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Abstract
We consider the human localization problem using body-worn inertial/magnetic sensor units.
Inertial sensors are characterized by a drift error caused by the integration of their rate output
to obtain position information. Because of this drift, the position and orientation data obtained
from inertial sensors are reliable over only short periods of time. Therefore, position updates
from externally referenced sensors are essential. However, if the map of the environment is
known, the activity context of the user can provide information about his position. In
particular, the switches in the activity context correspond to discrete locations on the map. By
performing localization simultaneously with activity recognition, we detect the activity context
switches and use the corresponding position information as position updates in a localization
filter. The localization filter also involves a smoother that combines the two estimates obtained
by running the zero-velocity update algorithm both forward and backward in time. We
performed experiments with eight subjects in indoor and outdoor environments involving
walking, turning and standing activities. Using a spatial error criterion, we show that the
position errors can be decreased by about 85% on the average. We also present the results of
two 3D experiments performed in realistic indoor environments and demonstrate that it is
possible to achieve over 90% error reduction in position by performing localization
simultaneously with activity recognition.

Keywords: inertial sensing, wearable computing, pedestrian dead reckoning, human
localization, human activity recognition

(Some figures may appear in colour only in the online journal)

1. Introduction

Dead reckoning is the process of estimating the current
position of a moving entity using the position estimate
(or fix) calculated at previous time instants and the velocity (or
speed) estimate at the current time instant. It can also be used
to predict the future position by projecting the current known
position and speed to a future instant [1]. Since the past position
estimates are projected through time to obtain new estimates in
dead reckoning, position errors accumulate over time. Because
of this cumulative error propagation, dead-reckoning estimates
are unreliable if calculated over long periods of time. Hence,
dead reckoning is seldom used alone in practice and is often

1 Present address: Department of Computer Science, University of British
Columbia, Vancouver, BC, Canada.

combined with other types of position sensing to improve
position accuracy.

Historically, dead reckoning has been used in ship
navigation for centuries. Reference [1] explains its use in ship
navigation in detail. It has been used in air navigation since
the beginning of 1900s; a thorough survey appears in [2, 3].
A survey on the positioning and navigation methods for
vehicles appears in [4]. Dead reckoning is employed in mobile
robotics through the use of odometry [5] and/or inertial
navigation systems (INSs).

INSs [6] can be used for both indoor and outdoor
positioning and navigation. Fundamentally, gyroscopes
provide angular rate information and accelerometers provide
velocity rate information. Although the rate information is
reliable over long periods of time, it must be integrated to
provide position, orientation and velocity estimates. Thus,
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Figure 1. Strap-down INS integration.

even very small errors in the rate information provided by
inertial sensors cause unbounded growth in the error of the
integrated measurements. As a consequence, an INS by itself
is characterized by position errors that grow with time and
distance, usually referred to as the ‘drift error.’ One way
of overcoming this problem is to periodically reset inertial
sensors with external absolute sensing mechanisms and to
eliminate this accumulated error. Thus, in most cases, data
from an INS must be integrated with absolute location-sensing
mechanisms to provide useful information about position.

An inertial measurement unit (IMU) consists of
orthogonally mounted accelerometers and gyroscopes in three
spatial directions. If the IMU is directly mounted on the
moving object, the system is called a strap-down INS [6].
The IMU provides three acceleration and three angular
velocity (or angular rate) outputs in the object coordinate
frame. A basic block diagram of a strap-down INS is given
in figure 1. To estimate the orientation (or attitude) of the
moving object, the gyroscope outputs should be integrated.
Then, using the estimated orientation, accelerometer outputs
should be transformed to the Earth coordinate frame. The
acceleration values in the Earth coordinate frame are integrated
twice to get the position. Because of the integration operations
involved in the position calculation, any error in the sensor
outputs accumulates in the position output, causing a rapid
drift in both the gyroscope and accelerometer outputs. Thus,
the reliability of position estimates decreases with time. For
example, a constant bias in the gyroscope will cause an error
in the position that grows proportional to the cube of time,
and a constant bias in the accelerometer will cause an error
that grows proportional to the square of time [7]. For this
reason, inertial sensors are usually used in conjunction with
other sensing systems that provide absolute external reference
information.

One application of INSs is in pedestrian dead reckoning
(PDR). PDR systems are generally used in GPS-denied
environments such as inside buildings, tunnels, underground
or dense forests and around tall buildings in urban areas where
GPS data are not accurate or always available. References [8]
and [9] provide brief surveys on PDR systems. Such systems
are usually developed for security personnel and emergency
responders [10]. Unlike land vehicles and robots, a method
called ‘zero velocity update’ (ZUPT) enables the stand-alone
usage of INSs on pedestrians, without any external reference
sensor. The ZUPT method exploits the fact that during walking,
the velocity of the foot is zero at some time interval during
the stance phase (see section 3.1). If this time interval
is correctly detected, the drift in the velocities calculated
in strap-down integration can be reset to zero and the drift in

one step will not be carried over to the next step. As an
alternative, instead of directly resetting the velocities to zero,
this information can be used as a measurement in a Kalman
filter [11, 12]. In [10], the ZUPT method is used to estimate the
distance travelled and a high-grade gyroscope is employed to
estimate the orientation. Alternative methods for orientation
estimation also exist in the literature. In [13], a Kalman
filter is used to estimate the orientation. Accelerometers
and magnetometers can also be used interchangeably with
gyroscopes depending on whether the body is in motion or
not [14]. Another approach is to use the orientation output
of a commercially available sensor module that integrates
accelerometer, gyroscope and magnetometer measurements
[15]. An extensive survey on orientation estimation
methods using body-worn sensors appears in [16]. Heuristic
methods that exploit the usual walking patterns of people can
also be applied for drift reduction [17] and elimination [18] in
gyroscopes.

In order to apply the ZUPT method, correct detection of
gait events such as the stepping instants and correct estimation
of gait parameters such as stride length are crucial for many
PDR systems. This detection can be performed using only
inertial sensors as in [19]. Zero-velocity detection algorithms
using inertial sensors are compared in [20, 21]. In [22], an
external pressure sensor is used to detect the steps. It is also
possible to perform activity recognition with inertial sensors
to detect the stepping instants and estimate the stride length
[23, 24].

Integrating external reference sensors with PDR systems
is also common in the literature. In [13, 25], a shoe-mounted
inertial/magnetic system is used together with a quaternion-
based extended Kalman filter (EKF) to estimate the 3D path
travelled by a walking person. Magnetic sensors are used
in the initialization of the EKF. Reference [26] combines
dead reckoning with GPS in outdoor environments. For
indoor environments, WiFi fingerprinting method is used
for localization. Reference [27] uses the GPS data for error
correction. The pedestrian trajectory is estimated using a PDR
system and a wireless sensor network in [8].

Another alternative for integrating external references is
map matching. If a map of the environment is available, this
information can be used to provide drift error correction. In
[28], this idea is applied in an outdoor environment, combined
with a heuristic drift elimination procedure described in [18].
In indoor environments, activity-based map matching can be
used [24]. This idea exploits the fact that the activity context
of the pedestrian gives information about his location. For
example, if the pedestrian is ascending stairs, most locations
on an indoor map can be ruled out, improving the position
estimate. Here, we follow a similar approach.
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In this study, we perform pedestrian localization using
five inertial and magnetic sensor units worn on the body
[29]. Localization is performed simultaneously with activity
recognition, where activity recognition cues are used in the
position updates to correct the drift errors of inertial sensors.
Apart from being inherent in inertial sensors, drift errors
and offsets in body-worn systems can also arise from initial
misplacement, occasional slips from the initial position and
orientation during operation, or loose mounting on the body.
Even though the initial errors are expected to be small, they
are accumulated and result in larger errors over long periods
of time. To the best of our knowledge, these issues have not
been addressed before in the literature. We demonstrate that
using a given map of the environment and activity recognition
cues, these errors can be reduced considerably and accurate
localization can be achieved without having to use any external
reference sensor. In practice, the proposed method can be used
in applications where a map is available and GPS data are not
reliable or not available at all (e.g., underground mines, indoor
areas and urban outdoor areas with tall buildings). We note
that although here we use activity recognition information
to improve localization performance, the converse is also
possible, i.e. localization information and a map can improve
the activity recognition performance. However, in our previous
studies, since we have observed that activity recognition with
high accuracy can already be achieved using proper signal
processing and pattern recognition techniques [30], we focus
on only one side of the loop in this paper. In a very recent study,
activity recognition and body pose estimation are combined in
a very similar way [31].

We have performed experiments in both 2D and 3D
environments. In the 2D experiments, walking, standing
and turning activities are considered. In 3D localization
experiments, ascending/descending stairs activity is added to
these activities. We assume that a map of the environment
is available and that the switches between these activities
usually correspond to multiple locations on the map. For
example, in an indoor environment, switching from walking
to turning activity might correspond to the end of a corridor
or to the front of a room, whereas switching from walking
to standing activity might correspond to a location in front
of a lift. Therefore, activity switches usually correspond to
several discrete locations in the environment. If one can
detect the activity switches correctly, it is possible to use the
corresponding position information in order to correct the drift
in the position.

The rest of this paper is organized as follows: in section 2,
we describe the sensors used in this study. Section 3 explains
the theoretical background of the applied methods. Sections 4
and 5 present the results of 2D and 3D experiments,
respectively. We provide a discussion of the results, limitations
of the proposed method and related issues in section 6 and
conclude with section 7, providing some future research
directions.

2. Inertial/magnetic sensing equipment

In this study, we use five MTx three-degree-of-freedom
(3-DOF) orientation trackers (figure 2), manufactured by

Figure 2. MTx 3-DOF orientation tracker
(reprinted from http://www.xsens.com/en/general/mtx).

Xsens Technologies [32]. Each MTx unit has a tri-axial
accelerometer, a tri-axial gyroscope and a tri-axial
magnetometer so that the sensor units acquire 3D acceleration,
rate of turn and the strength of the Earth’s magnetic field.
Accelerometers of two of the MTx trackers can sense in the
range ±50 m s−2 (standard range) and the other three can sense
in the range of ±180 m s−2 (customized range). All gyroscopes
in the MTx units can sense in the range of ±1200◦ s−1 angular
velocities; magnetometers can sense magnetic fields in the
range of ±75 μT. Additionally, each sensor unit has a built-in
Kalman filter that outputs the orientation of the sensor with
respect to a global coordinate frame (see section 3.1). Three
orientation output modes can be used for the output: direction
cosine matrix, quaternion and Euler angles. In this study, we
use the quaternion output mode.

The sensors are placed on five different positions on the
subject’s body as shown in figure 3. Two of the customized
sensor units are placed on the feet, the remaining customized
unit is placed on the subject’s chest and the standard units are
placed on the sides of the knees (the right side of the right
knee and the left side of the left knee). The customized units
are used on the feet to avoid saturation in the sensor outputs,
because feet accelerations are expected to be larger than knee
accelerations (up to ±90 m s−2 in our experiments). The sensor
units on the feet and chest are used to estimate the distance
travelled and the heading, respectively. The sensor units on the
legs are not used in the localization process; they are used for
activity recognition in the 3D experiments.

3. Methodology

In the following, we refer to several different coordinate
frames, which are the global coordinate frame, local navigation
coordinate frames and the sensor coordinate frames (figure 4).
There is a single global coordinate frame. In the default
configuration of this coordinate frame, the z axis points upward
along the vertical (opposite to the direction of the gravity
vector g), the x axis points towards the magnetic north and the y
axis points to the west, completing the right-handed coordinate
frame (figure 4(a)). The local navigation coordinate frames are
translated versions of the global frame to the position of each
sensor unit, and therefore, in the default case, also have their
z axes pointing upwards along the vertical, x axes pointing in
the magnetic north direction and y axes pointing to the west.
In other words, there is a single global coordinate frame but
five local navigation coordinate frames, one for each sensor
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Figure 3. The locations of the sensor units on the body. (The outline
of the human body is taken from
http://www.anatomyacts.co.uk/learning/primary/Montage.htm.)

unit. The axes of the local navigation coordinate frames always
remain parallel to the axes of the global coordinate frame but
their origins are shifted to the locations of the sensor units.
The sensor coordinate frames also have their origins at the
positions of the sensor units but their three axes have arbitrary
orientation initially, as shown in figure 4(a).

As stated above, the MTx units provide raw acceleration,
angular velocity and magnetic field data, in addition to the
orientation data that are calculated by the built-in Kalman
filter. In this section, the steps used for processing these data
are explained. The processing is done in two separate tracks,

one of which is for localization and the other is for activity
recognition.

3.1. Localization

The processing for localization is done in two main steps. In
the first step, the trajectories are found using the ZUPT method,
mentioned in section 1. In the second step, a Kalman filter-like
state estimation procedure is employed to utilize the activity
recognition cues and improve the results.

We perform the regular strap-down integration procedure,
using the orientation data output from the MTx sensor and
ZUPTs. A block diagram that summarizes this procedure is
depicted in figure 5. As shown in the diagram, calculations
for the distance travelled and the heading are performed
separately. To estimate the heading, it is possible to use the
orientation output of the MTx unit either on the chest or on the
feet. We use the chest sensor output because during walking,
the chest is a relatively stable reference to measure the person’s
heading as opposed to the feet. That is, the signals recorded
on the chest are less oscillatory than the signals acquired
from other locations. The quaternion output mode is used for
orientation to avoid the occurrence of any singularities possible
in the Euler angle mode, even though this is unlikely for the
chest. At the beginning of the experiments, a reset operation is
performed on the coordinate frames such that the yaw angle is
initially set to zero and is measured with respect to the vertical
axis during the motion (see section 4.1). Then, the orientation
data are converted to Euler angles (see, for example, [33]).
In the Euler angle domain, the yaw angle (ψ) represents the
instantaneous heading. Here, it is assumed that the left and
right turns performed during motion are about the vertical
axis.

To estimate the distance travelled, the sensor signals on
either foot can be used. First, using the orientation output of the
sensor unit, the accelerations are transformed from the sensor
coordinate frame to the local navigation coordinate frame. The
transformation can simply be performed as

aL = qLS aS q∗
LS = qLS aS qSL, (1)

where aL is the acceleration vector in the local navigation
frame, aS is the acceleration vector in the sensor coordinate
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Figure 5. Block diagram for the first processing step.

Figure 6. The human gait cycle
(figure from http://www.sms.mavt.ethz.ch/research/projects/prostheses/GaitCycle).

frame and qLS is the quaternion representing the orientation of
the sensor coordinate frame with respect to the local navigation
frame. To estimate the position from the acceleration signal,
the acceleration data must be integrated twice. Because of this
integration procedure, the errors in the sensor readings are
accumulated, causing unbounded drift in the position.

We use the ZUPT method [10] to reduce the drift in
position. When a person is walking, the motion of the leg
is quasiperiodic. The collection of these motions within one
period is called the gait cycle. The human gait cycle is roughly
divided into two phases called the stance phase and the swing
phase. The stance phase is defined as the time interval during
which the foot is in contact with the ground, and the swing
phase is the time interval during which the foot does not touch
the ground. Stance phase takes approximately 60% of the gait
cycle, as shown in figure 6. During a sub-interval �T of the
stance phase, the foot velocity and acceleration are expected to
be zero. Thus, the true values of the velocity and acceleration
are known. If one can successfully detect this sub-interval, the
sensor signals can be reset to zero and the drift error in one
step will not be carried over to the next step.

The problem is now converted to successfully detecting
the �T interval where the foot velocity is exactly zero. There
are a number of detectors used in the literature for this purpose:
acceleration moving variance detector, acceleration magnitude
detector and angular rate magnitude detector [20]. In a recent
study, an alternative detector was proposed that gives slightly
better results than the angular rate magnitude detector [20].
However, in most of the studies, the angular rate magnitude
detector outperforms the others. We use the angular rate
magnitude detector in this study because of its performance
and simplicity of implementation. Using the magnitude of

the angular velocity (rate), the following binary signal is
constructed:

Istep(k) =
{

1, |ω(k)| � �T

0, |ω(k)| > �T ,
(2)

where k is the time step, |ω(k)| = √
ωx(k)2 + ωy(k)2 + ωz(k)2

and �T is a pre-set threshold value. This signal is constructed
separately for the left foot and the right foot sensors. When
this signal is 1, the foot is assumed to be in the stance phase;
otherwise it is assumed to be in the swing phase. To eliminate
possible instantaneous 0-1-0 or 1-0-1 switches in this signal, a
median filter is used. Then, the velocities and accelerations are
set to zero when this signal is 1, and the integrations in the block
diagram in figure 5 are performed. Note that the integrations
on the plane and in the z direction are performed separately,
resulting in the signals d(k) and dz(k), which correspond to
the distance travelled on the x−y plane and the position on the
z axis, respectively.

Because of the slight movement of the chest during
walking, the heading signal contains ripples, as shown by the
blue-dashed line in figure 7(a). This signal can be smoothed
using the gait phase data obtained using the aforementioned
method. The Istep signal of the right foot is superimposed on
this plot in the green-solid line in the same figure. These data
are obtained in an experiment where the subject stands for
5 s, then starts walking along a straight line, then turns 90◦ to
the right at about t = 25 s and continues walking. As can be
observed in the figure, when a right step is taken (i.e. when
Istep = 0 for the right foot), the chest angle swings slightly to
the left, and vice versa. To remove the ripples, the mean of
the heading data between rising edges of the Istep signal can be
calculated and replaced as a corrected heading signal. This is
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Figure 7. (a) Original heading signal (blue-dashed line) and swing-stance phase indicator variable (green-solid line) superimposed;
(b) original heading signal (blue-dashed line) and corrected heading signal (red-solid line).

shown in figure 7(b). In this figure, the original heading data
are shown by the blue-dashed line and the corrected heading is
shown by the red-solid line. Obviously, this correction should
be made separately for either foot depending on which foot’s
data are used in evaluating d(k), using the Istep indicator for
that foot. In this case, the correction is made using the right
foot data. The corrected heading data are denoted as ψ(k) in
the rest of this text.

After determining d(k), dz(k) and ψ(k), the path can be
reconstructed using the simple state model given below:

x(k) = x(k − 1) + �d(k − 1) cos [ψ(k − 1)]

y(k) = y(k − 1) + �d(k − 1) sin [ψ(k − 1)] (3)

z(k) = z(k − 1) + �dz(k − 1),

with the initial conditions x(0), y(0) and z(0). Here, �d(k−1)

= d(k)−d(k−1) represents the distance travelled on the plane
and �dz(k−1) = dz(k)−dz(k−1) represents the displacement
in the z direction, during the kth time step.

By defining a state vector ξ(k) =
[x(k), y(k), z(k)]T and an input vector u(k) =
[�d(k) cos ψ(k), �d(k) sin ψ(k), �dz(k)]T , the equa-
tion becomes

ξ(k) = ξ(k − 1) + u(k − 1) (4)

with the initial condition ξ(0) = [x(0), y(0), z(0)]T . In the
2D experiments, we do not consider the z direction. That is,
dz(k) is not calculated and the state z(k) is deleted from the
state vector in these experiments.

The performance of the above model depends on the
performances of the distance and the heading estimation
methods. In our experiments, we observed that both have
errors, which causes the reconstructed path to drift over time.
This drift is naturally amplified as the length of the walking
path increases. The most dominant cause of error is the
dislocation of the mounted sensors during the experiments,
especially the heading sensor. For example, a slight dislocation
of the chest sensor causes a slight measurement error in
the heading that causes the path to drift drastically over

long periods of walking. This could be caused by attaching
the sensors to loose rather than tight clothing. Magnetic
disturbance caused by the ferromagnetic materials in the
environment is another source of error for the magnetometers
that directly affects the heading. Accelerometer data can be
used to estimate the inclination angle, but the only external
reference available for determining the heading is the magnetic
field data. Furthermore, the thresholds that we use are fixed
constants, i.e. they are not selected specifically for the
person wearing the sensors. Considering the age, height and
weight variations among people, such errors are unavoidable.
Therefore, we use cues obtained from activity recognition and
perform position updates when such cues are available, in order
to improve the results.

3.2. Activity recognition

In our earlier work [30], we demonstrated that it is possible to
distinguish between various activities using body-worn inertial
and magnetic sensors and provided an extensive comparison
between various classifiers. Simple Bayes classifiers with
Gaussian probability density functions are sufficient to obtain
over 95% correct classification rates if training data from that
specific person are available. However, if such training data are
not available to the classifiers, more complex classifiers such
as the k-nearest neighbour method (k-NN) or support vector
machines (SVM) can be utilized that have expected correct
classification rates of about 85%. The reader is referred to
[30, 34–36] for surveys of the literature on activity recognition
using body-worn sensors.

In our experiments in 2D, we consider a reduced activity
set, comprised of walking, standing and turning activities.
Since these three activities are quite different from each other,
using complex classifiers is not necessary. We use a rule-based
classifier for these three activities, in which the following rules
are applied in the given order:

(i) if the filtered heading value is above a certain threshold,
the activity is classified as turning;

(ii) if both feet are stationary, then the activity is classified as
standing;

6
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(iii) if the above conditions do not hold, then the activity is
classified as walking.

For the first rule, the heading signal is passed through a
first-order difference filter of length 1 s and thresholded. The
second rule is realized by performing an AND operation on
the Istep indicator variables (equation (2)) for the left and the
right feet.

For our 3D experiments, we introduce the ‘stairs’ activity
to the activity set that represents the activity state of the subject
while ascending or descending stairs. Distinguishing between
walking and stairs activities is not straightforward, and a
simple rule-based method like the one applied above cannot
be used in this case. Therefore, we use the k-NN classifier. The
data acquired in our previous work [30] are employed as the
training data for the classifier. From that article, we combine
the data of the activities walking in a parking lot (A9) and
walking on a treadmill (A10) to get the ‘walking’ class, and
data of ascending stairs (A5) and descending stairs (A6) to
get the ‘stairs’ class. We use the standing (A2) activity for the
‘standing’ class directly. To recognize these three activities,
we use the sensors on the right and the left legs, since they are
mounted at the same position as in that article. Therefore, the
data are expected to be similar. We calculate the running mean
and running variance values from the test data as features,
using a sliding window of length 5 s. This length is chosen
since the same length is also used in the training data for
feature extraction. We do not use magnetometer data, since
the accuracy of magnetometers is known to degrade in indoor
environments [16]. The k-NN classifier is used to distinguish
between walking, standing and stairs activities, whereas the
turning activity is recognized using the same rule as in the rule-
based method described above. Then, the switches between
activities and corresponding time values are determined and
used for position updates, as explained in the following section.

3.3. Simultaneous localization and activity recognition

In this section, we combine the localization results with
position updates simultaneously obtained from activity
recognition cues. We assume that a map of the environment
is available and some of the switches between recognized
activities correspond to multiple locations on the map, in
general. That is, knowledge of an activity switch provides
information about the possible positions on the map.

Suppose that, for a given map, a switch from activity A to
activity B can occur at NAB different points. The placeholders A
and B can stand for any activity in our activity set, i.e. walking
(W), standing (S), turning (T) or stairs (R). For example, a
walking-to-standing activity switch is denoted as WS and a
walking-to-stairs activity switch is denoted as WR. In the
following, the nth AB activity switch point is modelled as
a Gaussian random vector with mean μAB,n and covariance
PAB,n, where n = 1, . . . , NAB. The mean corresponds to the
coordinates of the expected location on the given map, and
the covariance models the uncertainty of the location.

In the previous section, we use the state equation (4) to
predict the position. To model the uncertainty in the position,
consider the state equation

ξ(k) = ξ(k − 1) + u(k − 1) + Rψ(k)w(k), (5)

with the initial condition ξ(0) modelled as a Gaussian random
vector with mean μξ(0) and covariance matrix Pξ(0). Note
that here ξ(k) is a random process and is different from the
deterministic state vector in equation (4). However, we use the
same notation for simplicity. The input u(k) is the same as in
equation (4). In equation (5), Rθ represents a rotation on the
plane by an arbitrary angle θ :

Rθ =
⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠ , (6)

and w(k) is the process noise modelled as a white Gaussian
noise with a diagonal covariance matrix Q. In equation (5),
the noise vector is rotated by ψ(k) at each time step k. This
way, the noise introduced to the system is modelled such that
it is uncorrelated (and independent, since it is Gaussian) in the
current heading direction and in the perpendicular direction
to the heading. If there were no rotation, the noise would be
uncorrelated in the global x and y directions, as long as the
covariance matrix Q is diagonal. We believe that introducing
this rotation matrix is a more realistic assumption for our
model than assuming the noise in the x and y directions as
being uncorrelated.

Suppose that an AB activity switch is detected and a
position update is performed at a previous time k = k1. Until
the next position update, equation (5) can be used to model the
position. The prediction equations using this forward model
are given as

ξ̂ f (k|k1) = ξ̂ f (k − 1|k1) + u(k − 1)

� f (k|k1) = R�ψ(k)� f (k − 1|k1)RT
�ψ(k) + Rψ(k)QRT

ψ(k) (7)

for k > k1, where the subscript f stands for the forward model
and �ψ(k) = ψ(k)−ψ(k−1). The initial conditions for these
prediction equations depend on the activity switch at k = k1.
They are given as ξ̂ f (k1|k1) = μAB,n and � f (k1|k1) = PAB,n,
where n is the index of the corresponding activity switch point
on the map. If no position update is performed up to time k, then
k1 = 0 and the initial conditions for the forward filter are the
initial conditions of the state model. That is, ξ̂ f (0|0) = μξ(0)

and � f (0|0) = Pξ(0).
When an activity switch from activity C to activity D (i.e.

a CD switch) is detected at k = k2, we run the same system
backwards in time, all the way back to the previous activity
switch AB and position update at k = k1. The backward filter
equations are

ξ̂b(k − 1|k2) = ξ̂b(k|k2) − u(k − 1)

�b(k − 1|k2) = R�ψ(k−1)�b(k|k2)RT
�ψ(k−1)

+ Rψ(k−1)QRT
ψ(k−1) (8)

for k1 < k � k2, where the subscript b stands for the
backward model and �ψ(k − 1) = ψ(k − 1) − ψ(k). The
initial conditions for these prediction equations again depend
on the current activity switch at k = k2, and are given by
ξ̂b(k2|k2) = μCD,n∗ and �b(k2|k2) = PCD,n∗ . The subscript n∗

indicates the predefined CD switch location on the map that is
the closest to the forward state estimate just before the position
update. More precisely,

n∗ = arg min
n

||ξ̂ f (k2|k1) − μCD,n||. (9)

7
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Figure 8. Optimal combination (blue-solid line) of the forward
(green-dash-dotted line) and backward (magenta-dashed line)
estimates. The thin red-solid line shows the true path.

At this point, for each k = k1 +1, . . . , k2 −1, we have two
estimates available for the position. The linear combination of
these two estimates with the minimum covariance is (see the
appendix)

ξ̂(k|k1, k2) = �(k|k1, k2)

× [� f (k|k1)
−1ξ̂ f (k|k1) + �b(k|k2)

−1ξ̂b(k|k2)], (10)

where �(k|k1, k2) = [� f (k|k1)
−1 + �b(k|k2)

−1]−1 is the
covariance of the combined estimate.

In practice, we run the forward filter in a causal manner
until an activity switch is detected. When an activity switch is
detected at k = k2, the backward filter is run all the way back
to the previous position update at k = k1, and the position
estimates for k = k1 + 1, . . . , k2 − 1 are calculated. If there is
no previous position update, then k1 = 0. After the update and
the smoothing operation, the new k1 value is assigned as k2.
This is illustrated in figure 8 that includes a portion of one of
our 2D experiments. In the experiment, the subject starts from
point (0, 0) and walks in the +x direction, which is shown
by the thin red-solid line and represents the ground truth. The
green-dash-dotted line shows the reconstructed path until an
activity switch is detected, which occurs at point (16.5, 0). The
reconstructed path is drifting from the actual path, as shown
in the figure.

The average heading error is about 18◦. Such large heading
errors are not frequently observed in our experiments; however,
this experiment is chosen to demonstrate the performance of
combining activity recognition cues. After the activity switch,

the backward filter should be run all the way back to the
previous activity switch. Since there is no previous activity
switch, the backward filter is run to the beginning, k = 0.
This path is shown by the magenta-dashed line. Then, these
estimates are combined to get the improved estimate, which is
shown by the blue-solid line in the figure. The reconstruction
almost coincides with the ground truth after the update, as
confirmed by the figure.

4. 2D Experiments

4.1. Experimental setup

A total of 11 experiments are performed in 2D, in two different
environments. The first set of experiments is performed
outdoors on a straight line of 66 m length. The line is divided
into four segments of equal length, and the endpoints of each
segment are marked with a + or a × sign. The path is illustrated
in figure 9.

A coordinate frame is assigned in this environment such
that the line coincides with the x axis. The origin of the
coordinate frame is at the leftmost point of the line. The ×
marks indicate possible locations to perform the ‘walking-to-
standing’ (WS) activity switch, and the + marks indicate the
locations to perform the ‘walking-to-turning’ (WT) activity
switch. Note that point (66, 0) is marked with both symbols
meaning that it is possible to perform both WS and WT activity
switches at this location.

In this outdoor environment, four experiments are
performed:

(1) start from point (0, 0), stop at (16.5, 0), stop at (49.5, 0),
stop at (66, 0);

(2) start from point (0, 0), stop at (16.5, 0), turn back at
(33, 0), stop at (16.5, 0), stop at (0, 0);

(3) start from point (0, 0), stop at (16.5, 0), stop at (49.5, 0),
turn back at (66, 0), stop at (49.5, 0), stop at (16.5, 0),
stop at (0, 0);

(4) start from point (0, 0), stop at (49.5, 0), turn back at
(66, 0), stop at (16.5, 0), stop at (0, 0).

Note that it is not required to stop at every × mark, or turn
back at every + mark, but these marks indicate some nonzero
likelihood that these events will occur at that location.

The sports hall of Bilkent University is used as the second
environment. The subjects are required to walk on lines drawn
on the floor. The map of this indoor environment is shown
in figure 10. Similar to the first setup, the × marks indicate
possible locations to perform the standing activity. Each corner
in the figure indicates a possible location to perform the turning
activity. Thus, the WS and WT activity switch points on the
map are assigned manually; all corners are defined as WT
switch points and WS switch points are assigned arbitrarily.

The seven experiments performed in this environment are
as follows:

Figure 9. The path followed in the first four experiments (all dimensions in m).
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Figure 10. The path followed in the second set of experiments (all
dimensions in m).

Table 1. Total path lengths of the experiments.

Experiment no Path length (m)

1 66
2 66
3 132
4 132
5 222
6 222
7 90
8 90
9 33.9

10 96.2
11 96.2

(5) walk for three laps on a rectangle of size 24 m × 13 m;
(6) walk for three laps on a rectangle of size 24 m × 13 m,

stopping at the midpoint of the longer side;
(7) walk for three laps on a rectangle of size 9 m × 6 m;
(8) walk for three laps on a rectangle of size 9 m × 6 m,

stopping at the midpoint of the longer side;
(9) walk for three laps on a circle of diameter 3.6 m, stopping

each time at the endpoints of the diameter;
(10) walk for one lap on a rectilinear polygon;
(11) walk for one lap on a rectilinear polygon, stopping at three

different points.

The total path lengths of these experiments are tabulated
in table 1. These 11 experiments are performed by four male
and four female subjects, whose ages, heights and weights are
presented in table 2.

Before starting the experiments, an ‘alignment reset’ is
performed on each sensor unit to reset the coordinate frames
such that the initial orientation transformation corresponds
to the unit operator (that is, the initial orientation output
is I3×3 in the direction cosine matrix mode, q = 1 in the
quaternion output mode or zero Euler angles in the Euler
angle output mode), and the z axes are in the vertical direction.
The top views of the global, local navigation and the sensor
coordinate frames before and immediately after the alignment
reset are shown in figure 4. Note that before the alignment

Table 2. Profiles of the eight subjects.

Subject no Gender Age Height (cm) Weight (kg)

S1 f 32 158 45
S2 f 34 161 51
S3 m 25 180 79
S4 f 22 166 47
S5 f 24 178 60
S6 m 33 175 95
S7 m 22 187 75
S8 m 25 182 75

reset, the global and local navigation frames are in their
default configuration. However, at the reset instant, the x–y
orientation of these frames may change arbitrarily, while their
z axes remain perpendicular to the horizontal plane, opposite
to the direction of the gravity vector. Immediately after
the alignment reset, the local navigation and the sensor
coordinate frames are coincident. All orientation outputs
during the experiments are obtained with respect to the local
navigation coordinate frames, illustrated in figure 4(b) for
a single sensor unit. After the alignment reset, the sensor
coordinate frames may rotate and translate with the motion
of the person, whereas the global frame remains fixed and the
local navigation frames may translate but not rotate.

4.2. Experimental results

In this section, we present and compare the results of the
reconstruction with and without using any activity recognition
cues. We calculate the error between the reconstructed path and
the true path by discretizing the true path with equally spaced
points on the path, and consider either path as a finite set of
points. We use a symmetric error criterion between two point
sets P and Q, proposed in [37]. The well-known Euclidean
distance d(pi, q j) : R

3 × R
3 → R

�0 of the ith point in the set
P with the position vector pi = (pxi, pyi, pzi)

T to the jth point
q j = (qx j, qy j, qz j)

T in set Q is given by

d(pi, q j) =
√

(pxi − qx j)2 + (pyi − qy j)2 + (pzi − qz j)2,

(11)

where i ∈ {1, . . . , N1} and j ∈ {1, . . . , N2}. In [37], we
consider and compare three different metrics to measure
the similarity between two sets of points, each with certain
advantages and disadvantages. In this work, we use the most
favourable of them to measure the closeness or similarity
between the sets P and Q:

E(P−Q) = 1

2

×
⎛
⎝ 1

N1

N1∑
i=1

min
q j∈Q

{d(pi, q j)} + 1

N2

N2∑
j=1

min
pi∈P

{d(pi, q j)}
⎞
⎠.

(12)

According to this criterion, we take into account all points in
the two sets and find the distance of every point in the set
P to the nearest point in the set Q and average them, and vice
versa. The two terms in equation (12) are also averaged, so
that the criterion is symmetric with respect to P and Q.

9
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Figure 11. Sample reconstructed paths for experiments (a) 1, (b) 3, (c) 5, (d) 8, (e) 9, ( f ) 11, without (green-dashed line) and with
(blue-solid line) activity recognition cues. The true path is indicated with the thin red-solid line.

The parameters selected for the experiments are tabulated
in table 3. Each of the first set of experiments (1–4) is
performed on the map given in figure 9. For the second
set of experiments (5–11), we first consider each experiment
separately. That is, the possible activity switch locations are
not defined for the whole map, but only for the activity switch
points on the walked path. Examples of reconstructed paths

are presented in figure 11. In this figure, reconstructed paths
without (with) activity recognition cues are shown by the
green-dashed (blue-solid) line. In other words, the green-
dashed line shows the result of using ZUPT only, whereas
the blue-solid line shows the result of using the proposed
method. It can be observed that the reconstruction improves
considerably when activity recognition cues are utilized.
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Table 3. Parameter values used in the experiments.

Parameter Value

�T 1 rad s−1

Pξ(0) 0.01I2×2

Q
(

0.01 0
0 0.1

)

PWS,n 0.01I2×2, ∀n
PWT,n 0.04I2×2, ∀n

The errors between the true path and the reconstructed
path without and with activity recognition updates are
presented in tables 4 and 5, respectively. In the tables, the
calculated errors using equation (12) are divided by the length
of the path covered in each experiment (table 1) and then
multiplied by 100 to convert to centimetres. Therefore, the
values are in terms of cm m−1, interpreted as centimetre
error per unit metre of path length. The last columns in
both tables show the averages of the other columns and
represent the resulting average error in a given experiment. The
reduction in the average error values by introducing activity
recognition position updates is illustrated in figure 12, in which
the percentage decrease in the errors can be visualized. For
experiments 1–4 performed outdoors along a straight line, the
average error without the updates is 1.92 cm m−1. With the
updates, this error is reduced to 0.14 cm m−1, for which
the percentage decrease in the average error can be calculated
as 1.92−0.14

1.92 × 100 = 92.7%. For indoor experiments 5–11,
the average error without the updates is 0.96 cm m−1, which
is reduced to 0.20 cm m−1 after the updates. Similarly, the
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Figure 12. Average error values for all experiments without and
with applying activity recognition position updates.

average percentage decrease can be calculated as 0.96−0.20
0.96 ×

100 = 79.1%. On average, the error is reduced by about
85%. We also calculate the error values at the activity switch
locations. That is, when a position update is performed,
the corresponding error is calculated. Then, these errors are
averaged, yielding the values presented in table 6. However,

Table 4. Error values without activity recognition updates (in cm m−1).

Experiment no S1 S2 S3 S4 S5 S6 S7 S8 Average

1 1.21 0.31 4.33 0.71 2.56 5.30 1.02 2.71 2.27
2 3.76 4.32 1.04 1.93 1.32 0.69 0.74 0.59 1.80
3 3.70 6.26 1.17 4.32 0.67 0.46 0.21 0.54 2.17
4 1.77 1.76 1.39 3.14 0.92 0.81 1.08 0.72 1.45
5 0.45 0.87 0.21 0.67 1.31 1.00 0.77 0.53 0.73
6 0.94 1.20 0.50 0.68 0.74 0.33 1.13 0.52 0.76
7 0.56 1.92 1.00 0.64 0.30 0.30 0.75 1.16 0.83
8 0.73 0.51 0.24 1.47 0.53 0.60 1.30 0.42 0.73
9 0.84 1.04 0.83 0.65 0.95 0.49 1.29 1.12 0.90

10 1.47 1.76 1.18 1.64 1.77 0.64 0.78 1.74 1.37
11 1.35 1.31 1.17 2.09 2.40 1.26 0.77 0.78 1.39
Overall average 1.31

Table 5. Error values with activity recognition updates (in cm m−1).

Experiment no S1 S2 S3 S4 S5 S6 S7 S8 Average

1 0.10 0.11 0.11 0.12 0.11 0.18 0.10 0.14 0.12
2 0.16 0.50 0.08 0.34 0.23 0.18 0.11 0.08 0.21
3 0.08 0.16 0.04 0.13 0.09 0.06 0.08 0.05 0.09
4 0.17 0.09 0.14 0.23 0.19 0.09 0.12 0.13 0.15
5 0.10 0.15 0.09 0.12 0.07 0.11 0.09 0.09 0.10
6 0.09 0.13 0.04 0.10 0.11 0.08 0.09 0.04 0.08
7 0.06 0.20 0.08 0.11 0.12 0.14 0.15 0.09 0.12
8 0.10 0.18 0.09 0.15 0.08 0.14 0.08 0.06 0.11
9 0.21 0.29 0.62 0.15 0.22 0.55 0.55 0.19 0.35

10 0.16 0.30 0.20 0.45 0.22 0.23 0.44 0.48 0.31
11 0.64 0.13 0.12 0.30 0.14 0.13 1.02 0.10 0.32
Overall average 0.18
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Figure 13. Incorrectly reconstructed paths caused by (a) incorrect activity recognition and (b) offsets in sensor data.

Table 6. Averaged position errors at the position update locations (in cm m−1).

Experiment no S1 S2 S3 S4 S5 S6 S7 S8 Average

1 1.48 0.48 3.00 4.21 3.29 4.34 2.65 3.36 2.85
2 2.76 5.63 2.04 4.62 1.86 1.51 2.59 2.06 2.88
3 1.61 4.62 1.25 3.29 0.91 0.98 0.65 1.22 1.82
4 2.04 2.32 1.22 6.29 1.21 1.38 2.93 2.19 2.45
5 1.41 0.99 0.41 1.78 0.73 1.63 1.14 1.02 1.14
6 2.50 0.94 0.51 1.04 0.69 0.64 0.57 0.79 0.96
7 0.45 5.53 0.74 1.42 0.63 1.22 0.81 0.96 1.47
8 0.59 0.87 0.95 1.40 0.69 0.92 0.83 0.70 0.87
9 1.39 1.05 4.55 1.33 1.27 3.27 2.40 1.19 2.06

10 1.19 1.43 1.01 1.90 1.00 0.75 1.44 1.54 1.28
11 1.79 1.29 0.73 2.04 1.03 0.80 5.32 0.89 1.73
Overall average 1.77

in a few cases, the positions are not updated to the correct
location, as explained below.

The activity recognition performance is perfect for the WS
switches, i.e. all WS switches are correctly recognized for all
subjects in all experiments. Some instantaneous false alarms
(type I errors1) are observed but they have been eliminated
by employing a simple median filter. For the WT switches,
no false alarms are observed. However, some of the WT
activity switches are not correctly recognized (type II errors2),
since the thresholds are not set individually for each subject.
These type II errors in WT switches sometimes cause the
subsequent updates to be made at incorrect locations, such
as the example shown in figure 13(a). Here, the two WT
switches while walking on the lower-right corner in the figure
are not correctly detected. Over the 8 × 11 = 88 experiments
performed in this part, this problem occurs only once. Even
if there is no incorrect detection of activity, the same problem
can still occur, as shown in figure 13(b). Here, the offset in
the angle measurement causes the forward filter to diverge

1 In the context of this work, a type I error means that an activity switch has
not actually occurred, but the recognition algorithm falsely detects that it has
occurred.
2 Conversely, a type II error means that an activity switch has actually
occurred, but the recognition algorithm fails to detect the activity switch.
These terms are borrowed from the statistics terminology.

from the actual path, and when a WT switch is detected, the
calculated closest WT switch point (equation (9)) is not the
actual turning point. This phenomenon is observed five times
in all 88 experiments.

For experiments 5–11, we also reconstruct the paths using
the whole of the map in figure 10. That is, we define all
corners on the map as WT switch points, and the points marked
with × as WS switch points. The error values without activity
recognition updates are the same as in table 4. The results
with activity recognition updates are given in table 7, and
the changes in the average error are given as a bar chart in
figure 14. The average errors for most of the experiments
are reduced for this case as well, with the exception of the
experiment involving walking on a circle (experiment 9). In
table 7, it can be observed that the errors have increased only
for three of the subjects. In these cases, the paths are not
correctly reconstructed. This is caused by the fact that the circle
experiment involves continuous turning activity, although not
as sharp as turning at the corners. In fact, the thresholds for
detecting turning activity should be chosen such that the slow
turning motion on the circular path is not detected as an activity
switch, but the sharp turning motion at the corners is detected.
This will, of course, depend on the radius of curvature of
the circle, and the smaller it is, the larger will be the error.
Based on the experimental results, we can state that it is not
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Table 7. Error values with activity recognition updates using the whole map (in cm m−1).

Experiment no S1 S2 S3 S4 S5 S6 S7 S8 Average

5 0.13 0.15 0.09 0.12 0.65 0.44 0.09 0.09 0.22
6 0.39 0.20 0.04 0.25 0.20 0.08 0.17 0.04 0.17
7 0.07 0.80 0.16 0.16 0.18 0.21 0.17 0.13 0.23
8 0.21 0.28 0.18 0.20 0.13 0.25 0.08 0.09 0.18
9 0.77 0.29 16.21 0.15 7.99 2.32 0.71 0.20 3.58

10 0.16 0.29 0.18 0.45 0.20 0.23 0.44 0.49 0.31
11 0.79 0.13 0.13 0.31 0.14 0.12 2.55 0.10 0.53
Overall average 0.75
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Figure 14. Average error values for experiments 5–11 without and
with activity recognition position updates when the whole map is
used.

possible to choose a single threshold that performs perfectly
for all subjects, because every subject performs the walking
motion uniquely in his/her own style. This problem can easily
be solved by introducing uniformly spaced WT switch points
on the circle. By defining 36 additional WT switch points on
the circle that are 10◦ apart, we reduce the average error to
0.32 cm m−1. However, since the radius of curvature of the
circle in this experiment is too small and such sharp turns
would very rarely be encountered on locations other than
corners in a realistic situation, such a procedure would not
be necessary in most cases. Sample reconstructions for this
method are shown in figure 15.

After introducing these additional WT switch positions,
the errors between the true and reconstructed paths are given in
table 8, and the average position errors at the update locations
are given in table 9. In this case, the average error without the
updates is again 0.96 cm m−1, which is reduced to 0.28 cm m−1

using the activity updates and defining new WT switch points
on the circle. In other words, the percentage reduction in the
average error is 0.96−0.28

0.96 × 100 = 70.8%.
Note that the errors of experiments 10 and 11

increased slightly after the addition of more WT switch

locations. This is illustrated in the reconstruction in
figure 15(d), which belongs to the same experiment
as in figure 11( f ). Here, it can be observed that the
performance of the latter is better. The degradation
in the performance of the former results from the addition
of more WT switch points on the circle in order to improve
the incorrect reconstructions of the circular path. This causes
the closest WT switch point (equation (9)) to differ from the
actual turning point in figure 15(d). This means that the
addition of more switch points may cause degradations in
the performances of other path reconstructions and may affect
the overall error negatively. Therefore, using more activity
switch points on a map does not necessarily improve the overall
performance.

5. 3D experiments and results

5.1. Experiment in indoor building environment

To demonstrate the applicability of our method in a realistic
setting, we performed an experiment on two consecutive floors
of an indoor environment. The experiments are conducted in
the Electrical and Electronics Engineering building on the
Bilkent University campus.

In addition to the walking, standing and turning activities
of the 2D experiments, we introduce the stairs activity in the
3D experiments. We denote the walking-to-stairs and stairs-
to-walking activity switches as a WR switch, using a single
label. This is because at each walking-to-stairs switch location,
a stairs-to-walking switch can also occur, and vice versa. In
other words, walking-to-stairs and stairs-to-walking activity
switch locations correspond to the same points on a given
map.

This experiment is performed by subjects S1, S3 and
S8. In [30], we demonstrated that including training data
from an individual improves the classification performance
considerably. This is also confirmed in this study. The subject
S8 in this study was also one of our test subjects in [30], and the
best classification performance in this experiment is achieved
with subject S8.

The activity recognition performances are presented in
figure 16. The blue thick lines in the figures represent
the activity detected by the k-NN classifier, and the red
thin lines represent the true activity, which is determined
manually by observing the signals and the video recording
of the experiment. We count the number of samples where
the true activity is the same as the recognized activity and
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Table 8. Error values with activity recognition updates using the whole map, after defining more WT switch locations (in cm m−1).

Experiment no S1 S2 S3 S4 S5 S6 S7 S8 Average

5 0.13 0.15 0.09 0.12 0.65 0.44 0.09 0.09 0.22
6 0.39 0.20 0.04 0.25 0.20 0.08 0.17 0.04 0.17
7 0.07 0.79 0.16 0.16 0.18 0.21 0.17 0.13 0.23
8 0.21 0.28 0.18 0.20 0.13 0.25 0.08 0.09 0.18
9 0.22 0.29 0.34 0.15 0.19 0.46 0.71 0.20 0.32

10 0.16 0.37 0.18 0.45 0.20 0.23 0.44 0.49 0.32
11 0.88 0.21 0.13 0.31 0.14 0.12 2.54 0.10 0.55
Overall average 0.28

Table 9. Averaged position errors at the position update locations (in cm m−1).

Experiment no S1 S2 S3 S4 S5 S6 S7 S8 Average

5 1.41 0.99 0.41 1.78 2.19 1.63 1.14 1.02 1.32
6 2.34 0.89 0.51 1.04 0.67 0.64 0.65 0.79 0.94
7 0.45 4.00 0.70 1.37 0.63 1.14 0.79 0.89 1.25
8 0.50 0.76 0.89 1.30 0.70 0.88 0.83 0.62 0.81
9 1.15 1.05 2.12 1.33 0.92 2.19 1.78 1.19 1.47

10 1.19 1.43 0.92 1.90 1.02 0.75 1.44 1.54 1.27
11 1.88 1.40 0.73 2.02 1.03 0.81 4.04 0.89 1.60
Overall average 1.24
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Figure 15. Sample reconstructed paths for experiments (a) 5, (b) 8, (c) 9, (d) 11, without (green-dashed line) and with (blue-solid line)
activity recognition cues on the whole map. The true path is indicated with the thin red-solid line.
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Figure 16. Activity recognition performance for subjects (a) S1, (b) S3 and (c) S8. The blue thick lines represent the activity recognized by
the k-NN classifier, whereas the red thin lines represent the true activity determined manually.

divide this number by the total number of samples to evaluate
the activity recognition performance. The performance is
found to be 40.7% for S1, 73.0% for S3 and 84.6% for S8. We
conclude that the performance of S8 is the best because the
training data of S8 are already available to the k-NN classifier.
Since the profiles (such as age, height and weight) of S3 and
S8 are similar (table 2), the activity recognition performance
of subject S3 is also good. The mediocre performance for S1
can be explained by the fact that the profiles of the subjects
in the training data do not resemble the profile of subject S1.
The profiles of the subjects in the training data can be found
in [38].

The results of the reconstruction before and after activity
recognition updates are presented in figure 17. In the figure,
the red thin line represents the true path, the green-dashed line
represents the reconstructed path without activity recognition
updates and the blue-solid line represents the reconstructed
path after applying the activity recognition updates. We also

run the localization algorithm assuming that the activity
recognition performance is perfect, i.e. we use the red thin
lines in figure 16 as the activity recognition result. The
reconstruction with this approach is shown in the black-dash-
dotted line. The localization result improves with accurate
activity information as expected, indicating that the more
accurate the activity recognition is, the more accurate will
be the position estimation.

We set the initial position of the subject as the origin,
and the initial walking direction as the x direction. In this
setting, the only WS switch point is (0, 0, 0). We do not
introduce any additional artificial WS switch locations since
this experiment is performed in a realistic environment. The
WT and WR switch points are presented in table 10 in
matrix form for compactness, whose rows correspond to the
coordinates of activity switch locations. These locations are
determined considering the walked path and the construction
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Figure 17. Localization results for subjects (a) S1, (b) S3 and (c) S8. The reconstructions are calculated with ZUPT only (green-dashed
line), using k-NN activity recognition updates (blue-solid line) and using the true activity recognition updates (black-dash-dotted line). The
thin red-solid line shows the true path.

Table 10. Walking-to-turning (WT) and walking-to-stairs (WR)
activity switch locations.

WT WR

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
32.78 0 −2.08
32.78 1.30 −2.08
0.90 0 −4.16
0.90 −3.00 −4.16

−1.20 −4.50 −4.16
−0.90 −9.10 −2.08
1.50 −9.10 −2.08
1.50 −4.20 0

0 −2.40 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

29.40 0 0
29.40 1.30 −4.16
−1.20 −4.50 −4.16
1.50 −4.20 0

−0.90 −9.10 −2.08
1.50 −9.10 −2.08

⎞
⎟⎟⎟⎟⎟⎠

plans of the building. We also used a tape measure to determine
the coordinates of some of the waypoints on the path.

Several heuristics are used in the simultaneous
localization and activity recognition process in 3D. We
observed that there are some instantaneous WR switches while
the subject is ascending or descending stairs (figure 16(a)).
That is, occasionally the activity classifier instantaneously
decides that the subject is walking although he is actually on
the stairs. The converse also occurs, i.e. the classifier detects
the ‘stairs’ activity, while the subject is walking on the level
floor. To avoid an incorrect position update at these instants,
we introduce a condition on the WR switches such that the
switched activity (in this case, walking) must go on for at least

Table 11. Error values for the 3D experiment.

Subject no ZUPT error Error with k-NN Error with perfect
activity recognition

S1 4.82 1.11 0.48
S3 4.80 0.48 0.26
S8 5.84 0.35 0.33

3 s for a position update to be applied. Another heuristic is that
if the current activity is detected as walking, we do not modify
the position in the z direction in the prediction equation. This
is fair because on the given map, walking activities only take
place on the horizontal plane. If a map was given with possible
uphill or downhill walking platforms (which is quite unlikely
in an indoor building environment), this rule would lead to
incorrect results and should not be used.

As shown in figure 17, the path reconstruction is almost
perfect for S8 after introducing the updates. Using the error
measure in equation (12), we calculate the errors between the
reconstructed paths and the true path. These error values are
given in table 11. Here, it can be observed that the errors
decrease considerably when activity recognition updates are
introduced. The average ZUPT error is 5.15 cm m−1, which
is reduced to 0.65 cm m−1 with the k-NN activity recognition
updates. This corresponds to a decrease of 87% in the average
error. For S8, whose training data are available, the decrease is
94%. Therefore, it can be concluded that, in general, improved
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activity recognition performance results in a larger decrease
in the error. The last column in the table gives the error values
if the activity recognition were done perfectly, i.e. it
corresponds to the error between the red thin line and the
black-dash-dotted line. The reason for the degradation in the
activity recognition performance is that each person has a
different style of walking on the stairs as well as on a straight
path. Distinguishing between walking and stairs activities is
not possible with high accuracy if the classifiers are trained
with the data of other subjects. Therefore, in a practical
application, the classifier must be trained with the data of the
user, which is an operation to be performed only once. Then,
our simultaneous localization and activity recognition method
can be used, which improves the localization performance by
reducing positioning errors about 90%. However, in general,
we would like to note that if physical features such as height
and weight of the training and test subjects are similar, the
classification results improve.

The results of our 3D experiments suggest that if
the classifiers are trained with data from a person with
similar physical features to the person to be localized, the
performances of both the localization and activity recognition
processes improve. In the 2D experiments where a simple
rule-based activity classifier is used, there seems to be no
correlation between the physical features of the participants
and the localization performance.

5.2. Experiment on spiral stairs

To test the performance of the 3D algorithm with continuous
turning activity, we also performed an experiment on spiral
stairs with subject S8. The subject ascends the stairs on a fire
escape for eight storeys. We detect the turning activity using
the rule-based algorithm in our 2D experiments. Even though
there is continuous turning activity, the preset threshold defined
in the rule-based algorithm is exceeded only occasionally,
resulting in a stairs-to-turning (RT) activity switch. Therefore,
80 equally spaced RT activity switch locations are defined
on the spiral stairs. The results are presented in figure 18.
Similarly, the green-dashed and blue-solid lines represent
the reconstructed path without and with activity recognition
updates, respectively. The thin red-solid line represents the
actual path. For this experiment, the error is decreased from
2.08 to 0.24 cm m−1 with the activity recognition updates,
resulting in 88% error reduction.

6. Discussion

The proposed method and its experimental verification
demonstrate that activity recognition provides useful cues
for localization when combined with a known map of the
environment. Path reconstruction improves significantly when
the activity switch cues are used for position updates so
that localization is performed simultaneously with activity
recognition. Considering the whole of the maps for both sets of
2D experiments, the average percentage decrease in the error
is 79%. The errors at the final point of the experiments are
zero for all experiments since the subjects stop at the end of
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Figure 18. Sample reconstructed path for the spiral stairs.

the experiment at a WS switch point where a final position
update is performed.

The errors calculated using equation (12) represent the
average distance between the true and the reconstructed paths.
This is a spatial error measure between two sets of points
that comprise the curves. If the true position of the subject
as a function of time were available, a more reliable error
criterion would be to calculate the error between the true and
the estimated positions at all time values, and then to take the
time average. However, in our experiments, the true positions
of the subjects are not available. Obtaining accurate true
position data as a function of time is a difficult task outdoors
because low-cost handheld GPS equipment has accuracies
in the order of several metres. In indoor environments, it
might be necessary to configure accurate WiFi- or RFID-based
positioning systems.

In our experiments, we have observed mainly two
phenomena as the source of path reconstruction errors. These
two phenomena impose some limitations on the potential
applications of our method.

Some of the errors are caused by incorrect activity
recognition. This can be observed either in the form of
incorrect position updates (caused by type I errors) or in the
form of prevention of a required position update from being
made (caused by type II errors). An example of the latter is
shown in figure 13(a). Our method can fail to reconstruct the
path correctly if such errors are likely to occur. However, if
the activities defined are sufficiently well differentiated, or
more precisely, if the selected features for different activities
are well separated in the feature space, activity recognition
errors can be reduced considerably. In real-life applications,
features should be extracted in a way to make the activities
easily differentiable. Distinguishing between similar activities
such as ascending/descending stairs and walking is not an
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easy task that can be accomplished by using simple rule-
based classifiers and may require more complex classifiers.
To improve the performance, training data of the test subject
should be made available to the classifiers; otherwise similar
activities can be confused.

The number of activity classes should be selected
according to the environmental setting. For example,
underground mines are one of the most suitable environments
to apply the methods developed in this study since it is
not possible to use external positioning methods such as
GPS. By defining activities specific to the given setting
and implementing suitable activity recognition techniques,
accurate positioning can be achieved underground. Activities
such as putting a helmet on and taking it off, operating
machinery, walking, sitting, resting, etc can be defined. These
activities can be easily distinguished using sensor units at
different positions on the body and properly selected features.
Potential applications exist in other GPS-denied environments
such as inside buildings, tunnels, underground or dense forests
and around tall buildings in urban areas where GPS data are
not accurate or always available. In this study, we consider a
rather limited set of daily activities such as walking, standing
and turning, because our purpose here is to demonstrate
the potential of incorporating activity recognition cues in a
PDR system that can be used in any general setting. We
conducted controlled and well-defined experiments and gave
the participants accurate instructions on where to perform
these activities on the map. However, in a practical setting,
standing and turning activities can be performed irregularly at
any location. In this case, a separate class for such irregular
motions can be defined as in [39] and false position updates
can be prevented by training the classifiers properly.

Errors are also caused by finding and matching the nearest
predefined activity switch point to the forward estimate when
an activity switch is detected (equation (9)). One example is
illustrated in figure 13(b). When the position update intervals
are long, the errors in estimated heading and estimated distance
can make the forward position estimate drift away towards
a predefined activity switch point which is different from
the correct one. To avoid these errors, the map data should
be interpreted and processed intelligently when defining the
activity switch points. The predefined activity switch points on
the map should be sufficiently close to each other so that the
distance between position updates is not too large. However,
increasing the number of possible activity switch locations on
a map does not always improve the localization results. If the
points are too close, the drifts in the estimated position and/or
heading may lead to incorrect position updates as shown in
figure 13(b), which might not have occurred if there were
fewer activity switch points. Even though the number of correct
position updates increases with increasing number of activity
switch locations, the number of incorrect position updates is
expected to increase as well. Therefore, the separation between
the activity switch points should be optimized to minimize
the error. Methods of manual or automated determination
of the number and positions of activity switches need to be
developed. Activity switch points exist naturally in many
environments. If it is possible to observe the environment

through the use of camera surveillance systems, activity
switch locations can be determined by analysing the activity
patterns of individuals over sufficiently long periods of time.
This could be easily done in indoor office environments,
shopping malls and factories for instance. In urban outdoor
settings, critical road junctions with pedestrian crossings and
traffic lights can be observed. The positions of some activity
switches are well defined with small uncertainty. For example,
transitions from walking to ascending/descending stairs and
vice versa, taking the lift and opening/closing doors often
take place at well-known positions. Daily activities such as
washing hands, brushing teeth and bathing also take place
at well-defined locations. However, locations and timing of
some activities such as stopping, turning, kneeling, picking up
something from the floor may be more uncertain and irregular.
It would be more advantageous to exploit and benefit from
those activity switch locations with smaller uncertainty by
specifying them as position update locations. Both manual and
automated procedures should also take into account possible
activity misclassifications for a given map as well as the drift
characteristics of the sensors used. These extensions of the
work reported here deserve dedicated and detailed further
investigation.

7. Conclusion

In this paper, we present the results of introducing activity
recognition cues to perform position updates in a pedestrian
dead reckoning (PDR) system, thus performing localization
and activity recognition simultaneously. We use the well-
known ZUPT method to estimate the distance travelled, and
an orientation sensor mounted on the chest to estimate the
heading. Position errors occur because of the characteristic
offset or the bias errors at the output of these inertial sensors.
Other causes of error are initial misplacement of the sensor
units and slippage on the body during operation because of
loose mounting. These errors are corrected using a map of
the environment with predefined activity switch locations at
which position updates are performed. We demonstrate that
it is possible to perform pedestrian localization without any
external aid other than a map. Experimental verification in
indoor and outdoor environments is provided. When a current
position update is performed using the activity recognition
cues, optimal estimation techniques are used also to correct the
past estimates. Activity recognition cues considerably improve
the performance of the PDR system, reducing the position
errors drastically. If training data of the subjects are available,
it is possible to reduce the localization error by about tenfold
when activity recognition cues are utilized simultaneously in
localization.

Similar to the way activity recognition cues aid the
localization process in our approach, location cues can be
utilized to improve the accuracy of the activity recognition
process. Even though activity recognition is quite accurate
when training and test data from the same user are available,
the accuracy degrades when training data from the same
user are not available. However, for a given position on a
map, the possible set of activities that can be performed is
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limited. By utilizing the location information in the activity
recognition algorithm, this problem can be eliminated. In this
context, localization and activity recognition can be envisioned
as a loop, very much like simultaneous localization and
mapping (SLAM) methods in mobile robotics, where activity
recognition aids localization and vice versa.
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Appendix. Combining unbiased estimators

Suppose x̂1 and x̂2 are two estimators of a random vector
X, with error covariances �1 = E[(x̂1 − X)(x̂1 − X)T ] and
�2 = E[(x̂2 −X)(x̂2 −X)T ], respectively. We assume that the
estimators are unbiased, i.e.

E(x̂1 − X) = E(x̂2 − X) = 0 (A1)

and the estimation errors are uncorrelated, i.e.

E[(x̂1 − X)(x̂2 − X)T ] = 0. (A2)

A linear combination of these two estimators is given as

x̂ = W1x̂1 + W2x̂2, (A3)

where W1 and W2 are weighting matrices.
We would like to find the optimal weighting matrices such

that the covariance matrix of the combined estimate given by

� = E[(x̂ − X)(x̂ − X)T ] (A4)

is ‘minimum’, which should be interpreted in the sense of the
following definition [40].

Definition 1. Let �1 and �2 be symmetric non-negative definite
matrices such that the difference �2 −�1 is non-zero and non-
negative definite. Then, �1 is said to be less than �2.

If the combined estimate is to be unbiased, the following
condition should hold:

E(x̂) = W1E(x̂1) + W2E(x̂2) = E(X). (A5)

Since E(x̂1) = E(x̂2) = E(X), the condition reduces to
W1 + W2 = I, where I is the identity matrix of appropriate
size. The combined estimate can be expressed as

x̂ = W1x̂1 + (I − W1)x̂2 (A6)

and the optimization criterion is given as

W∗
1 = arg min

W1

�

= arg min
W1

W1(�1 + �2)WT
1 − W1�2 − �2WT

1 + �2.

(A7)

In this case, the minimizing W1 can be found as [40]

W∗
1 = �2(�1 + �2)

−1 = (
�−1

1 + �−1
2

)−1
�−1

1 (A8)

and W∗
2 is given as

W∗
2 = I − W∗

1 = (
�−1

1 + �−1
2

)−1
�−1

2 . (A9)

Therefore, the optimal combination of estimators x̂1 and
x̂2 is

x̂ = (
�−1

1 + �−1
2

)−1(
�−1

1 x̂1 + �−1
2 x̂2

)
(A10)

and the error covariance can be calculated as

� = (
�−1

1 + �−1
2

)−1
. (A11)

Note that in equation (A10), individual estimates are
weighted by the inverses of the corresponding covariance
matrices. This result also agrees with physical intuition. For
example, if one estimate is more reliable than the other (i.e.
its covariance matrix is less than the other), its weight will be
larger compared to the other weight, and vice versa.
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indoor positioning on off-the-shelf mobile devices Int.
Conf. on Indoor Positioning and Indoor Navigation (IPIN)
(Zurich, Switzerland, 15–17 September)

[25] Sabatini A M 2006 Quaternion-based extended Kalman filter
for determining orientation by inertial and magnetic sensing
IEEE Trans. Biomed. Eng. 53 1346–56

[26] Retscher G 2007 Test and integration of location sensors for a
multi-sensor personal navigator J. Navig. 60 107–17

[27] Jirawimut R, Ptasinski P, Cecelja F and Balanchandran W
2003 A method for dead reckoning parameter correction in
pedestrian navigation system IEEE Trans. Instrum.
Meas. 52 209–15

[28] Aggarwal P, Thomas D, Ojeda L and Borenstein J 2011 Map
matching and heuristic elimination of gyro drift for personal
navigation systems in GPS-denied conditions Meas. Sci.
Technol. 22 025205

[29] Altun K 2011 Intelligent sensing for robot mapping and
simultaneous human localization and activity recognition

PhD Thesis Department of Electrical and Electronics
Engineering, Bilkent University, Ankara, Turkey

[30] Altun K, Barshan B and Tunçel O 2010 Comparative study on
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