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Power dissipation analysis in tapping-mode atomic force microscopy
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In a tapping-mode atomic force microscope, a power is dissipated in the sample during the imaging process.
While the vibrating tip taps on the sample surface, some part of its energy is coupled to the sample. Too much
dissipated power may mean the damage of the sample or the tip. The amount of power dissipation is related to
the mechanical properties of a sample such as viscosity and elasticity. In this paper, we first formulate the
steady-state tip-sample interaction force by a simple analytical expression, and then we derive the expressions
for average and maximum power dissipated in the sample by means of sample parameters. Furthermore, for a
given sample elastic properties we can determine approximately the sample damping constant by measuring
the average power dissipation. Simulation results are in close agreement with our analytical approach.
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Tapping-mode force microscopy is utilized for surface i
aging at very low lateral forces. The cantilever taps on
sample surface giving rise to the interaction force. This fo
has two parts: One is the attractive van der Waals~vdW!
forces and second is the repulsive Hertzian contact fo
These forces pull the sample surface up and down mea
that some part of the cantilever energy is dissipated in
sample where the sample can be modeled with a dashpo
a spring~see Fig. 1!. If the dissipated power is high enoug
it can break the bonds of the surface atoms. Therefore,
nondestructive imaging the power dissipation is an import
factor to consider. There are several studies1–3 which relate
the dissipated power to the phase of the cantilever. In
Brief Report we follow a completely different approac
First we obtain an analytical expression of tip-sample int
action force for a given steady-state tip oscillation amplitu
and then we give the power dissipation in terms of sam
parameters. We assume that the higher harmonics of the
tilever oscillation is negligible, which is usually the case f
high-Q systems, and hence the point-mass model descr
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the tapping-mode AFM suitably.4 In this way we can easily
find the dissipated power and compare it with o
simulation5 result. Moreover, we can find the sample dam
ing constant by measuring the average power dissipation

The tip-sample interaction is highly nonlinear and cann
be solved analytically without doing crude approximation
The simulations are quite useful to interpret experimen
observations.5,6 However, the simulations does not give a
insight on the effect of overall system parameters. In orde
gain further insight, we first need to approximate the nonl
ear interaction force analytically at a given steady-state
oscillation amplitude. In a tapping mode, there exist tw
stable oscillation states.7 For the high amplitude solution, th
tip-sample interaction forcef TS has both attractive and repu
sive parts as shown in Fig. 2. The repulsive force for
<utu,T1 can be approximated by a cosine. A linear appro
mation is utilized for the attractive force forT1<utu<T2. We
assume that the force is even symmetric aroundt50. An
analytic expression for the interaction force can be written
f TS~ t !55
Fp2Fm

12cos~2p/a!
cosS 2p

aT1
t D1

Fm2Fpcos~2p/a!

12cos~2p/a!
for 0<utu,T1

Fm

T12T2
t1

FmT2

T22T1
for T1<utu<T2

0 for T2,utu<T/2.

~1!
es
In this parametric expression,Fp andFm are the maximum
repulsive and attractive forces exerted on the sample, res
tively. T is the period of oscillation.a is a fit constant that
defines the period of the cosine and its optimum value
different for different oscillation amplitudes. The results f
differenta values are very close to each other and hence
simplicity we choosea54. In the steady-state condition
the periodic interaction force can be represented with a F
rier series8
ec-

is

r

u-

f TS~ t !5a01 (
n51

`

ancos~nwt!, ~2!

wherew52p/T is the oscillation frequency and the seri
coefficients are

a05
2

TE0

T/2

f TS~ t !dt, ~3!
©2003 The American Physical Society04-1



-

nd

th
xi-
ou
al

of

li

xi-

le.
’s
sor

n
t
n

c in-

pa
h
r

and

BRIEF REPORTS PHYSICAL REVIEW B67, 193404 ~2003!
an5
4

TE0

T/2

f TS~ t !cos~nwt!dt. ~4!

Using Eq.~1! in Eq. ~4! we can find

an5
8T1~Fp2Fm!cos~nwT1!

pTF12S 4nT1

T D 2G
1

TFm@cos~nwT2!2cos~nwT1!#

~T12T2!~pn!2
. ~5!

Referring to Fig. 1 the timeT2 can be found from geo
metric considerations as

T25
T

2
2

T

2p
cos21S zi2zr2zpe2ks(T2T2)/gs

A D , ~6!

herezr is the rest position of the tip,A is the tip oscillation
amplitude, ks and gs are the sample spring constant a
damping constant, respectively.zi is the interaction distance
where the attractive force is large enough to pull up
sample surface.zp is the sample displacement due to ma
mum repulsive force exerted on the sample during previ
cycle. Note thatT2 depends on itself, therefore the fin
value ofT2 is found by iteration.

Attractive part of the interaction force as a function
tip-sample distancez is given by9

Fatt~z!5
HR

6s2 F2S s

z D 2

1
1

30S s

z D 8G for z.z05
s

A6 30
,

~7!

whereH is the Hamaker constant,R is the tip radius, ands
is the interatomic distance. The effect of this force is neg
gible for tip to sample distances larger than 20s. Therefore
we choosezi520s. The maximum attractive forceFm is
found by setting the derivative ofFatt equal to zero:

FIG. 1. The probing tip contains information about sample
rameters. Mechanical behavior of the sample is modeled wit
dashpot and a spring. Positions are referred with respect to the
position of the sample surface.
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Fm5FattS za5zU]Fatt /]z505
s

A6 15/2
D 520.245

HR

s2
. ~8!

The timeT1 when the attractive force reaches its ma
mum value is given by

T15
T

2
2

T

2p
cos21S za2zm2zr

A D , ~9!

where the sample deformation in the presence ofFm is

zm5
Fm

ks~T22T1!
@~T22T1!2~gs /ks!~12e2ks(T22T1)/gs!#

2zpe2ks(T2T1)/gs. ~10!

Repulsive part of the interaction force is given by9

F rep~z!5
8A2R

3
Er~z02z!3/2for z<z0 , ~11!

1

Er
5

12v t
2

Et
1

12vs
2

Es
, ~12!

whereEr is the reduced elastic modulus of tip and samp
Et , Es and v t , vs are the Young’s moduli and Poisson
ratios of the tip and sample, respectively. Using pha
analysis,5 the fundamental component off TS can be found as

a15
kt

Qt
~A0

21A222A0A sinf!1/2F S 12
w2

w0
2D 2

Qt
21

w2

w0
2G 1/2

,

~13!

whereA0 is the free tip oscillation amplitude,w0 is the reso-
nance frequency,A andf are the steady-state tip oscillatio
amplitude and phase, andkt and Qt are the spring constan
and quality factor of the cantilever. If the cantilever is drive
at its resonance frequency and assuming even symmetri
teraction forces, Eq.~13! reduces to

-
a
est

FIG. 2. A representative simulated and approximated forces
sample deformation in a fraction of one oscillation cycle.A/A0

50.8, gs51026 kg/s, ks520 N/m.
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a15
kt

Qt
~A0

22A2!1/2. ~14!

Fp and zr must satisfy the following equations simulta
neously:

a15
8T1~Fp2Fm!cos~wT1!

pTF12S 4T1

T D 2G
1

TFm@cos~wT2!2cos~wT1!#

p2~T12T2!
, ~15!

Fp5
8A2R

3
Er~z02zr1A2zp!3/2, ~16!

where the sample displacement whenFp is exerted on the
sample is

zp5
Fp

ks
1S zm2

Fm

ks
De2ksT1 /gs

1
gs~Fm2Fp!~12e2ksT1 /gs!

ks
2T1

. ~17!

The displacement of the sample surface due tof TS is gov-
erned by the following differential equation

gs

dzs~ t !

dt
1kszs~ t !5 f TS~ t !, ~18!

using superposition, we can add the displacements du
different frequencies to get the total displacement

zs~ t !5
a0

ks
1 (

n51

`
an

Aks
21~nwgs!

2
cosFnwt2tan21S nwgs

ks
D G .
~19!

The instantaneous power dissipated in the sample is g
by

p~ t !5 f TS~ t !
dzs~ t !

dt
. ~20!

If we integratep(t) over one cycle and divide by the perio
we get the average power. Hence we obtain our final res

Pavg5 (
n51

` an
2

2Ags
21~ks /nw!2

sinF tan21S nwgs

ks
D G . ~21!

Figure 3 shows the average power dissipated in one c
for A/A050.8. The parameters used in calculations are c
sen to beA05100 nm, f 5w/2p520 kHz, kt516 N/m, Qt
5250, Et590 GPa, Es52 GPa, v t5vs50.2, H580 zJ,
R510 nm, ands52 Å. Taking the first 100 terms in Eq
~21! provides less than 1% error. It is seen that the calcula
and the simulated power values are in agreement.
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Now, we consider two asymptotic cases: For very lo
damping constants (gs /ks!T1), Eq. ~21! can be approxi-
mated as

Pavg'(
n

S annw

ks
D 2 gs

2
. ~22!

Rearranging Eq.~22! we get

gs5
2Pavg

(
n

S annw

ks
D 2 . ~23!

The sample spring constantks is proportional to the Young’s
modulus of the sample10 and for this analysis it is taken to b
EsR. For very high damping constants (gs /ks@T), the av-
erage power dissipation is given by

Pavg'

(
n

an
2

2gs
. ~24!

Rearranging Eq.~24! we get

gs5

(
n

an
2

2Pavg
. ~25!

The average power dissipation is also related to the
oscillation amplitudeA and phasef by the following
equation:1–3

Pavg5
ktw

2Qt
@A0A sinf2~w/w0!A2#. ~26!

Hence, we are able to estimate the sample damping cons
by measuring the average power dissipation. As can be s
from Eqs.~17! and~10! zp andzm are zero for high damping
constants, and they are equal toFp /ks and Fm /ks for low

FIG. 3. Average dissipated power versus sample damping c
stant for variouskt values.
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TABLE I. Actual and estimatedgs values.

Estimatedgs with

10% error included in 50% error included in

Multiplying
factor Actualgs Estimatedgs H R Pavg H R Pavg

1028 1.00 1.04 1.0460.02 1.0460.02 1.0460.11 1.0560.12 1.0660.13 1.0460.53
1027 1.00 1.04 1.0460.02 1.0460.02 1.0460.11 1.0560.12 1.0660.13 1.0460.53
1026 1.00 1.01 1.0160.02 1.0160.02 1.0160.10 1.0160.12 1.0260.13 1.0160.50
1025 1.00 0.77 0.7760.02 0.7760.02 0.7760.08 0.7860.09 0.7860.10 0.7860.39
1024 1.00 1.36 1.3660.03 1.3460.05 1.3760.14 1.3660.10 1.3260.23 1.8160.90
1023 1.00 0.78 0.7860.02 0.7960.03 0.7860.08 0.7860.06 0.7860.14 1.0660.54
1022 1.00 0.76 0.7660.04 0.7760.03 0.7660.08 0.7660.06 0.7660.13 1.0060.50
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damping constants, respectively. Equations~22! and~24! are
also plotted in Fig. 3. The approximation is valid for eith
low or high damping constants, it deviates from the ex
result for mediumgs values.

The procedure to findgs for a sample with known elas
ticity can be stated as follows. First, the interaction for
parameters are found using Eqs.~6!–~17!. Using Eq.~5! an
values are calculated. The average power given by Eq.~26!
is determined. Finally,gs values are found using Eqs.~23! or
~25!. A MATLAB code that does these calculations is availa
for download.11

To calculate the error bounds, we made several sim
tions. Table I summarizes the results. The Hamaker cons
H depends on tip-sample system geometry, and the tip ra
R can roughly be estimated. Therefore we include the er
coming from these constants into our analysis. It is seen
the phase measurement error inPavg is dominant. Also, it is
interesting to see that adding a 50% uncertainty toH or R
does not significantly alter the results.

To find the maximum power dissipation, we equa
d2zs(t)/dt2 to zero and get

t5
1

nw Fp/21tan21S nwgs

ks
D G . ~27!
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Substituting Eq.~27! into Eq. ~20! we get

Pmax5(
n

an

Ags
21~ks /nw!2 (

n
ansinF tan21S nwgs

ks
D G .

~28!

Although the average power dissipation is in femtowatt le
els, we have to consider the peak power dissipated in
sample. It is found that the peak instantaneous power ca
more than 100 times the average power.

In summary, we formulated the average and maxim
power dissipation in terms of the sample parameters. T
analytical approach also gives a physical meaning to
phasef of the cantilever@see Eqs.~21! and~26!#. It is clear
that f is a complicated function of the tip and the samp
parameters as well as the oscillation amplitude. In additi
we are able to find many important quantities such as
contact time, the sample deformation, and the maxim
forces exerted on the sample analytically. We also see f
Fig. 3 that softening the lever more and more does not
nificantly reduce the power dissipation which is not se
directly from Eq.~26!.
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