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Abstract
The inverse monodromy method for studying the Riemann–Hilbert problem
associated with classical Painlevé equations is applied to the discrete second
Painlevé equation.

PACS number: 02.30.Hq
Mathematics Subject Classification: 39A12, 34M50, 34M55

1. Introduction

The inverse monodromy method (IMM), an extension of the inverse spectral method (ISM) to
ordinary differential equations (ODE), was introduced in [1–6] for studying the initial value
problem for certain nonlinear ODEs. This method can be thought as a nonlinear analog of the
Laplace transform. Solving such an initial value problem is essentially equivalent to solving
an inverse problem for a certain isomonodromic linear equation.

Rigorous investigation of the six continuous Painlevé transcendants, PI–PVI [7] using this
method has been carried out in [8–10]. The isomonodromy method is based on the fact that
every Painlevé equation can be written as the compatibility condition of two linear equations
(Lax Pair). Using this Lax pair, it is possible to reduce the solution of the Cauchy problem
for a given Painlevé equation to the solution of a Riemann–Hilbert (RH) problem. This
RH-problem is formulated in terms the so-called monodromy data which can be calculated in
terms of the two initial data.

The IMM consists of the following two basic steps. (i) The direct problem: one of
the two equations of the Lax pair is a linear ODE in the variable λ for an eigenfunction
Y (λ, t). The essence of the direct problem is to establish the analytic structure of Y (λ, t) in
the entire complex λ-plane. Analytic structure of the eigenfunction Y (λ, t) is characterized
by the monodromy data. An important part of the direct problem is to establish that the set
of all monodromy data can be written in terms of two of them. (ii) The inverse problem: the
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result obtained in part (i) can be used to formulate a continuous and regular RH-problem on
a self-intersecting contour with the jump matrices defined in terms of the monodromy data.
The RH-problem is equivalent to a certain Fredholm integral equation. Having established
the solvability of the RH-problem, it can be shown that Y (λ, t), defined as the solution of
the RH-problem, satisfies the original Lax pair and hence can be used to derive solutions of
the given Painlevé equation. Since the RH-problem is defined in terms of the monodromy
data, which is calculated in terms of initial data, this step provides the solution of the Cauchy
problem.

Recently, nonlinear integrable discrete equations among which the discrete Painlevé (dP)
equations play a fundamental role, have attracted much attention. The difference relations
related with the Painlevé equations, and discrete equations associated with PVI were first given
by Jimbo and Miwa [3]. The so-called singularity confinement method has been an important
tool to derive integrable discrete Painlevé equations [11, 12]. A systematic derivation of the
dP equations by using the Bäcklund transformations of the continuous Painlevé equations was
given by Fokas, Grammaticos and Ramani [13]. Besides the rich mathematical structures
of dP equations, such as the existence of Lax pairs, Bäcklund transformations, singularity
confinement properties [14–19], the relation of dP equations to the continuous ones has been
extensively investigated in the literature.

By exploiting the relation between the continuous and discrete Painlevé equations, in this
paper we apply the IMM to the discrete second Painlevé, dPII. In the case of the dPII, the
singularity structure of the monodromy problem is more complicated (regular singular points
at λ = ±1 and irregular singular points at λ = 0,∞ of rank r = 2) with respect to the
monodromy problem of PII.

The discrete second Painlevé equation, dPII:

2c3(xn+1 + xn−1)
(
1 − x2

n

) = −xn(2c2 + 2n + 1) + c0, c3 �= 0, (1)

can be written as the compatibility condition of the Joshi–Nijhoff Lax pair [20]

∂Yn

∂λ
= Mn(λ)Yn(λ), (2a)

Yn+1 = Ln(λ)Yn(λ), (2b)

where

Mn(λ) = M1λ + M2 + M3
1

λ
+ M4

1

λ2
+ M5

1

λ3
+ M6

1

λ2 − 1
, Ln =

(
λ xn

xn 1/λ

)
, (3)

and

M1 = M5 = c3σ3, M2 =
(

0 2c3xn

2c3xn−1 0

)
, M3 = (c2 + n − 2c3xnxn−1)σ3,

M4 = −σ1M2σ1, M6 = c0σ1,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
,

(4)

and Yn(λ) is 2 × 2 matrix-valued function in C × C, c0, c2 and c3 are constant parameters.
Entries (1, 1) and (2, 2) of the compatibility condition ∂Ln

∂λ
+ LnMn = Mn+1Ln are

identically satisfied and entries (1, 2) and (2, 1) give the dPII .
The dPII equation (1) first appeared in the papers [21, 22]. In [22], Nijhoff and

Papageorgious derived it as similarity reduction of an integrable lattice. We remark that,
before the discovery of the Lax pair (2)–(4), due to Joshi and Nijhoff (an unpublished work),
other examples of Lax pairs for dPII were known in the literature. In [22], such 2 × 2 Lax
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Pair was already written, albeit with one less parameter. In [23], isomonodromic deformation
problems for dPI, dPII, and dPIII were obtained starting from the isospectral problems of two-
dimensional integral mappings by using the procedure of de-autonomization of the spectral
problems for mappings, obtaining 2 × 2 and 3 × 3 Lax matrices for dPI and for an alternative
version of dPI respectively, and 4 × 4 linear problems associated with dPII and dPIII. In [24] a
2 × 2 Lax pair of the Ablowitz–Ladik type was constructed, not producing dPII directly, but
rather a derivative form of it.

The IMM has been first applied to dP equations in [25, 26], where dPI was studied. In
[26], dPI was obtained by using the similarity reduction of the Kac–Moerbeke (KM) equation,
which is a discrete analog of the Korteweg–deVries (KdV) equation. Moreover, the associated
Lax pair for dPI was derived and IMM was applied. In the case of dPI, the singularity structure
of Lax pair is much simpler, and hence the contours of the RH-problem is less complicated
with respect to the case of dPII.

2. Direct problem

In this section, we establish the analytic structure of Yn(λ) in the entire complex λ-plane by
solving the linear problem (2a) which implies the existence of irregular singular points at the
origin and at infinity with rank r = 2, and regular singular points at λ = ±1.

Solution near λ = 0. Since λ = 0 is an irregular singular point, the solution Y (0)
n (λ) =(

Y
(0)
n,1(λ), Y

(0)
n,2(λ)

)
, of (2a) has unique asymptotic expansion Ỹ (0)

n (λ) = (
Ỹ

(0)
n,1(λ), Ỹ

(0)
n,2(λ)

)
in

certain sectors S
(0)
j of the complex λ-plane. That is, Yn(j)(λ) ∼ Ỹ (0)

n (λ) = (
Ỹ

(0)
n,1(λ), Ỹ

(0)
n,2(λ)

)
,

as λ → 0, in certain sectors S
(0)
j , j = 1, . . . , 4 in the λ-plane. The formal expansion Ỹ (0)

n (λ)

near λ = 0 is given by

Ỹ (0)
n (λ) = Ŷ (0)

n (λ)

(
1

λ

)D
(0)
n

eQ(0)(λ) = (
I + Ŷ

(0)
n,1λ + Ŷ

(0)
n,2λ

2 + · · · ) (
1

λ

)D
(0)
n

eQ(0)(λ), (5)

where

Ŷ
(0)
n,1 =

(
0 xn−1

−xn 0

)
, Ŷ

(0)
n,2 =

(
y

(0)
11 0

0 y
(0)
22

)
,

y
(0)
11 = 1

2

[
2c3

(
x2

nx
2
n−1 − x2

n−1 − x2
n

) − 2
(
c2 + n + 1

2

)
xnxn−1 + c0(xn + xn−1) + c3

]
,

y
(0)
22 = 1

2

[
2c3

(
x2

n−1 + x2
n − x2

nx
2
n−1

)
+ 2

(
c2 + n − 1

2

)
xnxn−1 − c0(xn + xn−1) − c3

]
,

(6)

and

D(0)
n = −(c2 + n)σ3, Q(0)(λ) = − c3

2λ2
σ3. (7)

The relevant sectors S
(0)
j , j = 1, . . . , 4 are determined by Re[ c3

2λ2 ] = 0 and given in figure 1.

The non-singular matrices Y
(0)

n(j)(λ), j = 1, . . . , 4 satisfy

Y
(0)

n(j+1)(λ) = Y
(0)

n(j)(λ)G
(0)
j , λ ∈ S

(0)
j+1, j = 1, 2, 3,

Y
(0)

n(1)(λ) = Y
(0)

n(4)(λ e2iπ )G
(0)
4 M(0), λ ∈ S

(0)
1 ,

(8)

where the Stokes matrices G
(0)
j and the monodromy matrix M(0) are given as

G
(0)
1 =

(
1 a(0)

0 1

)
, G

(0)
2 =

(
1 0

b(0) 1

)
, G

(0)
3 =

(
1 c(0)

0 1

)
,

G
(0)
4 =

(
1 0

d(0) 1

)
, M(0) = e−2iπc2σ3 ,

(9)

3
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Figure 1. Sectors for the sectionally analytic function Yn(λ).

and the sectors are

S
(0)
1 : −π

4
� arg λ <

π

4
, S

(0)
2 :

π

4
� arg λ <

3π

4
,

S
(0)
3 :

3π

4
� arg λ <

5π

4
, S

(0)
4 :

5π

4
� arg λ <

7π

4
, |λ| < 1.

(10)

The entries a(0), b(0), c(0) and d(0) of the Stokes matrices G
(0)
j are constants with respect to λ.

Solution near λ = ∞. The solution of (2a) possesses a formal expansion of the form
Yn(j)(λ) ∼ Ỹ (∞)

n (λ) = (
Ỹ

(∞)
n,1 (λ), Ỹ

(∞)
n,2 (λ)

)
, as λ → ∞, in certain sectors S

(∞)
j , j = 1, . . . , 4

in the λ-plane. The formal expansion Ỹ (∞)
n (λ) near λ = ∞ is given by

Ỹ (∞)
n (λ) = Ŷ (∞)

n (λ)λD
(∞)
n eQ(∞)(λ) = (

I + Ŷ
(∞)
n,1 λ−1 + Ŷ

(∞)
n,2 λ−2 + · · · )λD

(∞)
n eQ(∞)(λ), (11)

where

Ŷ
(∞)
n,1 =

(
0 −xn

xn−1 0

)
, Ŷ

(∞)
n,2 =

(
y

(∞)
11 0

0 y
(∞)
22

)
,

y
(∞)
11 = 1

2

[
2c3

(
x2

n−1 + x2
n − x2

nx
2
n−1

)
+ 2

(
c2 + n − 1

2

)
xnxn−1 − c0(xn + xn−1) − c3

]
,

y
∞)
22 = 1

2

[
2c3

(
x2

nx
2
n−1 − x2

n − x2
n−1

) − 2
(
c2 + n + 1

2

)
xnxn−1 + c0(xn + xn−1) + c3

]
,

(12)

and

D(∞)
n = (c2 + n)σ3, Q(∞)(λ) = c3

2
λ2σ3. (13)

The relevant sectors S
(∞)
j , j = 1, . . . , 4 are determined by Re

[
c3
2 λ2

] = 0 and given in

figure 1. The non-singular matrices Y
(∞)

n(j) (λ), j = 1, . . . , 4 satisfy

Y
(∞)

n(j+1)(λ) = Y
(∞)

n(j) (λ)G
(∞)
j , λ ∈ S

(∞)
j , j = 1, 2, 3,

Y
(∞)

n(1) (λ) = Y
(∞)

n(4) (λ e2iπ )G
(∞)
4 M(∞), λ ∈ S

(∞)
1 ,

(14)

where the Stokes matrices G
(∞)
j and the monodromy matrix M(∞) are given as

G
(∞)
1 =

(
1 0

a(∞) 1

)
, G

(∞)
2 =

(
1 b(∞)

0 1

)
, G

(∞)
3 =

(
1 0

c(∞) 1

)
,

G
(∞)
4 =

(
1 d(∞)

0 1

)
, M(∞) = e−2iπc2σ3 ,

(15)

4
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and the sectors are

S
(∞)
1 : −π

4
� arg λ <

π

4
, S

(∞)
2 :

π

4
� arg λ <

3π

4
,

S
(∞)
3 :

3π

4
� arg λ <

5π

4
, S

(∞)
4 :

5π

4
� arg λ <

7π

4
, |λ| > 1.

(16)

The entries a(∞), b(∞), c(∞) and d(∞) of the Stokes matrices G
(∞)
j are constants with respect

to λ.

Solution near λ = 1. Since λ = 1 is a regular singular point of (2a), the solution in the
neighborhood of λ = 1 can be obtained via a convergent power series. For λ = 1, the solution
Y (1)

n (λ) = (
Y

(1)
n,1(λ), Y

(1)
n,2(λ)

)
, for c0 �= k, k ∈ Z has the form

Y (1)
n (λ) = Ŷ (1)

n (λ)(λ − 1)D
(1) = Ŷ

(1)
n,0

{
I + Ŷ

(1)
n,1(λ − 1) + Ŷ

(1)
n,2(λ − 1)2 + · · · }(λ − 1)D

(1)

, (17)

|λ − 1| < 1, where

Ŷ
(1)
n,0 =

(
μ(1)

n ν(1)
n

μ(1)
n −ν(1)

n

)
, det Ŷ (1)

n,0 = 1, D(1) = c0

2
σ3, (18)

μ(1)
n ν(1)

n = −1

2
, μ(1)

n = μ
(1)
0

n−1∏
i=1

(1 + xi). (19)

It should be noted that μ(1)
n and ν(1)

n are constants with respect to λ, and μ
(1)
0 is independent of

n. Ŷ
(1)
n,1 satisfies the following equation:

Ŷ
(1)
n,1 +

[
Ŷ

(1)
n,1,D

(1)
] = (

Ŷ
(1)
n,0

)−1
M

(1)
0 Ŷ

(1)
n,0 , (20)

where

M
(1)
0 =

5∑
k=1

Mk − 1

4
M6. (21)

Equation (19) follows from the fact that det Ŷ (1)
n,0 = 1, and Y (1)

n (λ) solves (2b). If c0 = k, k ∈ Z,
the solution Y (1)

n (λ) may or may not contain the log(λ − 1) term. Monodromy matrix M(1)

about λ = 1 is defined as

Y (1)
n (λ e2iπ ) = Y (1)

n (λ)M(1), M(1) = eiπc0σ3 . (22)

Solution near λ = −1. The solution Y (−1)
n (λ) in the neighborhood of the regular singular

point λ = 1 can be obtained via a convergent power series. For c0 �= k, k ∈ Z,

Y (−1)
n (λ) = Ŷ (−1)

n (λ)(λ + 1)D
(−1) = Ŷ

(−1)
n,0

{
I + Ŷ

(−1)
n,1 (λ + 1) + Ŷ

(−1)
n,2 (λ + 1)2 + · · · }(λ + 1)D

(−1)

(23)

|λ + 1| < 1, where

Ŷ
(−1)
n,0 =

(
μ(−1)

n ν(−1)
n

−μ(−1)
n ν(−1)

n

)
, det Ŷ (−1)

n,0 = 1, D(−1) = c0

2
σ3, (24)

μ(−1)
n ν(−1)

n = 1

2
, μ(−1)

n = (−1)nμ
(−1)
0

n−1∏
i=1

(1 + xi), μ
(−1)
0 = constant, (25)

5
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and Ŷ
(1)
n,1 satisfies

Ŷ
(−1)
n,1 +

[
Ŷ

(−1)
n,1 ,D(−1)

] = (
Ŷ

(−1)
n,0

)−1
M

(−1)
0 Ŷ

(−1)
n,0 , (26)

where

M
(−1)
0 =

5∑
k=1

(−1)kMk − 1

4
M6. (27)

Equation (25) follows from the fact that det Ŷ (−1)
n,0 = 1 and Y (−1)

n (λ) solves (2b). If
c0 = k, k ∈ Z, the solution Y (−1)

n (λ) may or may not contain the log(λ + 1) term.
Monodromy matrix about λ = −1 is defined as

Y (−1)
n (λ e2iπ ) = Y (−1)

n (λ)M(−1), M(−1) = eiπc0σ3 . (28)

Since Y (∞)
n , Y (0)

n , Y (1)
n , Y (−1)

n are locally analytic solutions of the linear equation (2a),
they are related with constant (with respect to λ) matrices E(0), E(1), E(−1) which are called
connection matrices:

Y
(∞)

n(1) (λ) = Y (1)
n (λ)E(1), Y

(∞)

n(3) (λ) = Y (−1)
n (λ)E(−1), Y

(∞)

n(1) (λ) = Y
(0)

n(1)(λ)E(0), (29)

where

E(j) =
(

α(j) β(j)

γ (j) δ(j)

)
, det E(j) = 1 j = −1, 0, 1. (30)

The condition on the determinant of E(j) = 1, j = −1, 0, 1 follows from the fact that the
normalization of Y (1)

n , Y (−1)
n and Y (0)

n , Y (∞)
n gives unit determinants. Branch cuts associated

with the branch points λ = ±1, 0, ∞ are chosen along the real axis −1 � |λ| < 0, 0 < |λ| �
1 for λ = −1 and λ = 1 respectively, and 0 � |λ| < 1 and 1 < |λ| < ∞, arg λ = −π/4 for
λ = 0 and λ = ∞, respectively, indicated in figure 1.

Clearly, the Stokes matrices G
(∞)
j ,G

(0)
j , j = 1, . . . , 4, and the connection matrices

E(0), E(1) and E(−1) are constants matrices with respect to λ, but they are also independent of
n. Since, if we assume that G

(∞)
j depend on n, i.e. G

(∞)
j = G

(∞)

n,(j) , then by the definition of

the Stokes matrices one can write Y
(∞)

n+1,(j+1) = Y
(∞)

n+1,(j)G
(∞)

n+1,(j), and using equation (2b), one

gets G
(∞)

n+1,(j) = G
(∞)

n,(j). Similar calculations hold for G
(0)
j , j = 1, . . . , 4 and the connection

matrices E(0), E(1) and E(−1).

Symmetries of the differential equation. The matrices Mn(λ) and Ln(λ) defined in (3) and
(4) satisfy

σ1Mn

(
1

λ

)
σ1 = −λ2Mn(λ), σ1Ln

(
1

λ

)
σ1 = Ln(λ), (31)

and

σ3Mn(λ e−iπ )σ3 = −Mn(λ), σ3Ln(λ e−iπ )σ3 = −Ln(λ). (32)

Hence, if Yn(λ) solve the linear differential equation (2), σ1Yn

(
1
λ

)
σ1 also solves the linear

differential equations, and if λ ∈ S
(0)
j , then λ−1 ∈ S

(∞)
j . So we have the following symmetry

for the sectionally analytic functions Y
(∞),(0)
j (λ) :

σ1Y
(∞)
j

(
1

λ

)
σ1 = Y

(0)
j (λ), j = 1, 2, . . . , 5. (33)

The symmetry relations (33) imply that

σ1G
(∞)
j σ1 = G

(0)
j , j = 1, 2, . . . , 5, σ1E

(0)σ1 = [E(0)]−1. (34)

6
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That is,

a(∞) = a(0), b(∞) = b(0), c(∞) = c(0), d(∞) = d(0), γ (0) = −β(0). (35)

Similarly, (32) implies that, if Y (λ) solves the linear differential equations (2), then
σ3Y (λ e−iπ )σ3 also solves (2), and if λ e−iπ ∈ S

(0),(∞)
j , then λ ∈ S

(0),(∞)
j+2 , j = 1, 2. So we

have the following symmetry relation for the sectionally analytic functions Y
(∞),(0)
j (λ) and

Y (−1),(1)(λ) :

Y
(∞)
j+2 (λ) = σ3Y

(∞)
j (λ e−iπ )σ3, Y

(0)
j+2(λ) = σ3Y

(0)
j (λ e−iπ )σ3, j = 1, 2,

Y (−1)(λ) = σ3Y
(1)(λ e−iπ )σ3,

(36)

and (36) imply that

G
(∞)
j+2 = σ3G

(∞)
j σ3, G

(0)
j+2 = σ3G

(0)
j σ3, j = 1, 2, σ3E

(−1)σ3 = E(1). (37)

That is,

a(∞),(0) = −c(∞),(0), b(∞),(0) = −d(∞),(0)

α(1) = α(−1), β(1) = −β(−1), γ (1) = −γ (−1), δ(1) = δ(−1).
(38)

Therefore, the analytic structure of the solution matrix Yn(λ) of (2) is characterized by the
monodromy data MD = {a(∞), b(∞), α(0), β(0), δ(0), α(1), β(1), γ (1), δ(1)}. The monodromy
data, MD satisfy the following product consistency condition around all singular points:

G
(∞)
1 G

(∞)
2 J (−1)G

(∞)
3 G

(∞)
4 M(∞)J (1) = (E(0))−1

4∏
j=1

G
(0)
j M(0)E(0), (39)

where

J (−1) = (E(−1))−1M(−1)E(−1), J (1) = (E(1))−1M(1)E(1). (40)

If Yn solves (2) with xn satisfying dPII, then Ȳn = R−1YnR where R = diag(r1/2, r−1/2)

and r is non-zero complex constant, also solves (2) with xn satisfying dPII. But, the connection
matrices Ē(0,1,−1) and the Stokes matrices Ḡ

(0,∞)
j for Ȳn are Ē(0,1,−1) = R−1E(0,1,−1)R, and

Ḡ
(0,∞)
j = R−1G

(0,∞)
j R. Thus, r may be chosen to eliminate one of parameter, e.g. r = β(0).

Also, changing the arbitrary integration constant μ(−1)
0 (see equation (19)) amounts to multiply

Y
(1)
n,1 and Y

(1)
n,2 by an arbitrary nonzero complex constants κ and κ−1, respectively. This maps

E(1) to diag(κ, κ−1)E(1). Thus, κ may be chosen to eliminate one of the entries of the
connection matrix E(1). The freedom in choosing E(1) has no effect on the solution of the
RH-problem. Equation (29) and the transformation E(1) → diag(κ, κ−1)E(1) change Y (1)

n to
Y (1)

n diag(κ, κ−1), but the det Y (1)
n remains the same. Therefore, together with the consistency

condition (39), and det E(0) = det E(1) = 1, only two of the monodromy data are arbitrary.

3. One parameter family of solutions

If c0 ∈ Z+, then the second linearly independent solutions about λ = ±1 may contain the
log(λ ∓ 1) terms. For c0 ∈ Z+, two linearly independent solutions Y

(1)
n,1(λ), and Y

(1)
n,2(λ) about

λ = 1 are

Y
(1)
n,1(λ) = (λ − 1)

c0
2 Ŷ

(1)
n,1(λ), Y

(1)
n,2(λ) = K log(λ − 1)Y

(1)
n,1(λ) + (λ − 1)−

c0
2 ψ(λ), (41)

7
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Figure 2. The contours for the RH-problem.

where K is a constant, Ŷ
(1)
n,1(λ) and ψ(λ) are holomorphic at λ = 1. For c0 = 1, the constant

K satisfies

2μ(1)K = τ [2c3(1 − xn)(1 − xn−1) + (c2 + n)] , (42)

where τ is an arbitrary non-zero constant. If K = 0, then (42) gives the following discrete
Riccati equation for xn [17]:

xn = 1 +
κn

1 − xn−1
, (43)

where κn = (c2 + n)/(2c3). By using the solution about λ = −1, the same discrete Riccati
equation is obtained for c0 = 1.

By using the similar procedure, one obtains the discrete Riccati equations for xn which
gives the one parameter family of solutions of dPII for any positive integer value of c0.

4. Inverse problem

In this section, we formulate a regular, continuous RH-problem over the intersecting contours
for the sectionally analytic function �(λ). �(λ) depends on n, for simplicity in the notation
we dropped the subscript n. We let 0 � c0 < 1 and 0 � c2 < 1, in order to have a regular
RH-problem. The Schlesinger transformations for dPII [18] allow one to completely cover
the parameter space. Since Ŷ (−1)

n , Ŷ (0)
n , Ŷ (1)

n and Ŷ (∞)
n are holomorphic at λ = −1, 0, 1,∞, in

order to formulate a continuous RH-problem, we insert the circles C(−1), C(0) and C(1) with
radius r < 1/4 about the points λ = −1, 0, 1(see figure 2). Moreover, we apply a small
clockwise rotation on the contours A∞, A0, C∞, C0, D∞, D0, and F∞, F0, in order
to have decaying jump matrices as λ → ∞, and λ → 0, respectively, along these contours.
Along these modified contours, we have a RH-problem which is analytic at λ = 0,∞ and
λ = ±1. The new RH-problem is equivalent to a certain Fredholm integral equation. The
solution of the original RH-problem can be obtained once the solution of the new RH-problem
is known. RH-problems appearing in the IMM were rigorously studied in [8, 27].

The jump matrices across the contours can be obtained from the definition of the Stokes
matrices G

(0)
j ,G

(∞)
j (equations (8) and (14), respectively) and the definition of the connection

matrices E(k), k = −1, 0, 1 (equation (29)).

8
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The jumps different than unity across the contours as indicated in figure 2 are given by

CB1 : Y
(∞)

n(1) = Y
(0)

n(1)E(0),

C∞ : Y
(∞)

n(2) = Y
(∞)

n(1) G
(∞)
1 ,

OC : Y
(0)

n(2) = Y
(0)

n(1)G
(0)
1 ,

DC : Y
(∞)

n(2) = Y
(0)

n(2)

(
G

(0)
1

)−1
E(0)G

(∞)
1 ,

D∞ : Y
(∞)

n(3) = Y
(∞)

n(2) G
(∞)
2 ,

OD : Y
(0)

n(3) = Y
(0)

n(2)G
(0)
2 ,

C(−1) : Y
(∞)

n(3) = Y (−1)
n E(−1),

E1E2 : Y
(∞)

n(3) (λ e2iπ ) = Y
(∞)

n(3) (λ)J (−1),

DE1 : Y
(∞)

n(3) = Y
(0)

n(3)

(
G

(0)
1 G

(0)
2

)−1
E(0)G

(∞)
1 G

(∞)
2 , (44)

E1F : Y
(∞)

n(3) (λ e2iπ ) = Y
(0)

n(3)(λ)
(
G

(0)
1 G

(0)
2

)−1
E(0)G

(∞)
1 G

(∞)
2 J (−1),

F∞ : Y
(∞)

n(4) (λ e2iπ ) = Y
(∞)

n(3) (λ e2iπ )G
(∞)
3 ,

FO : Y
(0)

n(4) = Y
(0)

n(3)G
(0
3 ,

FA : Y
(∞)

n(4) (λ e2iπ ) = Y
(0)

n(4)(λ)
(
G

(0)
1 G

(0)
2 G

(0)
3

)−1
E(0)G

(∞)
1 G

(∞)
2 J (−1)G

(∞)
3 ,

OA : Y
(0)

n(1)(λ) = Y
(0)

n(4)(λ e2iπ )G
(0)
4 M(0),

A∞ : Y
(∞)

n(1) (λ) = Y
(∞)

n(4) (λ e2iπ )G
(∞)
4 M(∞),

B1B2 : Y
(∞)

n(1) (λ e2iπ ) = Y
(∞)

n(1) (λ)J (1),

C(1) : Y
(∞)

n(1) = Y (1)E(1),

B1A : Y
(∞)

n(1) (λ e2iπ ) = Y
(0)

n(1)(λ)

⎛
⎝ 4∏

j=1

G
(0)
j M(0)

⎞
⎠

−1

E(0)G
(∞)
1 G

(∞)
2 J (−1)G

(∞)
3 G

(∞)
4 M(∞).

In order to define a continuous RH problem, we define sectionally analytic function �(λ)

as follows:

Y
(∞)

n(j) = �
(∞)
j eQ(λ)λD

(∞)
n , Y

(0)

n(j) = �
(0)
j eQ(λ)

(
1

λ

)D
(0)
n

, j = 1, . . . , 4

Y (1)
n = �(1) eQ(λ)(λ − 1)D

(1)

, Y (−1)
n = �(−1) eQ(λ)(λ + 1)D

(−1)

,

(45)

where

Q(λ) = c3

2

(
λ2 − 1

λ2

)
σ3. (46)

The orientation as indicated in figure 2 allows the splitting of the complex λ-plane in +
and − regions. Then (41) imply certain jumps for the sectionally analytic function � which
is represented by �(−1), �(0), �(1), �

(0)
j and �

(∞)
j , j = 1, . . . , 4, in the regions indicated in

figure 2, and we obtain the following RH-problem:

�+(λ̂) = �−(λ̂)[eQ(λ̂)V e−Q(λ̂)] on C, � = I + O

(
1

λ

)
as λ → ∞, (47)

9
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where C is the sum of the all contours, and the jump matrices V are given by

VCB1 = λD
(∞)
n (E(0))−1

(
1

λ

)−D
(0)
n

,

VC∞ = λD
(∞)
n G

(∞)
1 λ−D

(∞)
n ,

VOC =
(

1

λ

)D
(0)
n (

G
(0)
1

)−1
(

1

λ

)−D
(0)
n

,

VDC =
(

1

λ

)D
(0)
n (

G
(0)
1

)−1
E(0)G

(∞)
1 λ−D

(∞)
n ,

VD∞ = λD
(∞)
n

(
G

(∞)
2

)−1
λ−D

(∞)
n ,

VOD =
(

1

λ

)D
(0)
n

G
(0)
2

(
1

λ

)−D
(0)
n

,

V �

E2E3
= λD

(∞)
n [E(−1)]−1(λ + 1)−D(1)

,

VE2E3
�

= (λ + 1)D
(1)

+ E(−1)λ−D
(∞)
n ,

VE1E2 = λD
(∞)
n J (−1)λ−D

(∞)
n ,

VDE1 = λD
(∞)
n

(
E(0)G

(∞)
1 G

(∞)
2

)−1
G

(0)
1 G

(0)
2

(
1

λ

)−D
(0)
n

,

VE1F =
(

1

λ

)D
(0)
n (

G
(0)
1 G

(0)
2

)−1
E(0)G

(∞)
1 G

(∞)
2 J (−1)λ−D

(∞)
n , (48)

VFO =
(

1

λ

)D
(0)
n

G
(0
3

(
1

λ

)−D
(0)
n

,

VF∞ = λD
(∞)
n

(
G

(∞)
3

)−1
λ−D

(∞)
n ,

VFA = λD
(∞)
n

(
E(0)G

(∞)
1 G

(∞)
2 J (−1)G

(∞)
3

)−1
G

(0)
1 G

(0)
2 G

(0)
3

(
1

λ

)−D
(0)
n

,

VOA =
(

1

λ

)D
(0)
n

+

(
G

(0)
4

)−1
(

1

λ

)−D
(0)
n

,

VA∞ = λD
(∞)
n G

(∞)
4 (λ)−D

(∞)
n

+ ,

VB1B2 = λD
(∞)
n (J (1))−1λ−D

(∞)
n ,

V �

B2B3
= λD

(∞)
n (E(1))−1(λ − 1)−D(1)

+ ,

VB2B3
�

= (λ − 1)D
(1)

E(1)λ−D
(∞)
n ,

VB1A =
(

1

λ

)D
(0)
n

+

⎛
⎝ 4∏

j=1

G
(0)
j

⎞
⎠

−1

E(0)G
(∞)
1 G

(∞)
2 J (−1)G

(∞)
3 G

(∞)
3 (λ)−D

(∞)
n

+ ,

and VE3∞ = VE2E3
= VB∞ = VB2B3

= I . Since we have associated the branch cuts A∞, OA,

E1E2 and B1B2 with λD
(∞)
n ,

(
1
λ

)D
(0)
n , (λ + 1)D

(−1)

, and (λ − 1)D
(1)

, respectively. The subscript

10
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+ appearing in the definition of VE2E3
�

,VOA, VA∞, VB2B3
�

and VB1A indicate that we consider the

relevant boundary values from + region, i.e. (λ)+ = |λ|e2iπ .
By construction �n(z) satisfies the continuous RH problem and this can be checked by

the product of the jump matrices V at the intersection points. The product conditions give

C : (VC∞)−1VCB1(VOC)−1VDC = I, D : (VOD)−1VDC(VD∞)−1VDE1 = I,

E1 : VDE1VE1F

(
VE1E2

)−1 = I, E2 :
(
V �

E2E3

)
+VE2E3

�

(
VE1E2

)−1 = I,

E3 : VE2E3
�

V �

E2E3
= I, F : (VFO)−1 VE1F (VF∞)−1 VFA = I,

A : (VA∞)−1 VFA (VOA)−1 VB1A = I, B1 : VB1A

(
VB1B2

)−1
VCB1 = I,

B2 : VB2B3
�

(
VB1B2

)−1 (
V �

B2B3

)
+ = I, B3 : V �

B2B3
VB2B3

�
= I.

(49)

The product conditions at the intersection points A,B2, B3, C,D,E1, E2, E3, F are satisfied
identically and the product condition at point B1 is satisfied because of the consistency condition
(39) of the monodromy data. In equation (49),

(
V �

E2E3

)
+ indicates that (λ + 1) term in V �

E2E3

must be evaluated as (λ + 1)+, and
(
VB2B3

�

)
+ indicates that (λ − 1) term must be evaluated as

(λ − 1)+.
The RH problem (47) is equivalent to following Fredholm integral equation:

�−(λ) = I +
1

2iπ

∫
C

�−(λ̂)[V (λ̂)V −1(λ) − I ]

λ̂ − λ
dλ̂, (50)

where C is the sum of all contours. Hence, the solution of the discrete second Painlevé
equation can be obtained by solving the associated RH-problem (47). The jump matrices of
the associated RH-problem are given in terms of the monodromy data, which are such that
only two of them are arbitrary. Once the solution � of the associated RH-problem is obtained,
the solution xn of dPII can be written as

xn = −(�−1)12, (51)

where

� = I + �−1 λ−1 + �−2 λ−2 + · · · , as λ → ∞, (52)

and (�−1)12 is (1, 2) entry of �−1.

5. Derivation of the linear problem

In this section, we show that once the sectionally analytic function �(λ) satisfying the RH-
problem (47) is known, then the coefficients Mn and Ln of the linear differential equation (2)
can be obtained and hence the solution of dPII.

Derivation of Mn. We define Mn by Mn(λ) = ∂Yn

∂λ
[Yn(λ)]−1. Since both ∂Yn

∂λ
, and Yn(λ) admit

the same jumps, it follows that Mn(λ) is holomorphic in complex λ-plane except at λ = 0,
where it has a pole of order three, and λ = ±1 where it has simple poles. Furthermore,
Yn(λ) ∼ λD

(∞)
n eQ(λ) as λ → ∞, and thus

Mn(λ) = A1λ + A2 + A3
1

λ
+ A4

1

λ2
+ A5

1

λ3
+ A6

1

λ − 1
+ A7

1

λ + 1
. (53)

Since Yn(λ) and �(λ) are related by equation (45), and
∂Yn

∂λ
= Mn(λ)Yn(λ), we have

∂�

∂λ
+ �

[
c3

(
λ +

1

λ3

)
σ3 +

1

λ
D(∞)

n

]
= Mn�, as λ → ∞ (54a)

11
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∂�

∂λ
+ �

[
c3

(
λ +

1

λ3

)
σ3 − 1

λ
D(0)

n

]
= Mn�, as λ → 0 (54b)

∂�

∂λ
+ �

[
c3

(
λ +

1

λ3

)
σ3 +

1

λ − 1
D(1)

]
= Mn�, as λ → 1 (54c)

∂�

∂λ
+ �

[
c3

(
λ +

1

λ3

)
σ3 +

1

λ + 1
D(−1)

]
= Mn�, as λ → −1. (54d)

For large λ, � has the expansion

� = I +
1

λ
�−1 +

1

λ2
�−2 + O

(
1

λ3

)
. (55)

Substituting (55) into (54a) gives

O(λ) : A1 = c3σ3,

O(1) : A2 = [�−1, A1], (56)

O(λ−1) : A3 = D(∞)
n + [�−2, A1] − A2�−1.

Therefore, A1 = M1, A2 can be written as A2 = M2, where (�−1)12 = −xn, (�−1)21 = xn−1,
and (A3)11 = −(A3)22 = c2 + n − 2c3xnxn−1. Thus, A3 can be taken as A3 = M3.

For small λ, � has the expansion

� = I + λ�1 + λ2�2 + O(λ3). (57)

Substituting (57) into (54b) yields

O(λ−3) : A5 = c3σ3,

O(λ−2) : A4 = [�1, A5], (58)

O(λ−1) : A3 = −D(0)
n + [�2, A5] − A4�1.

Therefore, A5 = M5, A4 can be written as A4 = M4, where (�1)21 = −xn, (�1)12 = xn−1.
Since �(λ) is sectionally analytic and �(λ) = �(j), j = ±1 near λ = ±1, then (54c)

and (54d) imply that

A6 = �(1)(1)D(1)[�(1)(1)]−1, A7 = �(−1)(−1)D(−1)[�(−1)(−1)]−1. (59)

Thus, det Aj = −c2
0

/
4, and tr Aj = 0, j = 6, 7. Moreover, the symmetry Y (−1)(λ) =

σ3Y
(1)(−λ)σ3 implies that A7 = −A6. Therefore, we can take A6 = −A7 = (c0/2)σ3.

Derivation of Ln. Similar considerations imply that Ln = L1λ + L2 + L3λ
−1, and

�n+1λ
σ3 = Ln�n as λ → 0, ∞. (60)

As λ → ∞, substituting (55) into (60) yields

O(λ) : L1 = �1, O(1) : L2 = �n+1,−1 �1 − �1 �n,−1, (61)

where

�1 =
(

1 0
0 0

)
.

As λ → 0, substituting (57) into (60) gives

O(λ−1) : L3 = �2, O(1) : L2 = �n+1,1 �2 − �2 �n,1, (62)

where

�2 =
(

0 0
0 1

)
.

Equations (61) and (62) show that Ln is given as in (3).
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Acknowledgments

UM would also like to thank Department of Physics at University of Rome La Sapienza for
their support during his stay in Rome. UM and PMS would like to thank N Joshi and F Nijhoff
for showing them their unpublished Lax pair (2)–(4), and for allowing them to use it in this
paper.

References

[1] Flaschka H and Newell A 1980 Commun. Math. Phys. 76 67
[2] Ueno K 1980 Proc. Japan Acad. A 56 97

Ueno K 1980 Proc. Japan Acad. A 56 103
[3] Jimbo M and Miwa T 1981 Physica D 2 407
[4] Jimbo M, Miwa T and Ueno K 1981 Physica D 2 306

Jimbo M and Miwa T 1981 Physica D 4 47
[5] Fokas A S and Ablowitz M J 1983 Commun. Math. Phys. 91 381
[6] Fokas A S, Mugan U and Ablowitz M J 1988 Physica D 30 247
[7] Ince E L 1956 Ordinary Differential Equations (New York: Dover)
[8] Fokas A S and Zhou X 1992 Commun. Math. Phys. 144 601
[9] Fokas A S, Mugan U and Zhou X 1992 Inverse Problems 8 757

[10] Mugan U and Sakka A 1995 J. Phys. A: Math. Gen. 28 4109
[11] Grammaticos B, Ramani A and Papageorgious V G 1991 Phys. Rev. Lett. 67 1825
[12] Ramani A, Grammaticos B and Hietarinta J 1991 Phys. Rev. Lett. A 67 1829
[13] Fokas A S, Grammaticos B and Ramani A 1993 J. Math. Anal. Appl. 180 342
[14] Grammaticos B and Ramani A 1993 Application of Analytic and Geometric Methods to Nonlinear Differential

Equations (NATO ASI Ser C413) ed P A Clarkson (Dordrecht: Kluwer)
[15] Grammaticos B, Nijhoff F W, Papageorgiou V, Ramani A and Satsuma J 1994 Phys. Lett. A 185 446
[16] Cresswell C and Joshi N 1999 J. Phys. A: Math. Gen. 32 655
[17] Carstea A S, Ramani A, Willox R and Grammaticos B 2003 J. Phys. A: Math. Gen. 36 8419
[18] Mugan U, Sakka A and Santini P M 2005 Phys. Lett. A 336 37
[19] Mugan U and Sakka A 2006 Chaos Solitons Fractals 25 387
[20] Joshi N and Nijhoff F 2000 private communication
[21] Periwal V and Shevitz D 1990 Phys. Rev. Lett. 64 1326
[22] Nijhoff F W and Papageorgious V G 1991 Phys. Lett. A 153 337
[23] Papageorgious V G, Nijhoff F W, Grammaticos B and Ramani A 1992 Phys. Lett. A 164 57
[24] Joshi N, Burtonclay D and Halburd R G 1992 Lett. Math. Phys. 26 123
[25] Its A R, Kitaev A V and Fokas A S 1990 Usp. Mat. Nauk 45 135
[26] Fokas A S, Its A R and Kitaev A V 1991 Commun. Math. Phys. 142 313
[27] Zhou X 1989 SIAM J. Math. Anal. 20 966

13

http://dx.doi.org/10.1007/BF01197110
http://dx.doi.org/10.3792/pjaa.56.97
http://dx.doi.org/10.3792/pjaa.56.103
http://dx.doi.org/10.1016/0167-2789(81)90021-X
http://dx.doi.org/10.1016/0167-2789(81)90013-0
http://dx.doi.org/10.1016/0167-2789(81)90003-8
http://dx.doi.org/10.1007/BF01208781
http://dx.doi.org/10.1016/0167-2789(88)90021-8
http://dx.doi.org/10.1007/BF02099185
http://dx.doi.org/10.1088/0266-5611/8/5/006
http://dx.doi.org/10.1088/0305-4470/28/14/027
http://dx.doi.org/10.1103/PhysRevLett.67.1825
http://dx.doi.org/10.1103/PhysRevLett.67.1829
http://dx.doi.org/10.1006/jmaa.1993.1405
http://dx.doi.org/10.1016/0375-9601(94)91124-X
http://dx.doi.org/10.1088/0305-4470/32/4/009
http://dx.doi.org/10.1088/0305-4470/36/31/305
http://dx.doi.org/10.1016/j.physleta.2005.01.003
http://dx.doi.org/10.1103/PhysRevLett.64.1326
http://dx.doi.org/10.1016/0375-9601(91)90955-8
http://dx.doi.org/10.1016/0375-9601(92)90905-2
http://dx.doi.org/10.1007/BF00398809
http://dx.doi.org/10.1007/BF02102066
http://dx.doi.org/10.1137/0520065

	1. Introduction
	2. Direct problem
	Solution near = 0.
	Solution near = .
	Solution near = 1.
	lambda =-1
	Symmetries of the differential equation.

	3. One parameter family of solutions
	4. Inverse problem
	5. Derivation of the linear problem
	Derivation of  M  n   .
	Derivation of  L  n   .


