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Abstract
We have studied the high frequency performance limits of single-walled carbon nanotube
(SWNT) transistors in the diffusive transport regime limited by the acoustic phonon scattering.
The relativistic band structure of single-walled carbon nanotubes combined with the acoustic
phonon scattering provides an analytical model for the charge transport of the radio frequency
transistors. We were able to obtain the intrinsic high frequency performance such as the
cut-off frequency and the linearity of the SWNT transistors. We have extended our model to
include transistors based on arrays of SWNTs. The effect of electrostatic screening in a dense
array of SWNTs on the cut-off frequency is studied.

(Some figures may appear in colour only in the online journal)

Low-dimensional carbon, such as single-walled carbon
nanotubes (SWNTs) [1–4], graphene [5, 6] and hydrogen
passivated diamond surface [7, 8] has remarkable electronic
properties for high frequency electronics. These unusual
electronic properties originate from the unique crystal and
electronic band structure which provides extremely high
carrier mobilities [9, 10]. Owing to the high charge mobility
of SWNTs and low geometric capacitance, carriers on the
tubes can respond to an external electric field in a picosecond
time scale [11]. This very fast response time opens new
prospects for high frequency device applications. Carbon
nanotube transistors for radio frequency (RF) electronics
have been the subject of intensive research for the last
decade [1, 12, 2, 3, 13]. SWNT based RF transistors [2, 14,
15], oscillators [16, 17] and analog electronic circuits [18,
3] have been demonstrated. The main practical limitation
of nanotube transistors for high frequency operation is
the parasitic fringing capacitance of the contact electrodes.
The electrostatic capacitance of an SWNT is around
100 aF µm−1 [19], which is much smaller than the fringe
capacitance between the gate and source/drain electrodes
which is larger than 500 aF µm−1 [2]. These drawbacks make
single-tube devices impractical for high frequency electronics.
Dense arrays of SWNTs, however, increase the total gate

capacitance and the contribution of the fringe capacitance
becomes smaller. More recent studies show that a dense array
of SWNTs provides a more reliable platform for fabrication
and characterization of RF transistors and circuits [2, 3,
20–22].

There have been many theoretical and experimental
studies to understand the ultimate limit of the performance
of SWNTs in the radio frequency band [12–14, 23–25].
However, there has been no study to understand the intrinsic
effect of the electronic band structure on high frequency
operation. In this work, we study the ultimate performance
limit of SWNT transistors operating in the radio frequency
band. Firstly, we analyze the intrinsic performance of a
transistor based on a single semiconducting tube with a
relativistic like band structure [26, 9] coupled with the
acoustic phonon scattering [27]. After the analysis of
single-tube devices we then extend our model to study dense
arrays of SWNTs. The model device used for the calculation
is a top-gated transistor based on a recent experimental study
of an SWNT RF transistor [2]. For the model, we have
used realistic experimental parameters such as 50 nm thick
HfO2 as the gate dielectric and a channel length of 700 nm.
Figures 1(a) and (b) show schematic representations of a
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Figure 1. Schematic representation of a model transistor based on (a) a single SWNT and (b) arrays of SWNTs. The gate electrode and
dielectric are not shown in the figure. (c) Calculated transfer characteristics of single-tube transistors using the relativistic band structure for
a range of diameters between 1 and 4 nm. The inset shows the calculated output characteristics of a device with a tube diameter 1.5 nm. The
parameters used for the calculations are a channel length of 700 nm, a gate dielectric thickness of 50 nm and a drain voltage of −1 V.
(d) The calculated field effect mobility as a function of gate voltage for tube diameters of between 1 and 4 nm.

transistor based on a single SWNT and arrays of SWNTs
respectively.

For the diffusive transport regime the conductance of
a 1D conductor with four conduction channels is given
as G = 4e2

h
lf
Lc

where lf is the mean free path, Lc is the
channel length. The conductivity along the tube (at a point
x) can be written as σ(x) = 4e2

h l(x) where l(x) is the mean
free path along the channel. For 1D, the scattering rate is
proportional to the density of states [28, 29], therefore the
mean free path along the channel can be written as l(x) =
l0(

υ(x)
υ0
)2 where υ(x) and υ0 are the Fermi velocity of the

SWNT along the channel and at high energies, respectively.
The mean free path at high energies is written as l0 =
υ0τ0 where τ−1

0 is the total scattering rate. To estimate the
scattering time, we should consider the length scale and
energies of acoustic and optical phonons. The experimentally
observed mean free paths at low and high bias conditions
are 1.6 µm and 10 nm, respectively [30]. Acoustic phonons
have energies less than the thermal energy kbT (T = 300 K).
Optical phonons have energies (∼0.2 eV) much larger than
the room temperature thermal energy. Therefore at room
temperature and low bias conditions the scattering rate is
dominated by acoustic phonons as τ−1

0 = α T
d where T is

the temperature and d is the diameter of the tube [31]. The
measured value for α is 12 m K−1 s−1 [30]. For the calculation
we used room temperature values of the mean free path for

semiconducting tubes. The Fermi velocity along the channel
for a semiconducting tube can be derived from the relativistic

band structure (E = ±
√
(m∗υ2

0 )
2 + (h̄kυ0)2) of the tubes

as [9]

(
υ(x)

υ0

)2

=

(
hk

m∗υ0

)2

1+
(

hk
m∗υ0

)2 . (1)

Here m∗ is the effective mass and k is the wavevector of the
carriers in the SWNT. The wavevector depends on the local
carrier density and can be written as

k(x) =
π

4

Cg

e
(Vg − V(x)). (2)

Here Vg is the gate voltage and V(x) is the local potential
along the tube, Cg is the total capacitance between the tube
and the gate electrode. The total capacitance Cg includes both
the electrostatic capacitance Ce and the quantum capacitance
Cq in series (C−1

g = C−1
e + C−1

q ). We can write the quantum
capacitance in terms of the electronic density of states
g(ε) and the velocity v(x) as Cq = e2g(ε) = 8e2

hv(x) . Using
equation (1), we can write Cq as

Cq =
16e2m∗

h2k

√
1+

(
hk

2πm∗v0

)2

. (3)
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Figure 2. The calculated high frequency performance of an SWNT transistor based on a single tube with a diameter of 1.5 nm. (a) Gate
voltage dependence of the calculated cut-off frequency (ft). The peak cut-off frequency and the peak mobility scale similarly. (b) Drain bias
dependence of the cut-off frequency. (c) Scaling of the peak cut-off frequency with the tube diameter. The intrinsic ft saturates around
23 GHz for diameters larger than 3 nm.

After calculating the capacitance self-consistently from
equations (2) and (3), we write the drain current for a 1D field
effect transistor as

Id =
1
Lc

∫ Lc

0
σ(x)E(x) dx =

1
Lc

∫ Vd

Vs

σ(V) dV (4)

where σ is the conductivity, and Vs and Vd are the source and
drain voltages, respectively. The solution of equation (4) as a
function of bias voltages provides the electrical characteristics
of the device.

Figure 1(c) shows the calculated transfer curves of
SWNTs with diameters from 1.0 to 4.0 nm. The inset shows
the output characteristics of an SWNT with a diameter of
1.5 nm. The clear current saturation is seen at negative
voltages due to p-type conduction. Owing to the large work
function of the SWNTs around 4 eV, gold and palladium
electrodes provide hole type conduction. For the model we
only include hole conduction. The calculated gate voltage
dependence on the field effect mobility of the tube (µ =
dId
dVg

Lc
VdCg

) is given in figure 1(d) for a range of tube
diameters. The calculated peak field effect mobility is around
700 cm2 V−1 s−1. Tubes with smaller diameters show
lower peak mobilities. These values agree well with the
experimental results [2].

The cut-off frequency ft of an FET is defined as the
frequency where the current gain is zero. This means that for
frequencies higher than ft, the gate leakage current is larger
than the drain current due to the modulation of the channel
resistance. A simplified expression for ft is

ft =
gm

2πCg
(5)

where gm is the transconductance of the device. The
performance of the SWNT FET is limited by the total gate
capacitance. To understand the intrinsic performance we
only consider the channel capacitance excluding the parasitic
capacitances. Figure 2(a) shows the gate voltage dependence
of the calculated cut-off frequency of the device given in

figure 1(c) with d = 1.5 nm. The ft reaches a maximum
value at the gate voltage which provides the maximum
transconductance. The drain voltage dependence of ft of the
same device is given in figure 2(b). Due to the current
saturation, ft saturates at large drain voltages. A useful piece
of information would be to see the diameter dependence of
the cut-off frequency. The diameter of a tube affects the
transconductance and capacitance of the device in opposite
ways. Figure 2(c) shows the calculated diameter dependence
of the intrinsic cut-off frequency. The cut-off frequency
increases with tube diameter and saturates after 3 nm. The
saturation value of the cut-off frequency is around the intrinsic
cut-off frequency of graphene [32].

Dense arrays of SWNTs provide a more practical
configuration for high frequency operation than a single
tube. A significant piece of information can be obtained by
studying the intrinsic performance of an individual SWNT in
a dense array. Increasing the density of the tubes decreases
the contribution of fringing capacitance and allows us to
achieve the intrinsic performance of the SWNTs. Electrostatic
screening of the tubes in an array configuration also affects the
performance of the device. Figure 3(a) shows a cross sectional
view of an FET based on SWNT arrays. The thickness of the
gate dielectric, t, and the distance between tubes, L, will define
the effect of the screening. When the tubes are closer than the
thickness of the gate dielectric, the tubes start to screen each
other and result in reduction of the electrostatic capacitance of
an individual tube in the array. The electrostatic capacitance of
a single tube with a radius of r in an array with a density of D
is given as [33, 34]

Carray =
2πεoεr

ln[sinh(π(2t+r)
L )/ sinh(πr

L )]
(6)

where L is the average distance between the tubes and
t is the thickness of the gate dielectric. This expression
is an approximation assuming that the charge distribution
on the tube is symmetric [35] . Figure 3(b) shows the
calculated electrostatic capacitances of individual tubes in
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Figure 3. High frequency performance of SWNT arrays. (a) Schematic illustration of the geometry used for the calculation of the
electrostatic gate capacitances of SWNT arrays. d is the diameter of the tubes, L is the separation between the tubes and t is the thickness of
the gate dielectric. (b) Calculated capacitances of SWNT arrays with tube densities between 1 and 100 SWNT µm−1. (c) Calculated transfer
curves of single nanotubes in arrays with tube densities between 1 and 100 SWNT µm−1. Here the average tube diameter used is 1.5 nm.
(d) Calculated intrinsic cut-off frequency of an SWNT array as a function of tube density. The cut-off frequency saturates for tube densities
greater than ∼100 SWNT µm−1 at 26 GHz.

arrays with different tube densities. For sparse arrays (L� t)
the capacitance approaches the single-tube capacitance (C =
2πεoεr

ln( 2t+r
r )

) and, on the other hand, for large densities (L � t)

the capacitance approaches the parallel plate capacitance.
Including the effect of electrostatic screening in the array
configuration, we calculated the transfer curve for an
individual SWNT as a function of tube density. For this
calculation we followed the same procedure as we used for
an individual tube. As the density approaches 100 tube µm−1

there is a significant reduction in the transconductance. The
tube density affects the cut-off frequency by decreasing
the transconductance and the gate capacitance. Figure 3(d)
shows the density dependence of the cut-off frequency of a
device based on SWNT arrays. As the tube density increases
the capacitance decreases faster than the transconductance
resulting in an increase in the cut-off frequency. An SWNT
with a diameter of 1.5 nm in an array configuration provides
ft values of 18 GHz and 25 GHz for 1 and 100 SWNT tube
densities, respectively. The thickness of the gate dielectric (t)
and the average distance between tubes (L) define important
length scales. Up to a tube density of 10 tube µm−1 (where
L = 100 nm and t = 50 nm) there is a slight effect of
screening in the array. Experimentally, synthesis of SWNT
arrays with tube densities of more than 10 tube µm−1 still

remains a challenge [34, 36]. In order to avoid screening
effects, the most suitable configuration is to use a dielectric
with a thickness less than the average tube separation.

Another important figure of merit for high frequency
operation is the linearity of the device [37, 38]. The linearity
of a transistor is defined as ratio of the first and third
derivatives of the transfer curve. This is called the third
order intercept (IP3 = ( 4

3 )gm/g′′m). It has been predicted
that ohmically contacted, ballistic nanotube transistors with
large electrostatic capacitance (larger than the quantum
capacitance) are inherently linear [37]. The ratio of
electrostatic to quantum capacitance (Ce/Cq) defines the
inherent linearity. Using our model we studied the effect
of band structure on the linearity of SWNT transistors.
Figure 4(a) shows the transfer curves for a transistor
calculated for a wide range of Ce/Cq ratios. As the
electrostatic capacitance increases, the transfer curve becomes
more linear. The calculated normalized IP3 of the device as a
function of gate voltage is given in figure 4(b). We observe
that the linearity of an SWNT transistor depends on diameter
of the tube. Figure 4(c) shows the calculated maximum IP3
as a function of electrostatic capacitance for a range of tube
diameters. As shown in the inset of figure 4(c), increasing the
tube diameter will further increase the linearity of the SWNT
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Figure 4. The linearity of SWNT FETs. (a) Transfer curves of a transistor calculated for several values of the ratio of electrostatic to
quantum capacitance (Ce/Cq) at a drain voltage of −2.5 V. The transfer curve becomes more linear as the ratio increases. (b) The calculated
normalized conductance and the third order intercept (IP3) as a function of gate voltage. (c) Maximum values of IP3 for tube diameters
between 1.5 and 4.0 nm as a function of the Ce/Cq ratio. The inset shows the scaling of the IP3 values with the tube diameter. Here the drain
voltage is −2.5 V and εr = 16 where Ce/Cq is equal to 0.46. (d) Maximum IP3 as a function of the gate and drain (inset) voltages for
diameters from 1.5 to 4.0 nm.

transistor. The bias voltage dependence of IP3 is shown in
figure 4(d). We anticipate that in the large diameter limit, the
linearity value of an SWNT device will approach that of a
graphene transistor with a similar device geometry [39].

In summary we have studied the ultimate performance
limit of SWNTs based on a simplified relativistic like
band structure coupled with acoustic phonon scattering.
The intrinsic high frequency performances of devices based
on individual SWNTs and arrays of SWNTs have been
characterized. The cut-off frequency of an SWNT increases
with the tube diameter and saturates after 3 nm. For the
array geometry the intrinsic cut-off frequency increases
with tube density and saturates for tube densities around
100 tube µm−1. Using the developed model we were also
able to calculate the linearities of SWNT transistors. These
results reveal the basic intrinsic limitations of high frequency
performance of individual SWNTs and arrays of SWNTs and
provide a framework to understand the design considerations
for high frequency operation.
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