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Abstract
The electronic properties of a square lattice under an applied perpendicular magnetic field in
the presence of impurities or vacancies are investigated by the tight-binding method including
up to second nearest neighbor interactions. These imperfections result in new gaps and bands
in the Hofstadter butterfly even when the second order interactions break the bipartite
symmetry. In addition, the whole spectrum of the Hall conduction is obtained by the Kubo
formula for the corresponding cases. The results are in accordance with the
Thouless–Kohmoto–Nightingale–den Nijs integers when the Fermi energy lies in an energy
gap. We find that the states due to the vacancies or impurities with small hopping constants are
highly localized and do not contribute to the Hall conduction. However, the impurities with
high hopping constants result in new Hall plateaus with constant conduction of σxy = ±e2/h,
since high hopping constants increase the probability of an electron contributing to the
conduction.

(Some figures may appear in colour only in the online journal)

1. Introduction

The problem of a particle moving in a periodic potential under
the presence of a magnetic field has attracted attention since
the early days of quantum mechanics. As was first shown
by Hofstadter [1], the energy spectrum of this problem is a
self-similar fractal structure when viewed as a function of the
magnetic field. This self-similarity stems from the divisibility
problem of the two length scales in the problem, the magnetic
length and the lattice spacing. The integer quantum Hall
effect for this system has also been studied and provides a
disorder free model for Hall conductance quantization, as the
Hall conductance for a system of fermions moving in such a
periodic potential has been shown to be directly related to a
topological invariant called the first Chern number [2].

Although this result of conductance quantization is
theoretically well established, it remains experimentally
unverified as of yet. The basic difficulty for electronic systems
to get into the Hofstadter ‘high magnetic field, strong lattice’
limit is that experimentally unachievable magnetic fields of

the order of thousands of Tesla are required to reduce the
magnetic length to the order of the lattice spacing. However,
recent developments in both solid state and cold atom
physics show promise that this model can be experimentally
realized. In solid state physics, it has recently been suggested
that the presence of shear strain in graphene would act
like an effective magnetic field for the electrons in certain
limits [3]. In cold atom experiments the particles are neutral;
however, a Berry phase that mimics an external magnetic
field has been imprinted on the system using the coupling
of internal states to suitably arranged lasers [4]. Using such
a scheme very high artificial magnetic fields have been
created and their physical effects such as vortices in a Bose
condensate have been demonstrated [5]. Even more recently,
very high staggered magnetic fields have been created in
optical lattice potentials [6] and an experimental method for
imprinting magnetic field induced phases on a lattice has
been demonstrated [7]. These experiments provide a strong
motivation for further theoretical consideration of this system.
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We briefly review the theoretical progress on the response
of a (2D) electronic system in a periodic potential to
an applied magnetic field. There have been two different
approaches to this problem. The first one is the semiclassical
approach based on the Peierls and Onsager assumption [8,
9] which is applicable in the weak magnetic field limit.
The second one is introduced for strong magnetic fields and
assumes that the periodic lattice potential is a perturbation to
the Landau level spectrum [10]. In 1964, Azbel [11] examined
the behavior of Landau quantized electrons by considering
the lattice potential as a perturbation term. Later, in 1976,
Hofstadter [1] numerically studied the square tight-binding
lattice under a magnetic field and obtained the fractal structure
well known as the Hofstadter butterfly. After that, a similar
problem for electrons in hexagonal lattices was studied [12].
The second order interactions with a square tight-binding
lattice in a perpendicular magnetic field were introduced by
Claro [13]. The symmetry properties of this problem were
investigated by Zak and Brown [14, 15], by introducing
the magnetic translation group which explains the splitting
of the energy bands into the magnetic sub-bands from the
perspective of group theory. Related problems such as the
effect of magnetic modulation on Bloch electrons [16–18] or
the Hofstadter butterflies for various lattices [19–24] have also
been studied. Experimental data from (2D) antidot lattices
provide indirect evidence for the existence of the Hofstadter
butterfly [25], along with the theoretical investigations for this
system [26, 27].

One of the most important properties of lattice electrons
under a magnetic field is that they provide a disorder free
model for Hall conductance quantization, i.e. the integer
quantum Hall effect. When the Fermi level is in an energy gap,
the value of the Hall conduction is expressed in terms of the
famous Thouless–Kohmoto–Nightingale–den Nijs (TKNN)
integers [2, 28] times e2/h. The whole picture for the
conductance can be calculated either by the Streda [29]
formula originating from the linear response theory or by
the Kubo formalism. Several works have been published
which have concentrated on both the Hall conduction and
the Hofstadter butterflies for the cases of square, triangular,
kagomé and honeycomb lattices [30–40].

However, the effects of imperfectness of the lattice on
the electronic structure, such as the presence of point defects,
have not been fully studied. In this work, we investigate the
spectrum (Hofstadter butterfly) and the Hall conductance of
the system when impurities are introduced into the lattice.
Such impurities would be naturally present in a solid state
system, and can be easily introduced into an optical lattice
cold atom system by redesigning the optical lattice or by
including a mixture of other atomic species as in recent
experiments [41–43]. We not only consider the nearest
neighbor hopping but also include the next nearest neighbor
hopping within the tight-binding methodology. By including
the next nearest neighbor interactions, we make sure that our
results for impurities are robust with respect to the breaking
of the bipartite symmetry of the lattice. In this work, we
consider a square lattice which is commonly used in cold atom
experiments, but our methods are equally applicable to other
lattice geometries.

We explore the evolution of the Hofstadter butterfly and
the Hall conductance with the imperfections. Our results
show that the presence of an impurity in general shifts the
Hofstadter bands. Depending on the impurity concentration
and strength certain bands of the spectrum may merge,
altering the value of the Hall conductance. The contribution of
the impurity state to the Hall conductance decreases when the
impurity state is more localized, as expected. We also present
a method for efficiently forming the tight-binding matrix for
supercells in this model. The paper is organized as follows.
In section 2, we review the pure lattice spectrum and discuss
how impurities can be introduced by expanding the unit cell.
We show how the tight-binding matrix for the enlarged unit
cell can be efficiently constructed. In section 3, we present
the energy spectra and the Hall conductances in the presence
of point defects and systematically analyze the results as
a function of impurity strength. Finally, in section 4, we
conclude by pointing out the key results and briefly discussing
how can they be experimentally accessed.

2. Methodology

We use the tight-binding method for the square lattice
where the first and second nearest neighbor interactions
are both included in order to model the (2D) electronic
system in a magnetic field, with impurities or vacancies. The
perpendicular magnetic field applied to the (2D) system brings
out additional phase factors [8] to the usual tight-binding
terms. In addition, the magnetic field changes the periodicity
of the system leading to a larger ‘magnetic unit cell’. Once
the tight-binding system is revised with the magnetic field, we
end up with a new magnetic field tight-binding Hamiltonian,
which is described by the Am matrix [1]. Its eigenvalues and
eigenvectors give the desired energies and wavefunctions,
respectively.

For a pure system, a square lattice with a single atom
basis works well, and it has produced many results about
the Hofstadter butterflies and the Hall conductances [44–46].
There are also studies [47] on the effect of second nearest
neighbor interactions which break the bipartite symmetry.
When the system has only the first order interactions, each
site can be considered as a composition of two sublattices. For
such a system there is only inter-sublattice hopping. If there
is an eigenfunction with energy E, changing the sign of this
eigenfunction on one sublattice yields another eigenfunction
with energy −E. As a result of that, the eigenvalues come
out in pairs (E,−E) and the energy spectrum is symmetric
around the E = 0 line. However, second nearest neighbor
interactions introduce intra-layer hopping which breaks the
bipartite symmetry. Therefore, in the presence of intra-layer
hopping the Hofstadter butterfly is no longer symmetric
around E = 0.

For the impurity and vacancy cases the tight-binding
method with a single atom in the basis is not enough to
realistically model the case. One has to have at least two
atoms in order to treat one of them as an impurity or vacancy.
However, for this scenario, we get 50% of impurity or vacancy
in terms of concentration which is similar to a superlattice
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Figure 1. The unit cells for the configurations. (a) One atom in the basis. The corresponding lattice vectors are Ea1 = x̂a and Ea2 = ŷa, where
a = 1 is the lattice constant. (b) Rectangular unit cell aligned horizontally: two atoms in the basis with an asymmetric choice of unit cell.
The corresponding lattice vectors are Ea1 = 2ax̂ and Ea2 = aŷ. (c) Rectangular unit cell aligned vertically: asymmetric unit cell choice of a
square lattice which contains again two atoms but with different unit vectors. The corresponding lattice vectors are Ea1 = x̂a and Ea2 = ŷ2a.
(d) Square lattice which contains four different atoms in the unit cell. The lattice vectors are Ea1 = x̂2a and Ea2 = ŷ2a .

rather than an impurity. In order to overcome this obstacle,
one should choose the unit cell as large as possible. In this
paper, we are proposing a method which enables direct access
to the Am matrix. This matrix is obtained by the tight-binding
method under the perpendicular magnetic field, which can be
written in the form of the well-known Harper’s equation [49].
We show how to generate the Am matrix efficiently for
enlarged supercells of the square lattice. In order to establish
the method for enlarged systems which include a point defect
with reasonable density, we present the cases starting from a
small single atom unit cell to an enlarged unit cell including
nine atoms. Although we are discussing the specific case for
the square lattice, our methods are applicable to all kinds of
lattice geometries.

2.1. Square lattice with a single atom in the basis

We start by reviewing the pure case which was first discussed
by Hofstadter [1]. Within the tight-binding approximation, the
single band Hamiltonian for the Schrödinger equation of a
square lattice with lattice constant a, for one atom in the unit
cell is equal to

H = t{e−ikxa
+ eikxa

+ e−ikya
+ eikya

}, (1)

where the exponential factors arise due to the interactions
of the first nearest neighbors. The coefficient t is the
hopping (orbital interaction) term which has units of energy.
Henceforth, we will express all energies in units of t,
effectively setting t = 1. The geometric configuration can
be viewed from figure 1(a) where one can observe that the
atom with label (ma, na) interacts with the atoms of labels
(ma+ 1, na), (ma− 1, na), (ma, na+ 1), and (ma, na− 1). The
corresponding lattice vectors Ea1 and Ea2 satisfy the equation
ER(ma,na) = ma Ea1+na Ea2, where ER(ma,na) is the position vector of
the atom labeled by (ma, na). When we introduce the magnetic
field into the system, we use the Peierls substitution which
shifts the momentum with the vector potential of the magnetic
field,

h̄k→ h̄k−
e EA
c
.

For a perpendicular magnetic field, we choose the Landau
gauge which gives a vector potential in the y direction as
a function of x, EA = (0,Bx, 0). With this choice of gauge,
only the hopping strengths in the y direction gather additional

phase factors e−2π i e
h̄

∫
EA·Edl, where the integral is evaluated

along the line connecting the two atoms. With the addition
of the magnetic field originated phase factors, we have a new
Hamiltonian

H′ = t{e−ikxa
+ eikxa

+ e−ikyae
2iπma

φ
φ0 + eikyae

−2iπma
φ
φ0 },

where φ = Ba2, the magnetic field times the area of the unit
cell, and φ0 is the flux quanta h/e. Now, the Schrödinger
equation becomes

H′ψ = tψ(ma − 1, na)+ ψ(ma + 1, na)

+ ψ(ma, na − 1)e
2iπma

φ
φ0

+ ψ(ma, na + 1)e
−2iπma

φ
φ0

= εψ(ma, na).

If we make the substitution ψ(ma, na) = ϕ(ma)eikyana , we get
a new equation known as Harper’s equation,

εϕ(ma) = tϕ(ma − 1)+ tϕ(ma + 1)

+ 2tϕ(ma) cos
(

2πma
φ

φ0
− kya

)
. (2)

We set the ratio between the amount of flux through a
plaquette and the flux quantum to be equal to α, and let this
α be represented as a fraction of two co-prime integers such
that α = φ/φ0 = p/q. The value of ma ranges from 1 to q.
However, when we try to solve this recursive equation for
ϕ(1), we have a ϕ(0) term on the right-hand side. Similarly,
when we set ma to be ma = q, we have a ϕ(q + 1) term
on the right-hand side. In order to obtain solutions to this
equation, we have to stay within the boundaries we decided
for ma which spans the values from 1 to q. For this purpose,
we apply the Bloch condition which can be expressed as
ϕ(m + q) = ϕ(m)eiqkxa. By use of this boundary condition,
we end up with a matrix equation. This supercell matrix is
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Figure 2. The Hofstadter butterfly spectrum for a square lattice
with q = 501 and t = 1.0.

called the Am matrix,

ϕ1

ϕ2
...

ϕq−1

ϕq



=



2t cos
(

2π
φ

φ0

)
t 0 · · · te−iqkxa

t 2t cos
(

4π
φ

φ0

)
t · · · 0

0 t 2t cos
(

6π
φ

φ0

)
t

.

.

.

.

.

.

.

.

.
. . .

. . . t

teiqkxa 0 · · · t 2t cos
(

2qπ
φ

φ0

)



×



ϕ1

ϕ2
...

ϕq−1

ϕq

 , (3)

and the eigenvalues of this matrix have the famous butterfly
shape given in figure 2. In order to model enlarged systems
we propose a method through which we construct the Am
matrix just by the help of the geometric configurations. We
first show how to enlarge the unit cell of a pure system, and
then generalize this method to model point defects.

2.2. Enlarged unit cell

Assume that we have a square lattice with two atoms in its
basis, labeled by A and B, that are arranged as shown in
figure 1(b). For this case, differently from equation (1), we
have the matrix representation for the Hamiltonian

H =

[
HAA HAB

HBA HBB

]
.

These independent matrices have the information for the
orbital interactions between the types of atom located at the
nearest neighboring sites. For example, HAA has three terms:
the self-interaction term of the type A atom plus two terms
for the interaction of neighboring type A atoms. Due to the
addition of the magnetic field, there will be phase factors
for only those interactions which are aligned with the vector
potential in the y direction. We can expand the Hamiltonian
with the phase factors arising from the magnetic field under
these circumstances,

HAA
= t{eikyae−iθ

+ e−ikyaeiθ
} + ε2p,

HAB
= t{eikxa

+ e−ikxa
},

where ε2p is the self-interaction term of pz orbitals. Since the
Hamiltonian must be a Hermitian matrix, HBA is the complex
conjugate of HAB. The extra exponential terms in HAA can be
defined as follows:

eiθ
= e
−2π i

∫ ERma,na
ERma,na−1

EA·Edl
,

= e2π i(2a2Bma)
e
h̄ = e

2π i φ
φ0

ma
.

Due to the change in the area of the unit cell, we now have
φ = 2Ba2, which is doubled compared to the square lattice
with one atom in its unit cell. Another difference from the
previous calculation is that we have a column vector for the
ϕ(ma) which we choose to denote as

9(m) =

[
ϕ(ma)

ϕ(mb)

]
.

According to these considerations, equation (2) is now a
matrix equation,

9(m) = Um9(m)+Wm9(m− 1)+ Vm9(m+ 1), (4)

where Um, Wm, and Vm are all matrices, instead of single
coefficients as in the pure case. Explicitly,

Um =

[
2t cos(2παm− kya) t

t 2t cos(2πα(m+ 1/2)− kya)

]
,

Wm =

[
0 t

0 0

]
, Vm =

[
0 0

t 0

]
.

We apply the Bloch condition to the wavefunctions and, as a
result, we have the Am matrix as follows:

Am =



U1 V1 0 0 · · · 0 W∗1
W2 U2 V2 0 0 · · · 0

0 W3 U3 V3 0 · · · 0
...

...
. . .

. . .
. . .

. . .
...

V∗q 0 0 · · · 0 Wq Uq

 . (5)

2.2.1. Rectangular unit cell aligned horizontally. For a
system of atoms arranged as in figure 1(b), it is somehow easy
to perform this calculation; however, we are offering a simple
and compact method in order to construct the Am matrix
just from the geometry. Therefore, it is sufficient to calculate
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the phase factors due to the perpendicular magnetic field on
top of the simple tight-binding methodology. As pointed out
previously, only the hopping in the y-direction is modified by
the magnetic field. Since we have two types of atom in the unit
cell, and the periodicity of the phase factors in the m direction
is q, the dimensions of the Am matrix are 2q× 2q. We start by
generating the Am matrix as a 2q × 2q null matrix. The first
element (1, 1) of the matrix Am will be due to the interaction
of the A atom labeled by (ma = 1) with the A atoms with
the same label (ma = 1). As there are two A type atoms
with labels (ma = 1) in the first nearest neighborhood there
is a term 2t cos(2π φ

φ0
− kya) in the Am(1, 1). Our next term

will be Am(1, 2), which has the value t due to the interaction
between atom type A labeled by (ma = 1) and atom type B
labeled by (mb = 1). The matrix element Am with index (1, 3)
is equal to 0, since we do not consider such a long range
interaction. Similarly, Am(1, 4) is equal to 0, as well as the rest
of this row. In order to include the second nearest neighbors
or even higher order hopping, we would have to calculate
longer range tight-binding terms. In the next row, the same
procedure is repeated but for this case we are concentrating on
the interactions between the atom B(mb = 1) and A(ma = 1),
B(mb = 1), A(ma+1) = A(2), B(mb+1) = B(2). So we have

Am(2, 1) = t,

Am(2, 2) = 2t cos
(

2π
φ

φ0
(1+ 1/2)− kya

)
,

Am(2, 3) = t, Am(2, 4) = 0.

Again this row spans all the values in the range m =
1, 2, . . . , q. The rest of the rows can be calculated by carrying
out the same steps from ma to ma + q, and we end up with

Am =



2t cos
(

2π
φ

φ0
− kya

)
t 0

t 2t cos
(

2π
φ

φ0
(1+ 1/2)− kya

)
t

0 t 2t cos
(

4π
φ

φ0
− kya

)
.
.
.

.

.

.

.
.
.

0 0 0

0 0 · · · 0

0 0 · · · 0

t 0 · · · 0

. . .
. . .

. . .
.
.
.

· · · 0 t 2t cos
(

2π
φ

φ0
(q+ 1/2)− kya

)

 . (6)

Now we have to apply the Bloch condition to the
wavefunctions ψ(ma + q − 1) = eikxqaψ(ma − 1), through
which we determine the topmost right-hand side and the
bottommost left-hand side of the matrix Am. Let us start
with the bottommost entries Am(2q − 1, 1), Am(2q − 1, 2),
Am(2q, 1) and Am(2q, 2), which represent the interactions of
A(ma+q−1) with A(ma) and B(mb), and B(mb+q−1) with
A(ma) and B(mb), since we have to have q elements in each
row and column. Thus,

Am(2q− 1, 1) = 0 · eikxqa, Am(2q− 1, 2) = 0 · eikxqa,

Am(2q, 1) = teikxqa, Am(2q, 2) = 0 · eikxqa.

The eigenvalues of the Am give the energy as a function of
flux which is a real physical observable, so Am is Hermitian,

Table 1. The scheme for the interactions between the atoms.

Atom label
First N N
interactions

Second NN
interactions

Atom A B, D C
Atom B A, C D
Atom C B, D A
Atom D A, C B

i.e. Am(i, j) = A∗m(j, i), and we obtain the resulting Am:

Am =



2t cos
(

2π
φ

φ0
− kya

)
t 0

t 2t cos
(

2π
φ

φ0
(1+ 1/2)− kya

)
t

0 t 2t cos
(

4π
φ

φ0
− kya

)
.
.
.

.

.

.

.
.
.

teikxqa 0 0

0 0 · · · te−ikxqa

0 0 · · · 0

t 0 · · · 0

. . .
. . .

. . .
.
.
.

· · · 0 t 2t cos
(

2π
φ

φ0
(q+ 1/2)− kya

)

 . (7)

This scheme for the generation of the Am matrix can be viewed
via figure 3, which is suitable for our case of an enlarged
unit cell aligned horizontally. The rows and the columns are
reserved for the atoms of the corresponding labels. The entries
of the Am matrix correspond to the interactions of the atoms
denoted by the labels and indices of the interacting atoms.

2.2.2. Rectangular unit cell aligned vertically. If we have
a similar geometric alignment to that seen in figure 1(c), we
can easily generate the Am matrix by following the same steps
as we did for figure 1(b). The only things we should know

additionally are the phase factors. We have te
π
φ
φ0
−kya

terms in
addition to the tight-binding terms between the atom A(ma)

and atoms B(mb), and also between the atom B(mb) and atoms
A(ma). Differently from the previous example, here we have a
4q×4q Am matrix because of the periodicity of the exponential
factor with 2q, and we have two different types of atom,

Am =



0 2t cos
(
π
φ

φ0
− kya

)
t

2t cos
(
π
φ

φ0
− kya

)
0 0

t 0 0

0 t 2t cos
(

2π
φ

φ0
− kya

)
teikx2qa

.

.

.
. . .

0 teikx2qa 0

0 · · · te−ikx2qa 0

t 0 · · · te−ikx2qa

2t cos
(

2π
φ

φ0
− kya

)
0 · · · 0

0 0 · · · 0

. . .
. . .

. . .
.
.
.

· · · t 2t cos
(

4qπ
φ

φ0
− kya

)
0


. (8)
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Figure 3. The organization scheme for the Am matrix shown for
two kinds of atom in the unit cell.

2.2.3. A more general example: a square lattice of four atoms
in the unit cell with second nearest neighbor interactions.
Now, suppose that we have a square lattice in which we have
four different atoms oriented as shown in figure 1(d). For this
case, since we have four different atoms, we have the wave
vectors as

9(m) =


ϕ(ma)

ϕ(mb)

ϕ(mc)

ϕ(md)

 ,
and we also have a 4 × 4 block Hamiltonian

H =


HAA HAB HAC HAD

HBA HBB HBC HBD

HCA HCB HCC HCD

HDA HDB HDC HDD

 .
If we consider both the first and the second nearest neighbor
interactions, we have the interaction scheme shown in table 1.
For example, atom A will have first order interactions with
two atoms labeled by B and two atoms labeled by D, and
also it will have second order interactions with four atoms
all labeled by C. We have the phase factors due to the
magnetic field through the interactions which align in the y
direction as well as the ones which have a non-zero y direction
component. As result, speaking in terms of the atom A(ma),
we will have 2 cos(π φ

φ0
ma−kya)= θ(AD1) for the interaction

with D atoms, 2 cos(π φ
φ0
(ma − 1/4) − kya) = θ(AC2) for

the interaction with the atoms labeled by C(mc − 1) and
2 cos(π φ

φ0
(ma + 1/4)− kya) = θ(AC1) due to the interaction

with the atoms labeled by C(mc). In addition, let us denote
the second order tight-binding interaction coefficient as t′.
After incorporating the Bloch condition, and calculating the
magnetic phase factors for the rest of the atoms, we can write

the Am matrix

Am =



0 t t′θ(AC1) tθ(AD1) 0

t 0 tθ(BC1) t′θ(BD1) t

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 0

t′θ(CA1)e
ikx2qa 0 0 teikx2qa 0

0 0 0 0 · · ·

0 · · · 0 0 te−ikx2qa t′θ(AC2)e
−ikx2qa

0 · · · 0 t′θ(BD2) 0 0

· · · 0 · · ·

.

.

.

.

.

.

· · · 0 · · ·

· · ·

. . .
. . .

.

.

.

.

.

.

t′θ(BD2) tθ(DA1) t′θ(DB1) t 0


. (9)

2.3. Square lattice with nine atoms in the basis

With the scheme outlined above, we can expand our unit
cell as needed. We use an enlarged unit cell composed of
nine atoms to model impurities or vacancies, corresponding
to a point defect concentration of 1/9 ' 11%. We label the
atoms with the letters ‘A, B, . . ., E, . . ., H, I’. We pick the
fifth one with label ‘E’ and treat it as a vacancy or impurity
by modifying its hopping constants. We leave the remaining
atoms with the usual square lattice first order hopping constant
t = 1.0, and the second order hopping constant is set to 0.05
which is almost of the same order as the second nearest
neighbor calculations made by Hatsugai and Kohmoto [47].

Similarly to the density functional theory which is also
used to model doped systems or systems with imperfections,
we use a periodic unit cell to model the system [48]. As
a result of that, any change in the unit cell repeats itself
periodically. In real condensed matter samples the distribution
of impurities is random. The model we use is not realistic in
that sense, in that the imperfections are regularly distributed.
However, as long as the states localized at the imperfections
are confined to a region which is smaller than our enlarged
unit cell, our method should be sufficient to describe their
effects. Moreover, for the cold atom experiments, it is possible
to design arbitrary lattices. From this paper, it is not unrealistic
to have a square lattice with periodic imperfections. The
position of the impurity atom in the enlarged unit cell does not
cause any changes since the system is infinite and the enlarged
unit cell repeats itself periodically through all directions.

Due to the change in the magnetic phase factors, our
system is now 3q periodic, and since we have nine atoms
in the basis, the resulting Am matrix has the dimension of
27q× 27q. The magnetic unit cell for the corresponding case
is given in figure 4. The magnetic unit cell is the combination
of enlarged unit cells arranged horizontally due to the chosen
Landau gauge, i.e. EA = (0,Bx, 0). In the magnetic unit cell
each of nine atoms defined by labels ‘A, B, . . ., E, . . ., H, I’
inside the enlarged unit cell is connected to 3q atoms. The first
enlarged unit cell atoms have the labels ‘A1, B1, . . ., E1, . . .,
H1, I1’ while the last enlarged unit cell atoms are labeled by
‘A3q, B3q, . . ., E3q, . . ., H3q, I3q’. Due to periodicity, the
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Figure 4. The magnetic unit cell of the square lattice with nine
atoms in the basis of the unit cell and 27q atoms in the basis of the
magnetic unit cell. The encircled atoms with label ‘E’ are treated as
impurities or vacancies.

last atoms labeled with 3q + 1 are identical with the ones in
the first enlarged unit cell, apart from a certain phase factor
which is the Bloch condition. With a procedure similar to that
performed in section 2.2.3, we easily generate the Am matrix,
with or without the next nearest neighbor hopping. We alter
the hopping constant of the interactions involving the atom
labeled ‘E’ in the Am matrix. The eigenvalues of the Am matrix
for all the k-points in the magnetic Brillouin zone as a function
of α = φ/φ0 give the Hofstadter butterfly in the presence of
the point defects.

3. Results and discussion

3.1. Electronic spectrum: Hofstadter butterfly

We follow the procedure that we described in section 2.2
for the modeling of an impurity or a vacancy located on a
lattice point (substitutional position) of the square lattice. The
unit cell as well as the magnetic unit cell can be viewed in
figure 4. In this figure, an atom treated as an impurity or
a vacancy is labeled with ‘E’. As a first step, we consider
only the first nearest neighbor interactions. We call the nearest
neighbor hopping constant for atom ‘E’ tE, again measured in
units of t. We alter this parameter tE in the range from 1.5
to 0.001 for the impurity cases, while we obtain the vacancy
case for tE = 0. Note that we get the pure case when tE = 1.0,
corresponding to the case where all the atoms are the same.
The impurity or the vacancy case replacing one atom out of
nine atoms corresponds to a defect concentration of the order
of 11%.

After diagonalizing the Am matrix we get the energy
eigenvalues as a function of α = φ/φ0. The Hofstadter
butterflies for selected values of the parameter tE are plotted
in figure 5. The range of α defined as the flux per enlarged
unit cell is set from 0 to 18, in accordance with the results
where we include the second order interactions. As displayed
in figure 6 for the latter case, there is an extra envelope like
periodicity within the butterflies. The pure case with tE = 1.0
labeled by (f) is the same spectrum as that plotted for a
single atom in figure 2. The only difference between these
two plots is the periodicity in α because α in our notation
is the magnetic flux per enlarged unit cell. In both of the
spectra, there is a zero energy band which divides up the graph

horizontally into two identical parts. This is a consequence
of the bipartite symmetry of the square lattice. When we
set tE = 0.75, we see a different spectrum with new gaps
and bands formed as shown in figure 5(d). For the case
where we reduce tE to 0.50, we see the emergence of dome
shaped gaps around α = 4.5 and 13.5 with energy values of
± 0.8 as plotted in figure 5(c). Within these gaps, the Hall

conductance is zero as discussed in section 3.2. A sequence
of bands are formed between the dome shaped gaps which
are symmetric about E = 0. These bands are clearly related to
states localized around the impurity. As we continue to reduce
tE, i.e. tE = 0.25 shown in figure 5(b), we see that these gaps
become more elliptic compared to figure 5(c). We also note
that the ‘impurity bands’ between the domes approach the
horizontal energy line E = 0. One limit of the impurity case
is the vacancy, where tE = 0, and its spectrum displayed in
figure 5(a) shows elliptic gaps around E = 0. Moreover, the
‘impurity bands’ now collapse to the E = 0 line, signifying
that the impurity is decoupled from the rest of the system.
In the opposite limit we also consider the impurity with
a stronger hopping constant. We examine this situation for
tE = 1.50 and display the corresponding Hofstadter butterfly
in figure 5(f). For this strongly coupled impurity, the spectrum
is modified near the maximum and minimum energy values.
Hence, the bands due to the impurity states appear near E =
±4 as clearly seen in figure 5(f). The low energy structure
(E ∼ 0) remains mostly unmodified by the presence of the
strongly coupled impurity.

The effect of the second nearest neighbor interactions
on the Hofstadter butterfly was thoroughly examined in [47].
Inclusion of the next nearest neighbor interactions is
important for two reasons. First they would be present in a
solid state system and also in a cold atom system as long as the
optical lattice is not too deep. Second, even if they are weak,
such interactions break the bipartite symmetry of the lattice.
As a result the spectrum is no longer symmetric about E = 0.
Thus, by including the next nearest neighbor interactions,
we make sure that the results for our impurities are robust
with respect to the breaking of the bipartite symmetry. As
we introduce second order hoppings, the butterfly loses its
mirror symmetry around the α = 4.5 and 13.5 lines. The
gaps and bands gain positive (negative) shifts for α > 4.5
(α < 4.5). This shift is reversed near the α = 13.5 line.
As a result of the self-similar structure of the butterfly,
similar shifts appear at other principal rational fractions with
even denominators. In addition to this, the spectrum gains a
new envelope like periodicity. In order to display this new
periodicity, we plotted our butterflies as a function of α from
0 to 18. The corresponding spectra for different impurity
cases are presented in figure 6. While the widths of gaps
and bands change, there is no qualitative difference in the
number and location of the gaps when compared to figure 5.
Most importantly, the dome shaped gaps and impurity bands
observed with only first order interactions are robust with
respect to second order hopping. These structures are shifted
in accordance with the general spectrum, nonetheless their
general properties remain unaltered.

The impurity states result in new gaps and bands in the
Hofstadter butterfly. In the energy spectra they are responsible
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Figure 5. Energy (in units of ‘t’) versus α = p/q = φ/φ0 defined as the flux per enlarged unit cell, results in the Hofstadter butterflies for
the following cases: (a) ‘E’ is a vacancy with tE = 0.0; (b) ‘E’ is an impurity with tE = 0.25; (c) ‘E’ is an impurity with tE = 0.50; (d) ‘E’ is
an impurity with tE = 0.75; (e) all of the atoms are the same with tE = 1.00; (f) ‘E’ is an impurity with tE = 1.50.

Figure 6. Energy (in units of ‘t’) versus α = p/q = φ/φ0 defined as the flux per enlarged unit cell, results in the Hofstadter butterflies.
Both the first and the second nearest neighbor interactions are considered, for the following impurity and vacancy cases: (a) ‘E’ is a vacancy
with tE = 0.0 and ttE = 0.0; (b) ‘E’ is an impurity with tE = 0.25 and ttE = 0.025; (c) ‘E’ is an impurity with tE = 0.50 and ttE = 0.025;
(d) ‘E’ is an impurity with tE = 0.75 and ttE = 0.025; (e) all of the atoms are the same with tE = t = 1.00 and ttE = tt = 0.05; (f) ‘E’ is an
impurity with tE = 1.50 and ttE = 0.075.

for new self-similar structures near the E = 0 line or at the
extrema regions of the spectra depending on their hopping
strength. This self-similar structure with such well defined
gaps and bands is due to the periodic arrangement of the
imperfections. This periodicity originates from the limitations

of our tight-binding method. However, in a real sample in
which the imperfections are distributed within the system
randomly, the regions in the Hofstadter butterfly modified
by these states will still exist. We believe that they will
lose their self-similar structure, and the gaps will be blurred
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Figure 7. Hall conductivities (in units of e2/h) as a function of the Fermi energy (in units of ‘t’) with the first order interactions where α is
set to p/q = 13/3: (a) ‘E’ is an impurity with tE = 0.001; (b) ‘E’ is an impurity with tE = 0.25; (c) all of the atoms are the same with
tE = t = 1.00; the inset shows a zoom in of the region of the spectrum enclosed by a rectangle; (d) ‘E’ is an impurity with tE = 1.50.

due to the random arrangement. The scaling theory of
conduction of course predicts that randomness causes all
states to be localized in two dimensions due to Anderson
localization [50]. However, in usual cold atom experiments
the predicted localization length is much larger than the
system size. Thus, our method remains a good description of
impurity states for these experiments.

3.2. Hall conductance

In solid state experiments, it is now a standard method to
measure the Hall conductance by a four terminal strip. In a
cold atom setting, in general, such methods are unavailable as
there is no way to make contacts to the cold atom system. One
way to overcome this difficulty is to make a scattering type
of measurement by letting the cold atom cloud oscillate in a
shallow external trap [51]. However, as far as the quantized
Hall conductances are concerned, it has been shown that
measuring the response of the density of the system to the
external magnetic field yields a direct measurement of the
Hall conductance by virtue of the Streda formula [52]. Thus,
in both cases the effects of impurities on the conductance
should be experimentally accessible. Hence, it is important
to calculate the Hall conductance in an impure system to
understand these experiments.

The Hall conductance of the square lattice over all energy
values whose range is given by the Hofstadter butterfly can be
calculated by using the Kubo formula [2] for a single value of
φ/φ0 = p/q,

σxy =
e2

A0h̄

∑
Eα<Ef

∑
Eβ>Ef

×
(∂Ĥ/∂k1)αβ(∂Ĥ/∂k2)βα − (∂Ĥ/∂k2)αβ(∂Ĥ/∂k1)βα

(Eα − Eβ)2
,

(10)

where the velocity operators are defined as the partial
derivatives of the Hamiltonian with respect to the wave
vectors. In addition to two summations for the energy
eigenvalues smaller than and greater than the fixed Fermi
energy respectively, there is another implied summation
over the whole magnetic Brillouin zone. Although the Hall
conductance in a gap for a pure system can be calculated via
the Diophantine equation which results in the famous TKNN
integers [2], in the impurity case the calculation does not
simplify to a Diophantine equation. Therefore we calculate
the Hall conductance explicitly through the Kubo formula,
equation (10). When the Fermi energy lies within a gap, we
find that the Hall conductance is an integer multiple of e2/h,
verifying our numerical procedure. The Kubo formula also
allows us to calculate the Hall conductance even when Fermi
energy lies within a band.

The sweeping of the Fermi energy is an indirect
representation of the potential difference that should be
present in the system in order to observe a non-zero
conduction. A similar procedure has been carried out for
triangular and Kagomé lattices under the influence of a
staggered magnetic field, and also for a square lattice with
multiorbital interactions [32, 33].

The Hall conductances for various impurity cases are
displayed as a set in figure 7. These graphs show the Hall
conductances in units of e2/h, as a function of the Fermi
energy for the single value of α = φ/φ0 = p/q = 13/3
calculated as above. Again we have the pure case with
tE = t = 1.0 labeled by (c), in which we see the usual
step like quantized integer Hall conductance. It is symmetric
around the Fermi energy EFermi = 0, and we observe a
successive integer sequence of conductance in agreement with
the Diophantine equation of the Hofstadter butterfly. When
we look at the conductance spectrum in (b), where tE is set to
tE = 0.25, we see a deformed conductance; however, we can
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Figure 8. |ψ |2 plots of the localized state wavefunction as a function of the atomic positions of the atoms whose labels are within the
boundaries of the magnetic unit cell. The first plot is for the atom ‘E’ which is close to being a vacancy, i.e. tE = 0.005. The Dirac delta like
shaped peaks correspond to the positions of the atom ‘E’. Since q = 3, there are nine atoms with label ‘E’ in the magnetic unit cell. The
second one has tE = 0.50. As the hopping constant increases, the wavefunction expands more among the other atoms.

see the constant conduction Hall plateaus around EFermi = 0.
We observe new Hall plateaus with Hall conductance σxy = 0
centered at EFermi = ±0.5 which are within the dome shaped
gaps discussed in the Hofstadter spectrum. For the case of
tE = 0.001, figure 7(a), we see that the ±e2/h conductance
plateaus for EFermi = ±0.5 are narrowed down as the dome
shapes become more elliptic. Under these circumstances, a
vacancy or an impurity with a smaller hopping constant in
the unit cell bears new states that are highly localized on the
defect atom. These localized states cannot contribute to the
conduction significantly. By setting the hopping parameter of
the atom ‘E’ to a value smaller than the rest of the atoms in
the unit cell, we are disabling (or blocking for the vacancy
case) the hopping of the electrons through this defect atom.
The norm of representative wavefunctions of E = 0 energy is
plotted through a cut through the magnetic unit cell in figure 8.
The two plots for tE = 0.005 and tE = 0.50 demonstrate the
localization of the impurity states as tE is decreased. We see
that the wavefunctions are highly localized on the point defect.
When the impurity is strongly coupled, i.e. tE = 1.50, the
main change in the spectrum is observed near the extremal
energies due to the presence of new gaps. These impurity
gaps have Hall conductance ±e2/h as shown in figure 7(d).
We can infer that an impurity atom with higher hopping
constant interacts more with the neighboring atoms creating
a delocalized impurity state as a result of which new constant
conductance Hall plateaus are created.

The Hall conductances for different impurity scenarios
in the presence of next nearest neighbor interactions are
given in figure 9. The Hall conductance spectra are no longer
symmetric around EFermi = 0, as the bipartite symmetry is
broken. The widths of the gaps are now changed, when we
look at the energy spectrum along a vertical line which has
α = p/q = 13/3. Second order interactions do not change the
nature of the impurity states. They are highly localized and
do not contribute significantly to the conductance. Similarly,
for an impurity atom with a high hopping constant, the new
conduction plateaus with conductance ±e2/h are also robust
with respect to the next nearest neighbor hopping. When
the magnetic bands of the Hofstadter butterfly are extremely

narrow, our direct calculation through the Kubo formula
requires extremely fine k-point meshing. Thus, in regions with
many small gaps, our results show scattered values for the
conduction. However, such fine meshes are not required for
the calculation of the conduction within large gaps or for
impurity states.

4. Conclusions

The effects of point defects for a square lattice under a
magnetic field were investigated. We examined the changes
in both the Hofstadter butterfly spectrum and the Hall
conductance in detail, considering the first and second order
interactions. In order to work with reasonable concentrations
of imperfections, we enlarged our unit cell. We proposed a
method which provides efficient construction of the Am matrix
through the unit cell geometry. Within our enlarged unit cell,
we labeled one of the atoms as an impurity or vacancy, by
tuning the hopping constant of that atom to its neighbors.
We calculated the energy eigenvalues forming the Hofstadter
butterflies, through which we could inspect the effect of these
imperfections on the energy spectrum. We also calculated the
Hall conductances for different cases of hopping constants,
by using the Kubo formalism. For the impurity case, we
investigated two different regimes for the hopping constant
of the defect atom. The first one was the smaller hopping
constant regime, which creates new gaps and bands near the
E = 0 line of the Hofstadter butterfly. The states which are
responsible for these new formations are highly localized and
within the newly created gaps the Hall conductance is zero.
The second regime was the high hopping constant regime;
again the energy spectrum is modified through the creation
of new gaps and bands. However, for this case, the impurity
atom brings out new Hall plateaus near the extremal energies
of the spectrum. We also concluded that the high order
interactions, while breaking the symmetry of the butterfly, do
not qualitatively change the properties of the impurity states
or bands and gaps associated with them.
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Figure 9. Hall conductivities (in units of e2/h) as a function of the Fermi energy (in units of ‘t’) with second order interactions where α is
set to p/q = 13/3: (a) ‘E’ is a vacancy with tE = 0.0 and ttE = 0.0; (b) ‘E’ is an impurity with tE = 0.25 and ttE = 0.025; (c) ‘E’ is an
impurity with tE = 0.50 and ttE = 0.025; (d) all of the atoms are the same with tE = t = 1.00 and ttE = tt = 0.050; the inset shows a zoom
in of the region of the spectrum enclosed by a rectangle; (e) ‘E’ is an impurity with tE = 1.50 and ttE = 0.075.
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