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Dissipation in a finite-size bath
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We investigate the interaction of a particle with a finite-size bath represented by a set of independent linear
oscillators with frequencies that fall within a finite bandwidth. We discover that when the oscillators have
particular frequency distributions, the finite-size bath behaves much as an infinite-size bath exhibiting dissipation
properties and thus allowing irreversible energy absorption from a particle immersed in it. We also present a
reinterpretation of the Langevin equation using a perturbation approach in which the small parameter represents
the inverse of the number of oscillators in the bath, elucidating the relationship between finite-size and infinite-size
bath responses.
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I. INTRODUCTION

In its most fundamental form, classical or quantum dis-
sipation can be considered as an interaction of a particle
with its environment. In their seminal work, Feynman and
Vernon [1] formulated such interactions using the influence
functional method that was later adapted by Caldeira and
Leggett [2,3] to the study of Brownian motion. In these and
other studies that followed, the environment is modeled as a
thermal bath consisting of a continuous set of noninteracting,
linear independent oscillators into which energy flows from
the particle of interest [4]. These formulations also yield the
fluctuation-dissipation theorem and provide details for the
phenomenological parameters that appear in the descriptions
of Brownian motion [5] and the Langevin equation, but
only for the limiting case of an infinite-size heat bath. The
presumption of an infinite number of linear oscillators in the
heat bath permits irreversible energy flow into the bath, which
then acts as an energy sink. In cases where the bath size
is small, such as those surrounding nanoscale devices, the
presence of an infinite number or a continuous distribution of
linear oscillators may not be justified [6]. In this paper we
report frequency distributions for the oscillators that make a
finite-size bath behave very much like an infinite-size bath.
Through these frequency distributions it becomes possible to
model dissipation and irreversible energy absorption from a
particle in a finite-size bath with a set of independent linear
oscillators. These developments also lead to a reinterpretation
of the Langevin equation, presented here using a perturbation
approach that elucidates the relationship between finite-size
and infinite-size bath responses.

II. FINITE BATH

Following Refs. [6,7], the generalized Langevin equation
for a particle of mass M and angular frequency �, with
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the partitioned force by the oscillators in the bath, has the
form

Mq̈(t) + M�2q(t) +
∫ t

0
�(τ )q̇(t − τ )dτ = �(t), (1)

where q(t) describes the test particle motion with quiescent
initial conditions q(0) = 0 and q̇(0) = 0 and the average of
the fluctuating force is 〈�(t)〉 = 0, where 〈 〉 represents the
statistical average over the ensemble. The dissipative term �(τ )
represents the correlation function of the bath and can also be
considered as its impulse response. For the case of a finite-size
bath that consists of linear noninteracting oscillators, each
described by its mass m and angular frequency ωi , �(τ ) has
the form

�(τ ) =
N∑

i=1

mω2
i cos ωiτ, (2)

where m = mB/N and mB and N represent the total mass and
number of particles in the thermal bath, respectively. Thus

�(τ ) = 1

N

N∑
i=1

G(ωi) cos ωiτ = 1

N

N∑
i=1

ϕi(τ ), (3)

where G(ωi) = mB ω2
i . As discussed above, under conditions

when a continuous distribution is justified for the bath oscilla-
tors, the summation in the correlation function is replaced by
an integral as

�∞(τ ) = lim
N→∞

�(τ ) =
∫ ωmax

ωmin

dm

dω
ω2 cos ωτ dω, (4)

which now represents the combined response of an infinite
number of resonators, each with a vanishingly small mass
and a frequency in the bandwidth [ωmin,ωmax], where dm/dω

represents the spectral mass density of the bath. Replacing
the summation by an integral effectively increases the number
of oscillators to infinity, affording the heat bath a dissipative
character.

In general, however, harmonic series such as �(τ ) have
properties similar to those of almost-periodic functions and
exhibit recurrence [8], precluding use of independent linear
oscillators to model dissipation in a finite-size heat bath, except
for early times of observation for �(τ ) [9]. In this paper we
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report a method that yields a class of frequency distributions
that enable a finite set of independent oscillators to mimic
very closely the dissipation characteristics of an infinite-size
bath, reducing and nearly eliminating the effects of recurrence.
We use a probabilistic approach, based on the Cramér-Rao
minimum variance bound (MVB) theorem [10,11] and the
Pitman-Koopman theorem [12,13], to minimize the distance
between the summation and the corresponding integral repre-
sentation of the correlation.

We assume the frequencies ωi in Eq. (2) as samples of
the random variable ω with a probability density function
pω(ω). Then �(τ ) in Eq. (3) can be considered as the estimator,
obtained through the arithmetic average of the samples ϕi(τ ) =
G(ωi) cos(ωiτ ) for the expected value ϕ̄(τ ) of the random
variable ϕ(τ ) = G(ω) cos(ωτ ) between the lower and upper
frequency limits ωmin = ω1 and ωmax = ωN . In terms of the
probability density function (PDF) pϕ(ϕ), the expected value
of ϕ can be expressed as

ϕ̄(τ ) =
∫ Gmax

−Gmax

pϕ(ϕ)ϕ dϕ

=
∫ ωmax

ωmax

pω(ω)G(ω) cos ωτ dω = �̄(τ ) (5)

since for unbiased estimators the mean of the estimator and
the expected value are equal.

Integrating Eq. (5) by parts, it can be shown by an
asymptotic expansion of the integral that �̄ vanishes as 1/τ ,
indicating dissipation:

lim
τ→∞ �̄(τ )= lim

τ→∞

[
1

τ
[pω(ω)G(ω) sin ωτ ]ωmax

ωmin
+O

(
1

τ

)]
=0.

(6)

�̄ decays with a double-frequency modulation, associated with
the frequency bounds of the interval, which for a narrow
bandwidth displays a decaying beat.

Unlike the average correlation �̄(τ ), which vanishes for
long times, the correlation function �(τ ) of the same bath is an
almost periodic function and, in general, exhibits recurrence.
For example, the case of a constant frequency gap �ω =
(ωmax − ωmin)/N , with ωi = i�ω, makes �(τ ) periodic, with
a period 2πN/(ωmax − ωmin). The divergence between �(τ )
and �̄(τ ) becomes more pronounced for small values of N . For
the extreme case of N = 1, �(τ ) is a pure harmonic function,
whereas �̄(τ ) still vanishes asymptotically. From a comparison
of Eqs. (4) and (5) it can be seen that �∞(τ ) approaches
�̄(τ ) when the selected PDF of the frequencies of the bath
is proportional to the mass spectral density, dm/dω = pωmB .

The estimator �(τ ) and the expected value �̄(τ ) display
the differences between discrete and continuous systems as
expressed by the summation and integral, respectively. We
show that frequencies for ϕi can be selected such that the
time response of the estimator �(τ ) follows the expectation
�̄(τ ) as closely as possible. This selection is accomplished
using the minimum variance bound theorem, which relates
the estimator �(τ ) for the mean of the random variable ϕ

to its expected value through probability density functions
pϕ [10–13]. In fact, the smaller the variance var[�(τ )] is, the
closer the estimator �(τ ) approaches �̄(τ ). However, there is a
limit to how close they can become, as established by a lowest

bound given by the Cramér-Rao inequality. Furthermore,
there exist particular populations of heat baths, described by
their probability density functions pϕ or pω, that minimize
var[�(τ )] at τ = 0 where the correlation is maximum, and
thus can exactly match this lowest bound [12,13]. For
these populations, the estimator �(0) approaches its expected
value �̄(0) as closely as possible, making the finite-size bath
emulate the properties of an infinite-size bath in the closest
possible manner.

Using the simplified notations ϕi = ϕi(0) and �̄ = �̄(0)
for brevity, where ϕi are independent observed samples of ϕ

evaluated at τ = 0, from the estimation theory the likelihood
function L for the entire system is introduced as

L(ϕ1,ϕ2, . . . ,ϕN |�̄) = pϕ(ϕ1|�̄),pϕ(ϕ2|�̄) . . . pϕ(ϕN |�̄)

(7)

and L satisfies the conditions∫ Gmax

−Gmax

L(ϕ1, . . . ,ϕN |�̄)dϕ1, . . . , dϕN = 1,

(8)∫ Gmax

−Gmax

L(ϕ1, . . . ,ϕN |�̄)�(ϕ1, . . . ,ϕN ) dϕ1, . . . ,dϕN = �̄.

Combining the conditions in Eq. (8) yields∫ Gmax

−Gmax

∂L

∂�̄
(� − �̄)dϕ1, . . . ,dϕN = 1. (9)

Equation (9), together with the Schwartz inequality, produces
a lower bound for the variance of � known as the Cramér-Rao
minimum variance bound:

var(�) =
∫ Gmax

−Gmax

L(� − �̄)2dϕ1, . . . ,dϕN

� 1∫ Gmax

−Gmax
(1/L)(∂L/∂�̄)2dϕ1, . . . ,dϕN

, (10)

where the denominator is the Fisher information functional.
The class of probability density functions that exactly match
the lowest bound of this inequality is obtained from Eq. (9) by
noting that the two functions (1/

√
L)(∂L/∂�̄) and

√
L(� − �̄)

must be proportional:

1

L

∂L

∂�̄
= a(�̄)(� − �̄), (11)

where the proportionality constant a, in the most general
case, depends on the expectation �̄ but is independent of the
integration variable ϕi . Using the Pittman-Koopman theorem
[12,13], the general form of the function pϕ is found as

pϕ(ϕ|�̄) = h(ϕ) exp[α(�̄)ϕ − β(�̄)], (12)

which depends on the two arbitrary functions h(ϕ)
and a(�̄), through α(�̄) = (1/N )

∫
a(�̄)d�̄ and β(�̄) =

(1/N )
∫

a(�̄)�̄ d�̄, subject only to the constraints in Eq. (8).
Equation (12), which represents the so-called canonical

exponential family, embodies a large class of functions that
exactly match the lower bound on the right-hand side of
Eq. (10), producing an equality. Because the changes in
the selected function pϕ , and thus L(ϕ|�̄), also change the
minimum bound value on the right-hand side of Eq. (10), in
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order to determine the distribution that produces the lowest
among those lower bounds that satisfy the MVB theorem,
we introduce the additional requirement that the change of
variance with respect to �̄ vanishes:

∂

∂�̄
(var�̄) = ∂

∂�̄

∫ Gmax

−Gmax

L(� − �̄)2dϕ1, . . . ,dϕN = 0

(13)

A variational approach using Lagrange multipliers, subject to
the constraints in Eq. (8), produces

da

d�̄
= 0. (14)

Thus the additional requirement in Eq. (13) forces the
coefficient a in Eq. (11) to be constant. Then the distribution
given by Eq. (12) takes the form of the special case of a natural
exponential family:

pϕ(ϕ|�̄) = (ϕ) exp
(
− a

2N
(ϕ − �̄)2

)
, (15)

where (ϕ) = h(ϕ) exp(aϕ2/2N ).
If in the interval [ωmin,ωmax] the function ϕ(0) = G(ω)

varies with frequency monotonically, as in the case of linear
noninteracting resonators, it holds that

pϕ(ϕ | �̄)

∣∣∣∣ dϕ

dω

∣∣∣∣ = pω(ω | �̄). (16)

The probability density function pω(ω) matching the lowest
bound of the MVB theorem can be found as

pω(ω|�̄) = (ω)

∣∣∣∣∣
dG(ω)

dω

∣∣∣∣∣ exp del
{(

− a

2N
[G(ω) − �̄]2

})
.

(17)

For a heat bath of linear noninteracting oscillators for which
G = mBω2,

pω(ω|�̄) = (ω)2mBω exp
(
− a

2N
(mBω2 − �̄)2

)
. (18)

III. LANGEVIN EQUATION FOR A FINITE BATH

The distribution in Eq. (18) is born from a comparison of
� and �̄ considering only the dissipative role of a finite-size
heat bath and how it can be modeled by a finite number of
independent linear oscillators. An analogous development for
the fluctuation term �(t) in Eq. (1) helps recast the Langevin
equation for finite-size baths:

�(t) =
N∑

i=1

mω2
i

(
xi0 cos ωit + ẋi0

ωi

sin ωit

)
, (19)

where xi0 and ẋi0 represent the initial conditions of the heat
bath and it is assumed that q(0) = q̇(0) = 0.

Rather than treating only the dissipative part of the
environment (bath) or using a contracted definition for it as
is generally done, dissipation, fluctuation, and memory effects
can be directly obtained for large N values by a formal solution
of the stochastic equations as shown in Ref. [5]. We present an
alternative approach that relates dissipation and fluctuation and
avoids the need to replace � with �̄ by invoking the large-N

argument. By introducing a perturbation parameter ε = 1/N ,
the dissipative and random parts of the bath can be expressed
through an expansion:

�(t) = �̄(t) + εγ1(t) + ε2γ2(t) + · · · ,
(20)

�(t) = �̄(t) + επ1(t) + ε2π2(t) + · · · ,
where the respective expectations are

�̄(t) =
∫ ωmax

ωmin

mBpω(ω)ω2 cos ωt dω,

�̄(t) =
∫ ωmax

ωmin

mBpω(ω)ω2 cos ωt

×
(

x0(ω) cos ω + ẋ0(ω)

ω
sin ωt

)
dω. (21)

The corresponding motion for the test particle is similarly
expressed as

q(t) = q0(t) + εq1(t) + ε2q2(t) + · · · ,
where the perturbations represent the differences of a finite-
size bath from the infinite bath. Substitution of these expres-
sions into Eqs. (1) and (19) produces a set of equations similar
in form to the Langevin equation:

Mq̈0(t) + M�2q0(t) +
∫ t

0
�̄(τ )q̇0(t − τ ) dτ = �̄(t), (22a)

Mq̈1(t) + M�2q1(t) +
∫ t

0
�̄(τ )q̇1(t − τ ) dτ

= π1(t) −
∫ t

0
γ1(τ )q̇0(t − τ )dτ, (22b)

etc., for higher-order equations. For an infinite-size bath, ε = 0
and the set of Eqs. (22a) and (22b) reduce to the first in the set
in which the correlation and the fluctuation functions both take
their expected values. As a result of the evanescent behavior
of �̄(t), together with the asymptotic dissipation induced by
�̄(t) in the first Eq. (22a), in the long times q0(t) vanishes. It
follows that in Eq. (22b) the integral on the right-hand side
also vanishes and π1(t) approaches �(t) as the dominant term
in the expansion series leading to the first-order approximation
of the motion of the test particle:

Mq̈(t) + M�2q(t) +
∫ t

0
�̄(τ )q̇(t − τ )dτ = �(t), (23)

which represents the generalized Langevin equation as does
Eq. (1), except now the correlation is represented by �̄(τ ),
the expectation rather than the estimator �(τ ). The set of
equations of Eq. (22) helps establish the relationship between
dissipation and fluctuation for finite-size baths in the context
of the classical Langevin equation.

IV. CONCLUDING REMARKS

It is worth noting that the minimum variance bound
requirement is, under some conditions, equivalent to the
maximum entropy formulation as defined in information
theory. It follows that the finite-size bath that behaves the
closest to an infinite-size bath in accordance with the MVB
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criterion is the one for which pω represents a maximum entropy
distribution. We can speculate that the distribution in Eq. (18)
offers hints, and will be the basis, for further developments
and links to other physical problems.

For example, the superposition of N harmonic functions
in the expression of �(τ ) in Eq. (2) represents the impulse
response of any linear system having natural frequencies ωi ,
such as a finite-length waveguide. The group velocity cg

along the guide is proportional to the inverse of the state
density dN/dω and therefore is proportional to the inverse
of pω. Interpretation of the distribution in Eq. (18) for this
case suggests that an asymptotically vanishing �(τ ) can be
obtained by special natural frequency distributions in the
waveguide, physically corresponding to an almost vanishing
group velocity in a given frequency bandwidth. Thus, by this
interpretation, a wave stopping process is associated with
Eq. (18) that makes the finite-length waveguide behave much
as an infinite-length one. An extension of the results reported
here can be applied to slowing down or stopping of waves
in optics and acoustics and to other applications in which
the Langevin approach is possible with a suitable selection
of G(ω). We conjecture that the distribution in Eq. (17) can

be used even for modeling relaxation in a harmonic glass
disordered system such as glassy systems where the Langevin
equation can be applied [14].

The findings of this paper also relate to some applications
of Landau damping where a finite set of N particles, with
a given distribution of initial velocities, traveling along a
harmonic force field, has an average kinetic energy similar
to the expression in Eq. (2). Again, the law of large numbers
is often invoked to replace the sum with an integral to produce
Landau damping [15]. Similarly, the results of this paper are
consistent with and applicable to the prediction of damping in
complex structures [16].

Finally, in the family of functions described by Eq. (18)
parametric studies of frequencies and through (ω), m, a, and
�̄ and their relationship with the test particle frequency � and
mass M can lead to different types of particle-bath interactions.
For example, the frequency � can be close to or far from the
peak of the curve described by Eq. (18) or the total mass
mN of the bath can be larger than, comparable to, or smaller
than the mass M of the test particle. All these choices, while
preserving the MVB theorem requirement, produce different
energy interaction scenarios.
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