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Metal-insulator transition induced by random dipoles
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We study the localization properties of a test dipole feeling the disordered potential induced by dipolar
impurities trapped at random positions in an optical lattice. This random potential is marked by correlations
which are a convolution of short-range and long-range ones. We show that when short-range correlations are
dominant, extended states can appear in the spectrum. Introducing long-range correlations, the extended states,
if any, are wiped out and localization is restored over the whole spectrum. Moreover, long-range correlations can
either increase or decrease the localization length at the center of the band, which indicates a richer behavior than
previously predicted.
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I. INTRODUCTION

Interference effects induced by random potentials deeply
modify wave diffusion up to even stopping wave transport
on a length Lloc, the localization length. This phenomenon
called strong localization or Anderson localization [1,2] can
be observed in classical waves such as acoustic waves [3],
microwaves [4], light [5], as well as in quantum waves, such
as electronic [6] or matter waves in real [7–10] or momentum
space [11,12]. Anderson theory relies essentially on two
main assumptions: (i) the potential has to be δ correlated;
(ii) the wave has to be noninteracting. If these conditions are
fulfilled, Anderson localization occurs always in one and two
dimensions, and depending on the disorder strength and the
energy, in three dimensions [13]. A localization-delocalization
transition can appear in low dimensions if correlations and/or
interactions are introduced in the systems. If on the one hand
noninteracting waves exist in nature, on the other hand real
uncorrelated potentials do not exist. Correlated disordered
potentials can be roughly divided into three wide classes,
according to the behavior of the two-point autocorrelation
function C(�) and of its Fourier transform S(k). The first
class is marked by a correlation function C(�) which decays
exponentially on a length �̄ with π/kmax < �̄ � L, L being
the length of the system and kmax the largest wave vector
allowed by the system. These potentials, called short-range
correlated potentials, may introduce resonance energies in the
spectrum inducing delocalization of a significant subset of the
eigenstates. This happens for instance in the random-dimer
model (RDM) and in its dual counterpart (DRDM) [14–17],
in which the sites of a lattice are assigned energies εa or εb at
random, with the additional constraint that sites of energy εb

always appear in pairs (RDM) or never appear as neighbors
(DRDM). The second class of correlated potentials is marked
by a spectral function S(k) that is nonzero in a finite k

range. This is, for instance, the case of the speckle [18,19]
where C(�) is a sinc function. For these kinds of potentials,
there exists a critical energy at which the localization length
increases abruptly mimicking the presence of a mobility edge
in finite-size systems [20,21]. In the third class C(�) decreases
algebraically as ∼1/�β , and both C(�) and S(k) are nonzero
over the whole real and k spaces. In practice there are no length

scales characterizing the disorder, which is scale free. These
potentials are commonly called long-range correlated. In this
case, it has been observed that correlations can have different
effects depending on the energy region under consideration. In
particular, for discrete models, a reduction of the localization
length has been observed at the band edges and conversely an
enhancement at the band center has been reported [22]. In this
context also the presence of mobility edges has been claimed
[23], although these results stirred some controversy [24,25].

Very often, especially in the case of long-range correlations,
these studies rely on toy models characterized by ad-hoc
correlation functions, creating almost no connection with
possible experimental implementations. In this paper we
propose a physical model for a random potential where
long-range and short-range correlations arise naturally from
the system itself, exploiting the properties of the dipolar
interaction [26,27] in ultracold atomic [28–31] or molecular
[32,33] gases. The model considers a series of dipoles pinned
at random positions at the minima of a deep optical lattice.
The dipoles are polarized perpendicularly to the lattice axis,
so that dipole-dipole interaction is repulsive. In this way, for
low enough densities, there are no double occupancies, and,
if the dipole-dipole interaction is large enough, consecutive
occupations are avoided too. This set of trapped dipoles,
referred as impurities, will create a disordered potential
[15,34,35] for another dipole, the test dipole, which is excited
to a different internal level and is able to move through the
lattice (see Fig. 1). Short-range correlations arise from the
distribution of the impurities, while long-range correlations
are due to the dipolar interaction between the test dipole and
the impurities.

We study the localization properties of the test dipole in the
correlated potential realized by the impurities, highlighting the
role played by short- and long-range correlations. In particular,
depending on the parameters of the model, we observe
that short-range correlations can introduce a discrete set of
extended states in the system while long-range correlations
tend to restore localization and lead to counterintuitive effects
on the localization length of the system.

The paper is organized as follows. The model is presented
in detail in Sec. II and the Hamiltonian for the test dipole
is derived. In Sec. III, we study the localization properties
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FIG. 1. (Color online) Schematic representation of the physical
model. Dipolar impurities (green spheres) are trapped at the minima
of the optical lattice, occupying random positions. The test dipole
(red upper sphere), excited to another internal level, feels a shallower
optical potential and a disordered potential due to the dipolar
interaction with the impurities.

of the model by using a renormalization-decimation scheme
for the calculation of the localization length. Then, a detailed
discussion of the role played by short and long correlations
is presented in Sec. IV. Finally, we draw our conclusions in
Sec. V.

II. THE PHYSICAL MODEL

We consider a very dilute gas of dipolar impurities trapped
in a deep one-dimensional (1D) optical lattice and a single
test dipole excited to a different internal level with the same
dipole moment �D. We superimpose to the optical lattice a
very elongated cigar-shaped harmonic confinement, so that we
can practically neglect the weak axial harmonic confinement
along the z axis. We assume both for the impurities and the
test dipoles, frozen radial dynamics into the lowest state of the
radial harmonic confinement

φω(�r⊥) = 1√
πσω

e−r2
⊥/2σ 2

ω with σω =
√

h̄

mω
, (1)

where ω = ω(I ) and ω = ω(T ) for impurities and the test
particle, respectively.

Furthermore, assuming that the optical lattice felt by the
impurities is so strong as to completely freeze their dynamics
along z, we can describe the motion of the test particle of
mass m along the lattice axis z by the following 1D effective
Hamiltonian

H = − h̄2

2m

∂2

∂z2
+ sER sin2(kz) + Vd (z), (2)

where ER = π2h̄2/2md2
L is the recoil energy, dL the lattice

spacing of an optical lattice generated by a laser of wavelength
λL = 2dL, and s the adimensional lattice depth.

The random potential Vd (z) results from the dipolar interac-
tion of the test particle with the impurities pinned in the lattice.
It is given by the convolution of the density distribution of the
impurities ρ(z) [see Eq. (4)] and the effective one-dimensional
dipolar interaction U 1D

dd (z) [see Eq. (5)]:

Vd (z) =
∫

dz′ρ(z′)U 1D
dd (z − z′). (3)

The density distribution ρ(z) is given by the sum of the Wannier
functions w(I )(z) localized around the sites l̄ occupied by the
impurities

ρ(z) =
∑

l̄

|w(I )(z − l̄dL)|2. (4)

The random distribution of the occupied sites l̄ introduces
disorder in the system.

The effective one-dimensional dipolar potential U 1D
dd (z) is

obtained after integration of the dipolar interaction Udd (�r) =
D2[1 − 3(D̂ · r̂)2]/|�r|3 in the radial directions and is given
by [36]

U 1D
dd (z) =

∫
d �r ′⊥d�r⊥|φω(I ) (�r ′⊥)|2|φω(T ) (�r⊥)|2Udd (�r − �r ′)

= D2

σ 3
⊥

(1 − 3 cos2 α)

{
−2

3
δ

(
z

σ⊥

)
+ 1

2

√
π

2
e

1
2

z2

σ2⊥

×
[(

z2

σ 2
⊥

)
+ 1

]
erfc

( |z|√
2σ⊥

)
− |z|

2σ⊥

}
, (5)

where σ⊥ = √
(σ 2

ω(I ) +σ 2
ω(T ) )/2 is the radial width of the system, α

is the angle between the dipole moment �D and the z axis, and
erfc(z) is the complementary error function

erfc(z) = 2√
π

∫ ∞

z

e−t2
dt. (6)

Note that the final expression that we obtained for U 1D
dd (z)

is composed of two parts: a Dirac δ term at z = 0 and a
slowly decaying part. One can show that at large distances
|z| 	 σ⊥, the slowly decaying part reproduces the typical
behavior of the dipolar interaction, namely, a decrease with
the inverse cubic distance U 1D

dd (z) ∼ D2(1 − 3 cos2 α)/|z|3.
For simplicity, in the present paper, we do not include contact
interactions with the underlying idea that they can be switched
off by exploiting Feshbach resonances [37]. However, they
would simply modify the strength of the δ part of the 1D
potential and provide an additional way to tune the parameters
of the system.

The tight binding form of the Hamiltonian is obtained using
as a basis the set of Wannier states wn(z) for the test particle.
For the case of a single impurity pinned at site l we obtain

Hl =
∑

n

−J (|wn〉〈wn+1| + |wn+1〉〈wn|)

−J d (|wl〉〈wl±1| + |wl±1〉〈wl|) + udd
n−l |wn〉〈wn|.

(7)

In Eq. (7), beyond the standard nearest neighbor tunneling term
J , we have included two terms due to the dipolar interaction:
the first represents a nearest neighbor dipolar assisted hopping
J d , while the second contains the on-site energies udd

n−l at site
n. The Hamiltonian parameters can be calculated using the
following expressions:

J = −
∫

w∗
n(z)

[
− h̄2

2m

d2

dz2
+ sER sin2(kz)

]
wn+1(z) dz,

J d = −
∫

w∗
l (z)wl+1(z)

∣∣w(I )
l (z′)

∣∣2
U 1D

dd (z − z′) dz dz′,

udd
n−l =

∫
|wn(z)|2∣∣w(I )

l (z′)
∣∣2

U 1D
dd (z − z′) dz dz′. (8)

The function udd
n−l simply depends on the distance |n − l|

between the test particle and the impurity and provides the
dipolar interaction between a single impurity and the test
particle in the discretized formalism.

013632-2



METAL-INSULATOR TRANSITION INDUCED BY RANDOM . . . PHYSICAL REVIEW A 88, 013632 (2013)

-1

0

1

2

0.15 0.2 0.25 0.3

E
n
er

gi
es

(i
n

u
n
it

s
of

J
)

σ⊥/dL

λ0

λ2

λ1

θ

(a) (b) (c) (d)

FIG. 2. (Color online) Site energies λ0, λ1, and λ2, and hopping
energy θ as function of σ⊥ in units of dL, for the case of
dysprosium atoms with D2/d3

L = 0.016ER , α = π/2, λL = 2dL =
570 nm, s(T ) = 6, and s(I ) = 30. The colored vertical lines labeled
by different letters correspond, respectively, to (a) σ⊥/dL = 0.158,
(b) σ⊥/dL = 0.184, (c) σ⊥/dL = 0.226, and (d) σ⊥/dL = 0.302 and
identify the set of parameters that we used for the calculation of the
localization properties of the system.

In Fig. 2, we show the behavior of the quantities θ =
(J + J d )/J and λn−l = udd

n−l/J for |n − l| = 0,1, and 2, for
D2/d3

L = 0.016ER , α = π/2, s(T ) = 6, and s(I ) = 30 as a
function of σ⊥ which is our control parameter. This value of
D2/d3

L corresponds to the case of dysprosium atoms trapped
in an optical lattice generated by a laser of wavelength
λL = 570 nm [30].

We note that, for this choice of parameters, we can
reasonably set θ = 1 (J d = 0) and approximate the on-
site energies for |n − l| � 2 by the asymptotic expression
λn−l = λ/|n − l|3 with λ = D2/(Jd3

L). They are, therefore,
independent of the value of σ⊥. Also λ1 does not depend
significantly on the radial confinement. Conversely the value
of λ0 strongly depends on σ⊥ and can even vanish and become
negative due to the anisotropy of the dipolar interaction.

In the presence of several impurities the different contribu-
tions have to be included summing over the occupied sites l̄.
Because of the impurity-impurity dipolar repulsion, we will
impose that each impurity has to be preceded and followed by
at least two empty sites. The resulting Hamiltonian,

H = −J
∑

n

(|wn〉〈wn+1| + |wn+1〉〈wn|)

+
∑

n

εn|wn〉〈wn|, (9)

has hopping energies equal to J , and site energies

εn =
∑

l̄

udd
n−l̄

=
∑

l

ρlu
dd
n−l . (10)

The system is characterized by the properties of the
impurity density distribution and the interaction potential. We
introduce the notation 〈· · · 〉 to indicate the averaging for each
lattice l over different realizations of the disordered potential.
Since, due to translational invariance such averages will not
depend on the lattice site, the index l will not appear in our
notations for the correlation functions.

The discretized impurity density distribution ρl is a stochas-
tic variable with average value

〈ρl〉 = C, (11)

corresponding to the impurity concentration C, and density
correlation function

Cρ(�) = 〈ρlρl+�〉. (12)

The average value and the correlation functions of the full
potential εl can be extracted from the statistical properties of
ρl and the shape of the interaction potential. In particular, one
can prove two important relations, first that the average value
of the full potential is simply given by

〈εl〉 = C
∑

n

udd
n , (13)

which is the product of the impurity concentration and
∑

n udd
n .

This last quantity can be thought of as a sort of spatial average
of the interaction potential. Second, one can show that

Cε(�) = 〈εlεl+�〉 =
∑

j

Cρ(� − j )Cu(j ), (14)

namely, that the two-point correlation function is given by the
convolution of the density correlation function Cρ(�) and

Cu(�) =
∑

n

udd
n udd

n+�, (15)

which is the interaction potential correlation function.
For the case of a dipolar potential lim�→∞ Cu(�) ∝ �−3, and

for random impurities whose minimum distance is fixed to be
three sites, as in our model, one has

Cρ(�) = C2 +
( C

1 − 2C

)�/2

[A cos(κ�) + B sin(κ�)], (16)

with κ = d−1
L [π − atan√

(4−9C)/C], A = C − C2, and B =
−[

√
C3(1−2C) + (C − C2) cos(κdL)]/ sin(κdL).

Thus we can conclude that the impurity distribution
introduces short-range correlations, while the shape of the
interaction udd

n is responsible for long-range correlations. The
role and the competition between these two effects will be
extensively discussed in Sec. IV.

For the full potential, let us also introduce the reduced
correlation function, defined as

cε(�) = 〈εlεl+�〉 − 〈εl〉2〈
ε2
l

〉 − 〈εl〉2
(17)

and the associated spectral density

S(k) =
∑

�

cε(�)eik�. (18)

In the following, we will use the square root of the variance of
the full potential to quantify the potential strength

W =
√〈

ε2
l

〉 − 〈εl〉2. (19)
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FIG. 3. (Color online) Top panel: localization length Lloc in units of the lattice spacing dL as a function of the energy in units of J for
C = 1/4, system sizes up to 107 lattice sites, and averaged over 100 configurations. The black dashed lines correspond to the localization length
calculated in the Born approximation L(2)

loc. Bottom panel: reflection coefficient R of the single impurity as a function of the energy in units of
J . The vertical dashed lines indicate the energies for which the reflection coefficient vanishes [R(E) = 0]. From left to right, different plots
refer to increasing values of σ⊥, corresponding to the vertical lines in Fig. 2.

III. NATURE OF THE SPECTRUM

We study the nature of the spectrum of the test dipole
by evaluating the Lyapunov exponent �(E) through the
asymptotic relation

�(E) = 1

Lloc(E)
= lim

N→∞
1

NdL

ln

∣∣∣∣GN,N (E)

G1,N (E)

∣∣∣∣ , (20)

where Lloc(E) is the localization length, G(E) = (E − H )−1

is the Green’s function related to the Hamiltonian H at energy
E, and Gi,j (E) = 〈i|G(E)|j 〉. The matrix elements G1,N (E)
and GN,N , where N is the total number of lattice sites, have
been computed by exploiting a renormalization-decimation
scheme [38]. Our results, obtained as the average over several
configurations, are shown in the upper row of Fig. 3, where we
consider increasing values of σ⊥, corresponding to the vertical
lines in Fig. 2. We use the same color code in all figures and
label corresponding simulations with the same letters (a), (b),
(c), and (d). Here and in the following, we consider system
sizes up to 107 lattice sites, fix C = 1/4, and average over 100
configurations. Each configuration is generated by randomly
distributing the impurities along the lattice and forbidding
those configurations where the minimum distance between
impurities is less than three lattice sites.

As the value of σ⊥ is increased, we observe very different
localization regimes. Notably for certain values of σ⊥, we
observe divergences of the localization length, corresponding
to the appearance of metallic states in the spectrum. This
suggests the presence of delocalization effects induced by the
correlations of the physical model under consideration. More

precisely, for large positive values of λ0, all states are clearly
localized since the localization length is always finite [first
panel (a)]. By increasing σ⊥, for almost vanishing values of
λ0 the localization length exhibits two well defined peaks in
two regions of the spectrum [second panel (b)]. Increasing σ⊥
further, corresponding to negative values of λ0, we observe
the disappearance first of one of the two divergences [third
panel (c)], and then of both of them [fourth panel (d)]. In
this last panel no divergences of the localization length are
observed, but there are still peaks at the band edges, that recall
the diverging behavior previously observed.

The dashed black lines correspond to the localization length
L(2)

loc evaluated in the Born approximation, which corresponds
to a second order perturbative calculation in the disorder
strength [39–41],

�(2)(E) = 1

L(2)
loc(E)

= W 2

J 2

S(2k(E))

8 sin2[k(E)dL]
, (21)

where the connection between k(E) and the energy is given
by the following relation E = 〈εn〉 + 2J cos(kdL). Let us
note that the Born approximation gives, by construction, a
symmetric localization length around the average value of the
disorder 〈εn〉, since the spectral density S(k) associated with
c(�) is always a symmetric function of k. Despite this fact, there
is a noticeable agreement between the Born approximation
and the exact numerical results, even in case (c) of a single
divergence, where a strong peak at a negative energy is
strongly reminiscent of the divergence found in the Born
approximation.
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IV. ROLE OF CORRELATIONS

With the aim of understanding why we are observing
the appearance and the disappearance of metallic states
in the spectrum by varying the radial confinement (and
thus the effective 1D dipolar interaction), we analyze the
effects of the short-range correlations introduced by the
impurity density distribution and of the long-range correlations
introduced by the dipolar potential between the test dipole and
the dipolar impurities.

A. Short-range correlations

In order to isolate the role of short-range correlations in our
model, we calculate the reflection coefficient for the case of
a single impurity, as in Eq. (7), trapped at the site of index 0
of an infinite lattice. To get analytical results, we first neglect

contributions beyond nearest neighbors. Therefore we assume
that a single dipolar impurity modifies just a trimer of on-
site energies {λ1,λ0,λ1}, and we generally assume that it can
modify also the hopping with nearest neighboring sites θ .

A plane wave 〈n|k〉 = eikndL , eigenstate of the unperturbed
periodic Hamiltonian H 0 = ∑+∞

n=−∞ − J (|wn〉〈wn+1| +
|wn+1〉〈wn|) with energy E = −2J cos(kdL), is perturbed by
the impurity and results in the following wave function

〈n|ϕ〉 =
{

τeikndL (n > 1)

eikndL + r e−ikndL (n < −1)
, (22)

where τ is the transmittance and r the reflectance. Using
the scattering formalism combined to the renormalization-
decimation scheme [15,42,43], we obtain the following an-
alytical formula for the reflection coefficient R = |r|2 of the
single dipolar impurity:

R =
{
λ1

(
E
J

)2 − E
J

[
1 − θ2 + λ2

1 + λ1λ0
] − 2θ2λ1 + λ0 + λ2

1λ0
}2

{
λ1

(
E
J

)2 − E
J

[
1 − θ2 + λ2

1 + λ1λ0
] − 2θ2λ1 + λ0 + λ2

1λ0
}2 + θ4

[
4 − (

E
J

)2] . (23)

In the bottom row of Fig. 3, we plot R for the same parameters
used for the calculation of the localization length, i.e., θ = 1
and λ0 and λ1 taken from the curves in Fig. 2. We observe
that the calculation of the reflection coefficient of the single
impurity provides a very good understanding of the behavior
of the localization length: the energies where R tends to zero
are exactly those where the localization length exhibits very
large anomalous values. There is, therefore, a direct connection
between the appearance of metallic states in the spectrum
and the scattering properties of the single impurity. It has
been previously shown by Dunlap et al. [14] that this kind of
single impurity analysis can be used to interpret the transport
properties of a system of N lattice sites, where there are several
randomly placed impurities. More precisely they proved that
in such systems the number of single-particle states that show
a metallic behavior, being extended over the full system, is of
the order of

√
N . Notably this number of delocalized states is

large enough to induce transport in the system, and initially
localized wave packets show a superdiffusive spreading in the
disordered potential. This means that this type of extended
states are detectable in typical expansion experiments which
can be performed with ultracold atomic gases [7,8].

It is remarkable that making use of the simple analytical
expression (23) we can predict the localization properties of a
rather complex system and the occurrence of metallic states in
the spectrum. Studying the solutions of the equation

R(E) = 0 (24)

as a function of λ0 and λ1, one can extract the phase diagram
in Fig. 4. We identify four different regions depending on the
number of solutions of Eq. (24) and on their values. More
precisely, if the solutions are both imaginary, no divergences
are expected and all the states are exponentially localized [red
region (a)]. If the solutions are real and inside the single

impurity spectrum E = −2J cos(kdL), namely, when the
roots satisfy the additional condition |E| < 2J , divergences
are expected. Therefore, when the solutions are real, we
can identify three additional scenarios: both solutions lie
inside the spectrum [blue region (b)], only one solution lies
inside the spectrum [green region (c)], and both solutions lie
outside the spectrum [yellow region (d)].

-2 -1 0 1 2
λ0

0

0.2

0.4

0.6

λ
1

(b) (a)(c)

(d)

FIG. 4. (Color online) Phase diagram induced by short-range
correlations extracted from the reflection coefficient in Eq. (23) for
the single impurity case. The different regions correspond to different
localization regimes obtained from the solution of Eq. (24). No real
solutions of Eq. (24) correspond to the (a) red region. If Eq. (24)
has real solutions, we can distinguish three cases depending on the
number of solutions lying inside the spectrum: two solutions [(b)
blue region], one solution [(c) green region], and no solutions [(d)
yellow region]. The four markers in the diagram correspond to the
simulations presented in Fig. 3 and to the values of σ⊥ indicated by
vertical lines in Fig. 2.
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In the diagram shown in Fig. 4, we identify with markers
the values of λ0 and λ1 corresponding to the different plots
of Fig. 3, where the dashed vertical lines mark the energies
which verify the condition R(E) = 0. In particular the square
in the red region (a) corresponds to the first plot in Fig. 3
where all states are localized; the circle in the blue region (b)
corresponds to the second plot in Fig. 3, where we observe two
resonances; the triangle in the green region (c) corresponds to
the third plot in Fig. 3, where we observe one resonance; and
the diamond in the yellow region (d) corresponds to the last
plot in Fig. 3, where there are no resonances but the peak on
the right shows a tendency to diverge due to the fact that the
resonance lies just outside the single impurity spectrum.

Let us recall that, in our single impurity analysis, we
considered the case where one isolated dipole induces just
a trimer of site energies {λ1,λ0,λ1} and we neglected beyond
nearest neighbor contributions. In other words, we neglected
the effect of long-range correlations.

In the next subsection, we study in detail the role played
by the dipolar tails that we neglected in this simplified
calculation and we highlight the role played by long-range
correlations.

B. Long-range correlations

In order to understand the role played by long-range
correlations and place the dipolar case in a wider context, we
investigate the localization properties of a disordered potential
generated by an effective impurity-test particle interaction with
tails decaying as u

β

|n| ∼ 1/|n|β where β � 1.
This is done by placing the impurities exactly as done in the

dipolar case, keeping fixed the values of λ0 and λ1 and choosing
λn = u

β
n/J = λ/|n|β for n � 2. The case β = 3 recovers our

physical model with dipolar interactions. Moreover, we shift
and normalize the on-site energies in order to obtain the same
average value 〈εn〉 and disorder strength W that we had in the
dipolar case. Following this procedure, we can really analyze
the effect of long-range correlations keeping fixed the disorder
strength W . In particular we considered values of β ranging
from 1 up to 5 and we also considered the case of β = ∞ that
corresponds to λn = 0 for |n| � 2.

The potential generated with this procedure has Cρ(�)
which is unchanged and decays exponentially as previously
discussed. This is due to the fact that the impurities are placed
exactly in the same way as before. The correlation function
associated with the interaction potential Cu(�) is instead
modified and using Eq. (15) one can show that it decays at large
distances as Cu(�) ∼ 1/�β for β > 1 and as Cu(�) ∼ ln(�)/�
for β = 1. These asymptotic expressions determine the shape
of the tails of the two-point correlation function Cε(�) of the
random potential seen by the test dipole [see Eq. (14)] and
consequently the reduced correlation function associated to
the full potential cε(�).

The effects played by long-range correlations are again
studied by calculating numerically the localization length with
the renormalization-decimation approach. In Fig. 5 we show
the localization length Lloc calculated for different values
of β. In particular we show a comparison between the two
limiting cases of β = ∞ and β = 1 and the physical case under
consideration, i.e., the dipolar case β = 3. We considered also

FIG. 5. (Color online) Localization length Lloc in units of the
lattice spacing dL as a function of the energy in units of J for β =
1,3,∞, namely, different types of long-range correlations identified
by the asymptotic decay of the tails of the two-point correlation
function Cε(�). The left and right panels correspond to two different
localization regimes induced by short-range correlations as shown in
Figs. 3(a) and 3(b) for β = 3 (see text for more details).

other values of β but we do not show the results here since they
are not particularly instructive. They just show an intermediate
behavior between the two limiting cases reported here.

The two panels in Fig. 5 correspond to the two different sets
of parameters already used for Figs. 3(a) and 3(b). In the left
panel we show the case where the localization length is always
finite, while in the right panel we show the case where there
are two resonances in the spectrum. Therefore the two curves
for β = 3 are exactly the same curves which are shown in the
upper rows of Figs. 3(a) and 3(b). We compare them with the
case of the complete absence of long-range correlations (β =
∞) and with the case of very slowly decaying correlations
(β = 1).

In Fig. 5, there are two main features that we would like
to stress here. The first is the effect on the divergencies in
the localization length, discussed in the previous section.
We observe that such divergencies tend to be beveled by
long-range correlations. In fact for β = ∞, the localization
length takes values of the order of the system size (107dL)
signaling the presence of real metallic states in the system
which extend over the full lattice. As the value of β is
reduced, corresponding to slower decaying tails, peaks in the
localization length are still present but they are shifted towards
the band edges and their height is decreased. This behavior
is somehow expected, since the perfect resonance condition,
obtained with the single impurity calculation presented in the
previous section, is no more fulfilled in the presence of several
impurities with overlapping slowly decaying tails. The tails
tend to restore destructive interference in the forward direction
and thus introduce localization in the system. However, from
the results shown in Fig. 5, we can conclude that the effect
of short-range correlations remains clearly visible also in
presence of long-range correlations.

The second feature that we would like to highlight is the
counterintuitive behavior of Lloc introduced by long-range
correlations at the center of the band. In fact, depending on the
set of parameters under consideration, long-range correlations
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have opposite effects on the localization length, which can
either decrease (left panel), or be enhanced (right panel).
This observation shows the highly nontrivial role played by
long-range correlations in determining the localization proper-
ties of a disordered system and indicates a richer behavior with
respect to what has been observed so far in the literature [22].

These features that we extracted from the numerical
simulations reported in Fig. 5 are also captured within the
Born approximation. We do not report the curves for L(2)

loc
calculated in the Born approximation, and just comment that
the agreement between those curves and the exact numerical
results is good, similar to that observed in Fig. 3.

One can understand the previous results based on the
following properties: (i) in the Born approximation, �(2) is
proportional to S(2k) and to W 2 which we have taken to
be constant [see Eq. (21)]; (ii) the integral of S(2k) is a
constant; (iii) the longer the range of the correlations, the
larger S(2k) will be at the energy band edges. In the case of
Fig. 5 (right), where for β = ∞, there are extended states,
one can conjecture that, for decreasing β, property (iii) above
together with the disappearance of the extended states lead to
a decrease of �(2) at the energy band center, corresponding to
an increase of the localization length, as observed. The case
shown in Fig. 5 (left) cannot be explained based on similar
simple arguments, since the increase of S(2k) at the energy
band edges implies a nontrivial redistribution of the disorder
spectral components all over the band. In the specific case, one
observes an increase of Lloc at the energy band center, contrary
to previous predictions [22].

Finally we would like to comment that we do not find the
presence of mobility edges induced by long-range correlations
as suggested in Refs. [23,44].

V. CONCLUSIONS

In this paper, we considered a set of dipolar impurities
pinned at random positions in a deep optical lattice which
create a disordered potential for an atom in a different

internal state. An analysis of the statistical properties of the
model showed that repulsive dipolar interactions between
impurities introduce short-range correlations due to the fact
that occupations of neighboring sites are forbidden.

The localization properties of the model were calculated
by means of a renormalization-decimation technique which
allowed us to calculate properties of very large systems and
study the extended or localized nature of the states. We found
that the presence of short-range correlations can give rise to
different regimes. In particular, as the parameters of the system
are changed, we observed regimes where one or more discrete
sets of extended states appear in the spectrum. The occurrence
of the different regimes can be predicted starting from an
analytical expression obtained from the scattering of a single
impurity.

Long-range correlations were studied not only for the
dipolar case but also for a more general two-point correlation
function decaying as C(�) ∼ 1/�β , where the case β = 3
corresponds to the dipolar case. We saw that long-range
correlations in general tend to restore localization in the
spectrum, but also lead to counterintuitive behaviors of the
localization length. More precisely, depending on the regime
under consideration, they can enhance or reduce localization
at the center of the band.

Our work sheds light on the interplay between the role of
short-range and long-range correlations and can be a guide
for experiments devoted to the study of Anderson localization
with ultracold dipolar gases. Natural extensions of the present
work include the study of two-dimensional (2D) geometries
and the role of interactions between many test dipoles.

ACKNOWLEDGMENTS

This work was supported by Grants No. CNRS-24543 and
No. TUBITAK-210T050, by the LIA FSQL, by ERC through
the QGBE grant, and by Provincia Autonoma di Trento. We are
grateful to Franco Dalfovo, Iacopo Carusotto, Jean-François
Schaff, and Luca Tessieri for useful discussions.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] P. W. Anderson, Philos. Mag. B 52, 505 (1985).
[3] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A.

van Tiggelen, Nat. Phys. 4, 945 (2008).
[4] D. Laurent, O. Legrand, P. Sebbah, C. Vanneste, and

F. Mortessagne, Phys. Rev. Lett. 99, 253902 (2007).
[5] M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, Phys. Rev.

Lett. 96, 063904 (2006).
[6] M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1969).
[7] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,

D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Nature (London) 453, 891 (2008).

[8] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti,
G. Modugno, M. Modugno, and M. Inguscio, Nature (London)
453, 895 (2008).

[9] S. S. Kondov, W. R. McGehee, J. J. Zirbel, and B. DeMarco,
Science 334, 66 (2011).

[10] F. Jendrzejewski, A. Bernard, K. Mueller, P. Cheinet, V. Josse,
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