
is then repeated when the positive and negative current pulses are replaced with each other.
The phase difference of the MR images obtained from the two experiments is proportional
to Bz by 2γ TC factor, where γ is the gyromagnetic ratio (26.7519 × 107rad(T s−1)), and TC

is the duration of current injection in seconds. Magnitude of the applied current is 10 mA
and total duration of current injection is 42 ms. The number of averages is 5, echo time (TE )
is 60 ms, repetition time (TR) is 900 ms, image matrix is 128 × 128 and the field of view is
180 × 180 mm. The experiments are conducted using a 3T MRI scanner (Siemens Magnetom
Trio).

For the second experimental setup, the phantom is filled with another background solution
(3 g l−1 NaCl, 1 g l−1 CuSO4.5H2O) and two conductive cylindrical agar (15 g l−1 agar) objects
of height 7 cm and diameter 3.4 cm are placed inside the phantom. While the first object has
lower conductivity (0.8 g l−1 NaCl, 1 g l−1 CuSO4.5H2O) than the background solution, the
other object has higher conductivity (12 g l−1 NaCl, 1 g l−1 CuSO4.5H2O). The MR magnitude
image for this experimental setup is given in figure 2(b). Two agar objects are clearly seen in
the image and their magnitudes are substantially lower than that of the background solution.
All other experimental parameters including MR imaging parameters and current injection
time are the same as in the first experimental setup.

3. Results

3.1. Simulation results

Figure 3 shows simulation results for the simulation phantom shown in figure 1(a) for the case
when conductivity transitions are tapered (not sharp). All results in figure 3 are for the central
transverse slice of the simulation phantom where z = 0 (called the imaging slice hereafter).
Simulated ∇2Bz for the horizontal current injection (I1 direction) is shown in figure 3(a). ∇2Bz

takes non-zero values only in the regions where conductivity changes, as expected from (3).
Quiver plots of the actual transverse difference current density and of the reconstructed J∗ are
shown in figures 3(e) and (h). In addition, their magnitude plots are given in figures 3(f) and (i).
The L2 error made in the reconstructed J∗ relative to the actual transverse difference current
density is 20.9%. However in the MREIT convection equation, in practice, the transverse
component of the projected current density, JP, is used, and the L2 error made in JP relative to
the actual transverse current density is 0.53%. Considering (2) and (5), ∇2Bz may be thought
of as a vortex source and the actual transverse difference current density and J∗ rotate around
the regions where ∇2Bz takes non-zero values as shown in figures 3(e) and (h).
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The actual conductivity distribution and the conductivity distribution reconstructed using
the Galerkin weighted residual FEM without stabilization are shown in figures 3(d) and (g),
respectively. In addition, the reconstructed and the actual conductivity profiles on the x = y
line are shown in figure 3(b). Two current injections (I1 and I2 directions in figure 1(c))
are utilized. Conductivity values on the boundary are assumed to be 1 S m−1 (R = 0 since
R = ln σ ). The relative L2 error made in the reconstructed conductivity is 0.84%. When SUPG
stabilization is used, no significant improvement, regarding the relative L2 error, is obtained in
the reconstructed conductivity distribution. Note that, in the simulation phantom investigated,
since the conductivity transition regions between the background and the objects are tapered,
the solution (conductivity) does not have sharp variations and therefore successful conductivity
reconstruction is possible without stabilization. Throughout this paper, by ‘sharp variations in
the solution’, we mean local regions in which the solution has a steep gradient.

The algorithm is also tested when the conductivity distribution at the imaging slice has
sharp variations. For this purpose, the phantom geometry same as in the previous case is used
with narrower conductivity transition regions. The actual conductivity profile on the x = y
line at the imaging slice is given in figures 4(b) and (d) by the broken lines. Figures 4(a)
and (b) show the conductivity reconstructions when no stabilization is utilized. The relative
L2 error made in the reconstructed conductivity is 5.71% and considerable oscillations are
observed. However, when SUPG stabilization is used, the relative L2 error decreases to 2.84%
and oscillations disappear as shown in figures 4(c) and (d). Therefore, although stabilization
is not found to be necessary when conductivity variations are not sharp, it is found that for
objects in which conductivity variations are sharp and abrupt, stabilization becomes necessary.

Performance of the algorithm against noise in measurement data is also investigated.
The noise in Bz is assumed to have a zero-mean Gaussian distribution with standard deviation
σBz = 1/(2γ TCSNR), where γ is the gyromagnetic ratio, TC is the duration of current injection
in seconds and SNR is the signal-to-noise ratio of the MR complex image (Scott et al 1992).
In the simulations, SNR values of 60, 90, 120 and 180 are used. This range of values includes
the SNR values estimated from the MR magnitude images obtained in the experiments. For
estimation, we have selected a smooth region in the MR magnitude image and calculated the
average of the magnitude in this region. The average is then divided by s

√
2, where s is the

standard deviation of the magnitude image which is again obtained in the same region. As
discussed by Sadleir et al (2005), the

√
2 factor is due to the fact that s is calculated from the

magnitude image rather than the complex image. For the experimental phantoms used in this
study, SNR is estimated to be in the range 70–100. Note that, since SNR is also a function of
pixel size, in the simulations we have used the same pixel sizes as in the experiments.

In practice, one needs to know Bz in three consecutive slices in the z-direction in order to
calculate ∇2Bz using the finite difference approximation given in (8). However, for simulations,
we use the relation given in (2) to calculate ∇2Bz. In this case, in order to calculate the noise
image which will be added to ∇2Bz, the following steps are followed: let Gu, Gc and Gl be
the Gaussian-distributed noise images representing the noise in Bz at upper, central and lower
slices, respectively, each of which is calculated independently for the same specific SNR and
TC. ∇2G is calculated using (8) by replacing Bz with G and it is then added to ∇2Bz which is
calculated using (2). Using this procedure for obtaining noisy ∇2Bz, we have made simulations
for the phantom shown in figure 1(a) when the conductivity transitions are not sharp as shown
in figures 3(b) and (d). Noisy ∇2Bz, the quiver and the magnitude plots of J∗ obtained using
the noisy ∇2Bz are given in figures 5(a)–(c), respectively, when SNR = 180 and TC = 42 ms.
The reconstructed conductivity distribution and conductivity profile on the x = y line are
given at the imaging slice in figures 5(d) and (e) when no stabilization is applied and in
figures 5(f) and (g) when SUPG stabilization is applied. Two current injections are utilized in
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Table 1. The relative L2 errors made in the reconstructed conductivity for the simulation phantom
shown in figure 1(a) when the conductivity transitions are not sharp and when ∇2Bz is corrupted
with the noise of different SNR values. Errors are calculated for both the case when no stabilization
is used and for the case when SUPG stabilization is used.

Relative L2 error (%)

SNR No stabilization SUPG stabilization

180 23.3 12.0
120 35.1 18.5
90 47.1 26.0
60 85.3 47.5

all reconstructions. The relative L2 errors made in the reconstructed conductivity for different
SNR values are summarized in table 1. The benefit of using the SUPG stabilization technique
in decreasing the oscillations and the relative L2 errors is clearly seen.

The differentiation process during the calculation of ∇2Bz amplifies the high spatial
frequency components of Bz which leads to the amplification of the noise inherent in Bz

measurements. Therefore, some investigators have suggested low-pass filtering of ∇2Bz before
using it in conductivity reconstruction algorithms (Ider et al 2010). In this study, in order
to investigate the effects of such low-pass filtering, we have performed simulations for a
phantom which is a circular slab of thickness 3 cm (in the z-direction) and of radius 5 cm.
The conductivity distribution is taken to be z-independent and the phantom has a circular high
conductivity object of radius 3 cm inside. The background conductivity is 1 S m−1 and the
conductivity of the object is 3 S m−1. The conductivity transition between the background and
the object is discontinuous. The current is injected through 3 cm long (arc length) and 3 cm high
(in the z-direction) electrodes facing each other. Magnitude of the injected current is 10 mA
and two current injection directions are used. With this electrode geometry and conductivity
distribution, the model is in fact a 2D model in the sense that the current distribution is z-
independent. Note that in this case, Bz is z-dependent but ∇2Bz is not as can be inferred from
(2) or (3). A Hanning window low-pass filter is applied to the ∇2Bz data in the frequency
domain. The Hanning window filter is, as in Roth et al (1989), given as

w(kx, ky) =
⎧⎨⎩0.5

(
1 + cos

πk

kmax

)
, k < kmax,

0, otherwise,
(9)

where kx and ky are spatial frequencies in x- and y-directions, respectively, and k = (k2
x +k2

y )
1/2.

Original and filtered versions of ∇2Bz are given in figures 6(a) and (b), respectively. We have
reconstructed conductivity for four different cases: (i) no filter or stabilization is applied,
(ii) only low-pass filter is applied, (iii) only SUPG stabilization is applied and (iv) low-pass filter
and SUPG stabilization are applied together. In figures 6(c)–(f), the reconstructed conductivity
profiles in the x = y line are given for the four cases mentioned above (kmax = 300 m−1). It is
observed that when the low-pass filter is used alone, the spurious oscillations in the solution
decrease (compare figures 6(c) and (d)) but the conductivity transition between the background
and the object becomes blunted. On the other hand, if SUPG stabilization is used without any
filter applied to ∇2Bz, the oscillations still decrease but the sharpness of the transition region
is preserved (not blunted) as seen in figure 6(e). Quantitative results for the comparison of the
effects of low-pass filtering and SUPG stabilization are given in table 2 for different cases. In
order to quantify the extent of oscillations in the reconstructed conductivity images, standard
deviations and coefficients of variation are calculated inside the inner object in a circular region
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Table 2. Simulation results for comparing low-pass filtering and SUPG stabilization: ‘filter’ means
that the low-pass filtered version of ∇2Bz is used as input data.

Standard Coefficient of 10%–90%
kmax deviation variation Rise length

Simulation case (m−1) (mS m−1) (%) (mm)

No stabilization, no filter N/A 130 4.4 0.90
No stabilization, filter 600 31 1.1 2.1
No stabilization, filter 500 21 0.75 2.3
No stabilization, filter 400 17 0.60 2.5
No stabilization, filter 300 13 0.45 3.3
SUPG, no filter N/A 12 0.41 0.97
SUPG, filter 600 2.0 0.070 2.1
SUPG, filter 500 1.5 0.051 2.3
SUPG, filter 400 1.5 0.053 2.5
SUPG, filter 300 1.8 0.062 3.3

of radius 2.3 cm (coefficient of variation is defined as the standard deviation over mean). In
order to quantify the blunting effect of low-pass filtering on the transition region, the ‘rise
length’ of the transition is calculated. Rise length is defined as the distance between the points
corresponding to 10% and 90% of the conductivity increase in the transition region.

As seen in table 2, without any stabilization and low-pass filter, the coefficient of variation
of the oscillations inside the inner object is 4.4% and the rise length of the transition region
is 0.90 mm. With the use of the low-pass filter, as the filter cut-off frequency (kmax) is
lowered from 600 to 300 m−1, the coefficient of variation decreases to as low as 0.45% and
the rise length increases to as high as 3.3 mm. These results mean that as kmax is lowered,
oscillations decrease but the spatial resolution gets poorer. On the other hand, using SUPG
stabilization alone without any low-pass filter, one still obtains a low coefficient of variation
of the oscillations (0.41%) but the sharpness of the transition region is preserved (rise length is
0.97 mm). When the low-pass filter and SUPG stabilization are applied together, the coefficient
of variation of the oscillations decreases for almost another order of magnitude compared to the
case when only SUPG stabilization is used, although spatial resolution is again compromised.

We have so far assumed relatively simple geometries for the simulation objects. Next,
a more detailed model which resembles the standard Shepp–Logan model is used (Shepp
and Logan 1974, Park et al 2004). A circular slab of radius 7.5 cm and thickness (in the z-
direction) of 3 cm is assumed. The conductivity of the model is taken to be z-independent and its
distribution in the xy-plane is given in figure 7(a) where the conductivity values are labelled. All
conductivity transitions are discontinuous. Magnitude of the injected current is 10 mA. Current
is injected through 3 cm (arc length) long and 3 cm high (in the z-direction) opposing electrodes
on the boundary and two current injections are used. ∇2Bz for the horizontal current injection
is given in figure 7(b). The reconstructed conductivity distribution is shown in figure 7(c)
when no stabilization is used. It is observed that the reconstruction is very successful, all
regions of different conductivity are distinguishable and the sharpness of the conductivity
transition regions is preserved. Some oscillating (wiggling) behaviour is observed, and this
behaviour is completely lost when SUPG stabilization is used as shown in figure 7(d). This is
also evident from figures 8(c) and (d) where the reconstructed conductivity profile on the line
of figure 8(a) is shown without and with stabilization, respectively. The relative L2 error made
in the reconstructed conductivity is 18.3% and 18.0% without and with SUPG stabilization,
respectively.
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Figure 8. Reconstructed conductivity profiles for the Shepp–Logan model. (a) The line on
which conductivity values are evaluated. (b) Actual conductivity profile. (c)–(f) The reconstructed
conductivity profiles for four different cases: (c) no stabilization is used, (d) SUPG stabilization is
used, (e) noisy ∇2Bz (SNR = 180 and TC = 42 ms) is used with no stabilization, (f) noisy ∇2Bz

is used with SUPG stabilization.
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Table 3. For the Shepp–Logan model, the relative L2 errors made in the reconstructed conductivity
for different SNR values. Errors are calculated for both the case when no stabilization is used and
for the case when SUPG stabilization is used.

Relative L2 error (%)

SNR No stabilization SUPG stabilization

180 31.1 19.4
120 41.9 21.2
90 54.7 23.8
60 88.9 31.9

In the simulations made for the Shepp–Logan model, average conductivity values of the
constant conductivity anomalies are found to be within 5% of the actual values except for the
regions where the local conductivity contrast is high such as objects 1 and 3. For instance, for
object 1, the reconstructed conductivity is around 0.5 S m−1 rather than the actual value of
2 S m−1 (see figure 8(c)). Possible reasons for this error are discussed in section 4.

We have also made conductivity reconstructions for the Shepp–Logan model when the
input data (∇2Bz) are noisy. The noise image which is added to ∇2Bz is calculated using
the procedure discussed above (TC = 42 ms). Note that in this Shepp–Logan model, the
magnitude of the current density and so Bz at any slice is inversely proportional to the height
of the circular slab. We have set the height of the model to 3 cm so that Bz at the central slice
is in the same order of magnitude as Bz measured in the experiments for the 3D phantom
shown in figure 1(b). By this adjustment, we have been able to use the same SNR values that
are used for calculating the noise for the 3D phantom. When SNR = 180, the reconstructed
conductivity distributions are given in figures 7(e) and (f) when no stabilization is used and
when SUPG stabilization is used, respectively. The conductivity profiles of these figures are
given in figures 8(e) and (f), respectively. The conductivity reconstruction is again successful,
and the sharpness of the conductivity transitions is preserved. The relative L2 errors made in
the reconstructed conductivity for different SNR values are given in table 3.

For the Shepp–Logan model, another simulation is made in which the noise added to ∇2Bz

is confined to distinct small regions. This noisy ∇2Bz is given in figure 7(g) for the horizontal
current injection and is obtained again using the procedure discussed above (TC = 42 ms).
This time the noise image (∇2G) is masked to take non-zero values in only three distinct
small regions (SNR = 60). The reconstructed conductivity for this case is given in figure 7(h).
SUPG stabilization is used during the reconstruction process. It is observed that the errors in
the reconstructed conductivity are also confined to the regions where the noise in ∇2Bz exists,
and the relative L2 error made in the reconstructed conductivity is 18.1%.

3.2. Experimental results

Results for the first experimental setup explained in section 2.4 are given in figures 9 and 10.
Figures 9(a) and (d) show Bz measured at the central slice of the phantom (called the imaging
slice hereafter) for two current injections. Figures 9(b) and (e) show the ‘masked’ ∇2Bz which
are calculated from measured Bz at three consecutive slices. It is observed that the error in the
calculated ∇2Bz is most pronounced in recessed parts of the phantom since Bz changes rapidly
and also has high magnitude in these regions. Also Bz measurements near the boundary of the
phantom have relatively high noise probably due to the partial volume effect in MR voxels
here. Therefore, ∇2Bz data are masked such that only ∇2Bz calculated in the circular region
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Figure 9. Input data and the reconstructed current densities for the first experimental setup explained
in section 2.4. (a) Measured Bz for the horizontal current injection, (b) ∇2Bz calculated from Bz

measured for the horizontal current injection, (c) filtered version of ∇2Bz for the horizontal current
injection (kmax = 400 m−1). (d)–(f) are the same as in (a)–(c) but obtained for the vertical current
injection. (g) and (h) The quiver and magnitude plots of J∗ reconstructed from ∇2Bz in (c). Units
for axes are metres and units for Bz, ∇2Bz and current density are T, T m−2 and A m−2, respectively.

of radius 0.045 m is used and outside of this region, including recessed parts, ∇2Bz is taken
as zero (in fact in theory ∇2Bz = 0 in these regions since the conductivity is constant). All
conductivity reconstructions for the experiments are made using two current injections.

Several cases are considered for the conductivity reconstruction using experimental data
and for some cases the Hanning window low-pass filter, which is discussed in section 3.1, is
applied to the ∇2Bz data before reconstruction. Figures 9(c) and (f) show the low-pass filtered
versions of the ∇2Bz data for two current injections. The cut-off frequency (kmax) should be
chosen separately for each experimental setup. One of the factors which should be considered
is the SNR of the MR image and the other is the fact that the choice of kmax sets a lower bound
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Figure 10. Reconstructed conductivity distributions at the central slice of the phantom for the
first experimental setup explained in section 2.4. (a) Reconstructed conductivity distribution,
(b) reconstructed conductivity profile on the x = y line. (a) and (b) are obtained when the original
∇2Bz (no filter) is used without stabilization. (c) and (d) are the same as in (a) and (b) but the
filtered ∇2Bz (kmax = 400 m−1) is used without stabilization. (e) and (f) are the same as in (a) and
(b) but the original ∇2Bz (no filter) is used with SUPG stabilization. (g) and (h) are the same as in
(a) and (b) but the filtered ∇2Bz (kmax = 500 m−1) is used together with SUPG stabilization.
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for the spatial resolution of the reconstructed conductivity. For the experimental data given in
figure 9, kmax is chosen as 500 or 400 m−1 depending on whether SUPG stabilization is used or
not (the effect of SUPG stabilization on the choice of kmax is discussed in the next paragraph).
The quiver and magnitude plots of J∗ reconstructed from the filtered ∇2Bz (kmax = 400 m−1)
are shown in figures 9(g) and (h).

In figures 10(a) and (b), the reconstructed conductivity distribution and conductivity profile
on the x = y line are given at the imaging slice when the ∇2Bz data shown in figures 9(b) and
(e) are used without any stabilization. The reconstructed conductivity suffers from spurious
oscillations. When the low-pass filtered versions of ∇2Bz data (figures 9(c) and (f)) are used
(kmax = 400 m−1), the oscillations in the reconstructed conductivity decrease as shown in
figures 10(c) and (d). On the other hand, when the original ∇2Bz data (no filter) are used with
SUPG stabilization, similar to the case when ∇2Bz is low-pass filtered, the oscillations in the
reconstructed conductivity are decreased as shown in figures 10(e) and (f). For the last case,
figures 10(g) and (h) show the reconstructed conductivity when the filtered versions of ∇2Bz

and SUPG stabilization are used together. In this case, kmax is chosen to be 500 m−1 which is
higher than the case when only low-pass filtering is used. Since low-pass filtering and SUPG
stabilization are utilized together, it is possible to obtain a stable solution with a higher kmax

(better spatial resolution). Therefore, SUPG stabilization is still beneficial in the cases when
∇2Bz is low-pass filtered.

Results for the second experimental setup explained in section 2.4 are given in figure 11.
Figures 11(a) and (b) show Bz measured at the imaging slice for two current injections. Since
MR signals coming from the agar objects are relatively low (see figure 2(b)), the measured
Bz data in these regions are greatly corrupted with noise. Therefore, all reconstructions are
done with low-pass filtered versions of ∇2Bz data. The Hanning window filter explained in
section 3.1 is used with kmax = 300 m−1. Figures 11(c) and (d) show the low-pass filtered ∇2Bz

data for two current injections. Figure 11(e) shows the reconstructed conductivity distribution
at the central slice of the phantom when no stabilization is used. This reconstructed conductivity
distribution suffers from oscillations. Figure 11(f) shows the reconstructed conductivity
distribution when SUPG stabilization is used. The oscillations in the solution decrease and the
conductivity is well reconstructed.

4. Discussion

In this study, a new MREIT algorithm is proposed to reconstruct conductivity distribution
at a slice of interest given the ∇2Bz data for that slice. The relation between conductivity
and ∇2Bz data is formulated as a steady-state scalar convection equation as given in (4) and
reconstruction of conductivity is achieved by the numerical solution of the convection equation
using FEM. Effects of including stabilization in the FEM formulation are also investigated.
Reconstructed conductivity distributions using both simulated and experimental data show
that the proposed algorithm is successful. To our knowledge, it is the first time that the MREIT
problem is handled as the solution of a scalar convection equation.

It is well known that the numerical solution of the pure convection equation using the
Galerkin weighted residual FEM is unstable and gives inaccurate results if the actual solution
includes sharp variations (Knobloch 2009). Sharp variations in the solution may be due to
internal narrow regions where the solution has a steep gradient or due to inconsistent Dirichlet
boundary conditions. If the R values which are specified as the Dirichlet boundary condition
on the inlet boundary, on which J̃ · n < 0 (n being the outward normal to the boundary), and
on the outlet boundary, on which J̃ · n > 0, are inconsistent, then the solution will have sharp
variations near the outlet boundary (please see appendix A.1 for a one-dimensional example).
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Figure 11. Input data and the reconstructed conductivity distributions for the second experimental
setup explained in section 2.4: (a, b) Measured Bz distributions for the horizontal and vertical current
injections, respectively, (c, d) filtered ∇2Bz (kmax = 300 m−1) for the horizontal and vertical current
injections, respectively, (e) reconstructed conductivity distribution when no stabilization is used,
(f) reconstructed conductivity distribution when SUPG stabilization is used. Units for axes are
metres and units for Bz, ∇2Bz and conductivity are T, T m−2 and S m−1, respectively.
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The instability of the numerical solution, which is caused by any sharp variation in the solution,
may be overcome by choosing a stabilization technique which in effect adds a diffusion term
to the partial differential equation. In this study, the SUPG stabilization technique is used.

It is shown in figures 3(g) and (b) that when the actual conductivity distribution does not
have sharp variations, the Galerkin weighted residual FEM formulation without stabilization
gives accurate reconstruction results. However, for the case when the conductivity distribution
has sharp variations, spurious oscillations occur in the solution and an accurate solution is not
obtained as shown in figures 4(a) and (b). These oscillations disappear with the use of SUPG
stabilization as shown in figures 4(c) and (d) and the relative L2 error made in the reconstructed
conductivity is lower. Therefore, if the actual conductivity distribution has sharp variations,
stabilization improves the accuracy of the solution by means of reducing the oscillations in
the solution.

In practice, noise is inherent in the measurement of Bz and robustness of the proposed
algorithm against noise must also be investigated. Noise in Bz simulations is modelled by
using the noise model given in Scott et al (1992). Two current injections are used for all
reconstructions using noisy data. Considering (4), there is a linear relation between ∇2Bz and
∇R assuming that J̃ is previously calculated. Therefore, existence of any sharp variation in the
solution (existence of high slope narrow or local regions) implies localized high magnitude
and narrow extrema in ∇2Bz. Considering the reverse, if ∇2Bz is corrupted with noise such
that it has localized high magnitude and narrow extrema, then there will be sharp variations
in the solution. We think that the sharp variations in the solution due to the noise in ∇2Bz

cause spurious oscillations as shown in figures 5(d) and (e). When stabilization is used, these
oscillations are reduced as seen in figures 5(f) and (g) and the relative L2 error made in
reconstructed conductivity is lower (see table 1). Therefore, stabilization is useful in reducing
oscillations due to sharp variations in the solution caused by noise in ∇2Bz.

We have also shown that low-pass filtering of ∇2Bz by itself helps decrease oscillations
in the solution. To discuss the effect of this low-pass filtering on decreasing oscillations,
let us first consider simulated noise-free ∇2Bz distributions given in figures 6(a) and 7(b):
the corresponding conductivity distributions for these ∇2Bz distributions have jumps in
transitions between the objects and the background. For such conductivity variation, ∇2Bz

is most pronounced at object boundaries. Actually, this behaviour is evident from (3) such
that ∇2Bz takes non-zero values only in regions where conductivity changes. In theory, a step
change in conductivity at an internal boundary means a ∇2Bz of line impulse type. If such
a ∇2Bz distribution is low-pass filtered, then the impulsive behaviour is lost such that ∇2Bz

at the boundary is widened and its value is reduced. An example can be seen in figure 6(b)
in which low-pass filtered version of ∇2Bz distribution in figure 6(a) is given. The end effect
of conductivity reconstruction from such a low-pass filtered ∇2Bz is that step changes in
conductivity are tapered. Since sharp variations in conductivity are lost, spurious oscillations
in the solution decrease. On the other hand, as discussed in the previous paragraph, if ∇2Bz

is noisy, it has localized high magnitude and narrow extrema which cause sharp variations in
the solution. In such a case, when ∇2Bz is low-pass filtered, these extrema are widened and
the magnitudes of the extrema are lowered and thus sharp variations in the solution are also
tapered. Therefore, the spurious oscillations due to sharp variations in the solution are also
decreased.

We have discussed above that both SUPG stabilization and low-pass filtering of ∇2Bz are
beneficial for decreasing the oscillations in the solution due to sharp variations. These sharp
variations may be caused by either sharp conductivity transition regions or the noise in ∇2Bz.
Therefore, low-pass filtering of ∇2Bz and stabilization techniques may at first be considered
as alternatives to each other. For comparison of the two techniques, we have performed
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a simulation for a 2D circular phantom (figure 6) which has a discontinuous conductivity
transition between the inner object and the background. Observing the standard deviations or
coefficients of variation given in table 2, a beneficial effect of decreasing oscillations in the
solution is observed for both low-pass filtering and SUPG stabilization. However, low-pass
filtering results in poorer spatial resolution as supported by the rise length values given in
table 2. Therefore, SUPG stabilization is preferred to low-pass filtering in order to preserve
sharp conductivity transitions and thus to obtain better spatial resolution. However, in cases
when low-pass filtering is found to be necessary due to excessive noise, use of SUPG together
with low-pass filtering may become beneficial by allowing for a higher cut-off frequency for
the low-pass filter. We have in fact observed this benefit when conductivity distributions are
reconstructed using experimental data as shown in figure 10.

In a general sense, the solution of (4) may be thought of as taking the line integral of
∇R along the direction of the convective field. For the solution of a similar equation, Seo
et al (2003) have suggested using line integrals in order to reconstruct σ from its known
gradient. In this case, it is obvious that if noisy ∇2Bz is used, the error in σ tends to accumulate
along the line (Oh et al 2003). In this study, we use FEM for the solution of (4). No line
integrals are calculated but the solution is obtained by solving a matrix equation. This matrix
equation is solved for the whole domain. For instance, consider the reconstructed conductivity
distribution given in figure 7(h). This conductivity is obtained from the ∇2Bz distribution given
in figure 7(g) which takes high values in some small distinct regions simulating the presence
of localized high magnitude noise. We see that the error in conductivity is also confined to
small regions where ∇2Bz has noise. This result and also the success of the algorithm in other
simulations containing noise show that error accumulation due to noise is not an issue for the
proposed algorithm.

In the simulations made with the Shepp–Logan model, it is observed that the proposed
algorithm successfully reconstructs the conductivity distribution profile. However, in some
regions where the local conductivity contrast is high, e.g. around objects 1 and 3 (see figures 7
and 8), the absolute value of the reconstructed conductivity does not agree with the actual
conductivity value. Note that, the conductivity of object 1 is 2 S m−1 and it is surrounded
by object 2 which has conductivity of 0.1 S m−1. Therefore, the relative local contrast of
the conductivity of object 1 is high. We have carried out additional simulations to see how
reconstructed conductivity depends on the relative local contrast. If the actual conductivity of
object 1 is between 0.1 and 0.2 S m−1, it is reconstructed with less than 5% error. However
as the contrast increases, the reconstructed value depicts a saturating behaviour and no matter
how large the actual conductivity is, the reconstructed conductivity stays around 0.5 S m−1.
We have also observed that the current distribution in and around object 1 does not change
much if the relative contrast of object 1 is increased beyond 5. Similarly, ∇2Bz around the
boundary of object 1 also saturates. Therefore, we conclude that the conductivity of a small
high contrast anomaly cannot be reconstructed exactly due to the saturating behaviour of the
current distribution and ∇2Bz. This behaviour is a peculiarity of MREIT in general, and not
of the convection-equation-based reconstruction proposed in this paper.

We have used SVD to analyse the conditioning of the system matrices S1 and S2 expressed
in (6). For example for the case of the simulations shown in figure 3, the following condition
numbers are obtained. When no stabilization is used, the reduced S1 and S2 matrices (after
imposing the Dirichlet boundary conditions) have condition numbers (ratio of largest singular
value to the smallest one) of 1.9 × 106 and 1.2 × 106, respectively. However, the combined
system matrix [S1; S2] representing the two current injection case has a condition number of
1187. We have also observed that the use of stabilization further decreases the condition number
to 759. These results and the condition numbers that we have observed for other simulations
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show that the two current injection case is significantly well conditioned compared to the
single current injection cases. Stabilization may somewhat improve the condition number but
this is not an order of magnitude improvement.

In all reconstructions made using both simulated and experimental data, the conductivity
values at the boundary are assumed to be known. In experiments conducted by phantoms, this
information is available since the conductivity of background solution is known. Furthermore in
experiments that would be conducted using human or animal subjects, this information is
available when large carbon hydro-gel electrodes are used or the subject is covered with
conductive gel pads with appropriate conductivity (Kim et al 2009).

Seo et al (2003) have also proposed a ∇2Bz-based algorithm for the reconstruction of
conductivity and later it was modified and named as the Harmonic Bz algorithm (Oh et al
2003). This is an iterative algorithm and at each iteration the equation Ẽ · ∇σ = ∇2Bz

μ0
, where

Ẽ = (−Ey, Ex) and Ex, Ey are the x- and y-components of the electric field, is used. At the
first iteration, Ẽ is calculated for a uniform conductivity distribution and for other iterations it
is calculated using the conductivity from the previous iteration. This equation is in the same
convection equation form as the equation J̃ · ∇R = ∇2Bz

μ0
that we used in this study. Therefore,

the solution methods that we have suggested can also be applied to reconstruct the conductivity
at each iteration of the Harmonic Bz algorithm.

We had previously proposed an algorithm (Ider and Onart 2004) based on the finite
difference discretization of J̃ · ∇R = ∇2Bz

μ0
. However, the method proposed in this study uses

FEM and the triangular mesh of the solution domain provides a more handy method for real
objects with an irregular boundary.

There are many FEM software packages which use advanced numerical techniques for the
solution of partial differential equations. Comsol Multiphysics is one of these packages and it
has a module for solving the convection–diffusion equation which also employs stabilization
techniques. Although Comsol Multiphysics cannot solve the MREIT convection equation
using two current injections, the S1, S2 matrices and the f1, f2 vectors in (6) can be imported
from the Comsol Multiphysics environment for two current injections separately as done in this
study. The final matrix system is solved by Matlab using SVD. We think that the possibility of
using FEM software packages in the implementation of the algorithm is one of its advantages.
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Appendix

The following appendices are compiled using information and also some notation from
Zienkiewicz et al (2005) (chapters 1 and 2), Knobloch (2009) and Comsol Multiphysics
3.5 Modeling Guide (2008) (chapter 17). We refer the reader to these references for further
and more comprehensive study.

A.1. Convection–diffusion equation

The general form of the scalar stationary convection–diffusion equation may be written as

β · ∇u + ∇ · (k∇u) = F, (A.1)
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where β is the convective field, k is the diffusion coefficient, u is the scalar quantity which
is distributed under the effect of diffusion and convection and F is the source term. In the
context of the finite element method (FEM), a measure of how the convective term is relatively
dominant is given by the element Péclet number which is defined as Pe = |β|h/(2k), where
h is the finite element size. A larger Péclet number means that convection is more dominant
in the equation than diffusion. It is known that if the solution contains sharp variations (high
slope narrow or local regions) and if there exist regions where Pe > 1, then the solution
suffers from spurious oscillations (Knobloch 2009). Furthermore, the solution may be purely
oscillatory in the case of pure convection equation (Pe = ∞) (Zienkiewicz et al 2005).
In order to illustrate the concept of stability of the convection–diffusion equation, a simple
one-dimensional problem which is given as

β
du(x)

dx
+ k

d2u(x)

dx2
= 1 (A.2)

is considered. The problem is solved using the Galerkin weighted residual FEM (will be
referred to as the ‘Galerkin method’ hereafter) which is described in the following section.
The solution domain is 0 � x � 1 with 97 elements (line segments), β is taken as 1 and
Dirichlet boundary conditions are used at both ends. If k = 0 the problem is purely convective
and for this case, if consistent boundary conditions are chosen (e.g. u(0) = 0, u(1) = 1), the
solution obtained using the Galerkin method is seen in figure A1(a). On the other hand, if the
boundary conditions are inconsistent (e.g. u(0) = 0, u(1) = 0), then the boundary condition
on the right (u(1) = 0) will cause a sharp variation in the solution near the right boundary. In
this case, solving the equation using the Galerkin method will give a pure oscillatory unstable
solution as seen in figure A1(b). To stabilize the solution, a diffusion term may be added to the
equation so that Pe < ∞. Such a diffusion is often called artificial diffusion. Let this artificial
diffusion term be k̃ d2u(x)

dx2 . If k̃ is chosen to be k̃ = 0.5|β|h for a pure convective equation, then
Pe = 1 in the whole domain and such an artificial diffusion is called ‘balancing diffusion’
(Zienkiewicz et al 2005). For this example, this choice gives k̃ = 1/194 and figure A1(c) shows
the solution for this choice. Adding too much artificial diffusion however (e.g. k̃ = 10/194)
introduces too much smoothing effect as shown in figure A1(d).

For 2D problems, it would be enough to introduce artificial diffusion in only one particular
direction to stabilize the solution and therefore k̃ may be anisotropic. A number of stabilization
techniques that introduce artificial diffusion in the direction of the convective field (upwind)
or in the direction perpendicular to the convective field (crosswind) have been suggested in
the literature. One popular stabilization technique is the streamline upwind Petrov–Galerkin
(SUPG) which is introduced by Brooks and Hughes (1982). The Galerkin method and SUPG
stabilization technique are explained in the next two sections and it is shown that the SUPG
procedure adds an artificial diffusion term in the upwind direction to the convection–diffusion
equation.

A.2. Galerkin weighted residual FEM

The relation given in (A.1) is recognized as the strong form of the convection–diffusion
equation. FEM uses the weak form of (A.1) which is∫

�

v(x, y)[β · ∇u + ∇ · (k∇u) − F] d� = 0, (A.3)
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(a) (b)

(c) (d)

Figure A1. The solution of (A.2) using the Galerkin method for different cases when β = 1: (a) no
diffusion term, consistent boundary conditions (k = 0 and u(0) = 0, u(1) = 1), (b) no diffusion
term, inconsistent boundary conditions (k = 0 and u(0) = 0, u(1) = 0) (c) ‘balancing diffusion’
is introduced for inconsistent boundary conditions (k = 1/194 and u(0) = 0, u(1) = 0) (d) ‘too
much’ diffusion is introduced for inconsistent boundary conditions (k = 10/194 and u(0) = 0,
u(1) = 0).

where v is an arbitrary well-behaved test function and � is the connected and bounded solution
domain in R2. The requirement is that (A.3) should hold for all v. It is a known fact that the
solution satisfying (A.3) also satisfies (A.1) (Zienkiewicz et al 2005). (A.3) may be written as∫

�

vβ · ∇u d� +
∫

�

∇ · (vk∇u) d� −
∫

�

∇v · k∇u d� −
∫

�

vF d� = 0. (A.4)

Using the divergence theorem, and assuming Dirichlet boundary conditions, second term of
(A.4) vanishes if v vanishes on the boundary. In the Galerkin weighted residual FEM (will be
referred as the ‘Galerkin method’ hereafter), u(x, y) is approximated using shape functions
Na(x, y) as

u(x, y) ≈ û(x, y) =
n∑

a=1

Na(x, y)ua, (A.5)
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(a) (b)

Figure A2. The linear shape function, Na(x, y), which equals to 1 at the ath node and linearly
decreases to zero going from the ath node to neighbouring nodes (the ath node is shown with
a square marker and the neighbouring nodes are shown with circular markers): (a) the sample
triangular mesh and (b) Na(x, y) (the z-axis shows the value of the shape function).

where ua is the value of u(x, y) at the ath node and n is the number of nodes in the FEM mesh
generated to cover �. In this study, triangular elements with linear shape functions are used
for the Galerkin method. In this case, Na(x, y) = 1 on the ath node and it linearly decreases to
zero going from the ath node to the neighbouring nodes and stays zero in the remaining of the
domain as shown in figure A2. The set {N1, N2, . . . , Nn} forms a basis for the FEM solution
space. In the Galerkin method, test functions, Wa(x, y), a = 1, 2, . . . , n, are chosen to be equal
to the shape functions, i.e. Wa(x, y) = Na(x, y). Substituting the approximation û into (A.4),
for each Wa(x, y) = Na(x, y), a linear equation is obtained as

∫
�

Naβ ·
n∑

b=1

∇Nbub d� −
∫

�

∇Na · k
n∑

b=1

∇Nbub d� −
∫

�

NaF d� = 0, a = 1, 2, . . . , n.

(A.6)

Defining fa = ∫
�

NaF d�, u = [u1, u2, . . . , un]T and fg = [ f1, f2, . . . , fn]T, the above set of
equations can be expressed in the matrix form as

(C + K)u = Sgu = fg, (A.7)

where the n×n matrices C and K correspond to the first and second terms in (A.6) and they
arise from and represent the convection and diffusion terms in (A.1), respectively. Note that
if Dirichlet boundary conditions are used, R values on the boundary nodes are known and the
matrix system is reduced accordingly (n × n matrix Sg becomes (n − r) × (n − r) and n × 1
vector fg becomes (n − r) × 1, where r is the number of boundary nodes).

In this study, the MREIT convection equation given in (4) is utilized and there is no
diffusion term in this equation, and therefore K matrix does not exist. Also β and F are
assumed to be constant inside a triangular element during the calculation of C.
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A.3. SUPG stabilization

In the Galerkin method, the test functions are the same as shape functions, whereas in the
Galerkin method with SUPG stabilization the special Petrov–Galerkin functions are used as
test functions. The Petrov–Galerkin test functions are given as

W ∗
a (x, y) = Na(x, y) + αh

2|β|β · ∇Na(x, y), a = 1, 2, . . . , n, (A.8)

where h is the finite element size, β is the convection field as described above and α is a
parameter indicating the amount of introduced artificial diffusion (in this study, we have taken
α = 1). Substituting the approximation û into (A.4), for each W ∗

a (x, y), a linear equation is
obtained as∫

�

Naβ ·
n∑

b=1

∇Nbub d� −
∫

�

∇Na · k
n∑

b=1

∇Nbub d� −
∫

�

NaF d�

+
∫

�

(
αh

2|β|β · ∇Na

)(
β ·

n∑
b=1

∇Nbub

)
d�

−
∫

�

∇
(

αh

2|β|β · ∇Na

)
· k

n∑
b=1

∇Nbub d�

−
∫

�

(
αh

2|β|β · ∇Na

)
F d� = 0, a = 1, 2, . . . , n. (A.9)

In this equation, the first three terms are the same as in (A.6) and the fifth term vanishes since
this integration is performed over the element interiors (Brooks and Hughes 1982 pp 211–2,
Fries and Matthies 2004 p 13, Zienkiewicz et al 2005 pp 37–9), and the fourth term may be
modified as follows:∫

�

(
αh

2|β|β · ∇Na

)(
β ·

n∑
b=1

∇Nbub

)
d� =

∫
�

∇Na · k̃
n∑

b=1

∇Nbub d�, (A.10)

where k̃ is a tensor which equals k̃i, j = αhβiβ j

2|β| (β1 = βx, β2 = βy). In this case (A.9) may be
written as∫

�

Naβ ·
n∑

b=1

∇Nbub d� −
∫

�

∇Na · k
n∑

b=1

∇Nbub d� +
∫

�

∇Na · k̃
n∑

b=1

∇Nbub d�

=
∫

�

NaF d� +
∫

�

(
αh

2|β|β · ∇Na

)
F d� = 0, a = 1, 2, . . . , n. (A.11)

It is important to recognize that the third term is in the same form as the second term, and
therefore it also represents a diffusion process. Therefore, by using the Petrov–Galerkin test
functions in the Galerkin method, an ‘artificial diffusion’ is introduced into the equations.
Furthermore, this artificial diffusion is directional, and considering k̃, the artificial diffusion
term is introduced only in the direction of β (upwind direction).

Defining f̃a = ∫
�

(
αh

2|β|β · ∇Na
)
F d�, and f̃ = [ f̃1, f̃2, . . . , f̃n]T the set of equations given

in (A.11) can be expressed in the matrix form

[C + K + K̃]u = [Sg + K̃]u = Ssupgu = fg + f̃ = fsupg, (A.12)

where K̃ corresponds to the artificial diffusion term (third term) in (A.11) and Sg, K, C, u and
f are the same as in (A.7). In this study, since the MREIT convection equation given in (4),
which does not have a diffusion term, is utilized, the K matrix does not exist and however
the K̃ matrix is introduced if SUPG stabilization is used. It is evident from (A.11) that the
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SUPG stabilization method, in addition to having the property of introducing artificial upwind
diffusion, is also consistent in the sense that the Petrov–Galerkin test functions are applied to
both sides of the convection–diffusion equation.
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