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We determine the frictional figures of merit for a pair of layered honeycomb nanostructures, such as

graphane, fluorographene, MoS2 and WO2 moving over each other, by carrying out ab initio calculations

of interlayer interaction under constant loading force. Using the Prandtl-Tomlinson model we derive the

critical stiffness required to avoid stick-slip behavior. We show that these layered structures have low

critical stiffness even under high loading forces due to their charged surfaces repelling each other. The

intrinsic stiffness of these materials exceeds critical stiffness and thereby the materials avoid the stick-slip

regime and attain nearly dissipationless continuous sliding. Remarkably, tungsten dioxide displays a much

better performance relative to others and heralds a potential superlubricant. The absence of mechanical

instabilities leading to conservative lateral forces is also confirmed directly by the simulations of sliding

layers.
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Advances in atomic scale friction [1–3] have provided
insight on dissipation mechanisms. The stick-slip phe-
nomena is the major process, which contributes to the
dissipation of the mechanical energy through sudden or
nonadiabatic transitions between bistable states of the
sliding surfaces [4–7]. During a sudden transition from
one state to another, the velocities of the surface atoms
exceed the center of mass velocity sometimes by orders of
magnitudes [8]. Local vibrations are created and thereof
evolve into the nonequilibrium system phonons via anhar-
monic couplings [9] within picoseconds [10]. In specific
cases, even a second state in stick-slip can coexist [7].

In Fig. 1, two regimes of sliding friction are summarized
within the framework of the Prandtl-Tomlinson model,
[4,5,8] where an elastic tip ðþcantileverÞ moves over a
sinusoidal surface potential. The curvature of this potential
at its maximum gives the value of the critical stiffness kc. If
the intrinsic stiffness of the tip ks is higher than this critical
stiffness, i.e., ks=kc > 1, the total energy of the tip-surface
system always has one minimum. The sliding tip gradually
follows this minimum, which results in the continuous
sliding regime. Conversely, if the tip is softer than the
critical value, then it is suddenly slipped from one of the
bistable states to the other. This slip event can be activated
by thermal fluctuations even before the local minimum
point becomes unstable [11]. Experimentally, using a fric-
tion force microscope, Socoliuc et al.[12] showed that the
transition from stick-slip regime to continuous sliding
while attaining an ultralow friction coefficient can be
achieved by tuning the loading force on the contact.

In this Letter, the sliding friction between two identical
pristine layers of nanostructures, such as graphane [13,14],
fluorographene [15,16], molybdenum disulfide [17], and
tungsten dioxide [18], (abbreviated according to their

stoichiometry as CH, CF, MoS2, and WO2, respectively)
is investigated using the density functional theory [19].
We find that these nanostructures avoid stick-slip even
under high loadings and execute continuous sliding.
Consequently, the sliding occurs without the friction that
would originate from the generation of nonequilibrium
phonons. Our approach mimics the realistic situation,
where the total energy and forces are calculated from
first-principles as two two-dimensional (2D) layers
undergo a 3D sliding motion under a constant (normal)
loading force. This is the most critical and difficult aspect
of our study. In this respect, our results provide a 3D
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FIG. 1 (color online). Schematic representation of the stick-
slip regime (left), critical transition (middle), and continuous
sliding regime (right) in the Prandtl-Tomlinson model. Upper
part: the potential energy curves of the surface (green [light gray]
wavy line) and of the (tipþ cantilever) (red [medium gray]
lines); lower part: force variation of the surface (green [light
gray] wavy line) and of the tip (red [medium gray] lines). Blue
[dark gray] lines represent the potential energy of the tip and
surface. The magenta dot shows the position of the tip on the
surface, while its other end is positioned at the minimum of the
parabola shown with red [medium gray] lines in the upper part.
The dotted, dashed, and solid lines correspond to three different
tip positions moving to the right.
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rigorous quantum mechanical treatment for the 1D and
empirical Prandtl-Tomlinson model [4,5].

The nanostructures considered in the present study are
recently discovered insulators having honeycomb struc-
ture, which can form suspended single layers as well as
multilayers. The unusual electronic, magnetic, and elastic
properties of these layers have been the subject of recent
numerous studies. In particular, they have large band gaps
to hinder the dissipation of energy through electronic
excitation and have high in-plane stiffness [16–18,20] [C ¼
ð1=AÞ@2Es=@�

2, i.e., the second derivative of the strain
energy relative to strain per unit area, A being the area of
the unit cell]. Analysis based on the optimized structure,
phonon and finite temperature molecular dynamics calcu-
lations demonstrate that each suspended layer of these
nanostructures is planarly stable [14,16–18]. In graphane,
positively charged three hydrogen atoms from the top side
and another three from the bottom are bound to the alter-
nating and buckled carbon atoms at the corners of hexagons
in graphene to form uniform hydrogen coverage at both
sides [See Fig. 2(a)]. Recently synthesized CF [15] is
similar to CH, but F atoms are negatively charged.
Tribological properties of carbon based fluorinated struc-
tures have been the focus of interest [21,22]. In the layers of
MoS2 or WO2, the plane of positively charged transition
metal atoms is sandwiched between two negatively charged
outer S or O atomic planes. It was shown that MoS2
structure can have ultralow friction [23]. Theoretically,
the static energy surfaces are calculated during sliding at
MoS2ð001Þ surfaces [24]. Apparently, the interaction en-
ergy between two single layers of these nanostructures is
mainly repulsive due to charged outermost planes except
for very weak van der Waals attractive interaction around
the equilibrium distance. In Fig. 2, each layer being a large
2D sheet consisting of three atomic planes mimics one of
two sliding surfaces. In practice, sliding surfaces can be

coated by these single layer nanostructures. Recently, this
was achieved experimentally [25].
We consider two layers of the same nanostructures in

relative motion, where the spacing z between the bottom
atomic plane of the bottom layer and the top atomic plane
of the top layer is fixed. Here the frictional behavior of the
system is dictated mainly by C-H(F), Mo-S, and W-O
bonds and their mutual interactions. These layers are
represented by periodically repeating rectangular unit
cells. We calculate the value of the equilibrium lattice
constants, which increases as z decreases. For each value
of z the fixed atomic layer at the top is displaced by x and y
on a mesh within the quarter of the rectangular unit cell.
Then all possible relative positions (displacements) be-
tween fixed atomic layers are deduced using symmetry.
At each mesh point all atoms of the system except those of
fixed top and bottom planes are relaxed and the total energy
of the system ETðx; y; zÞ (comprising both layers) is calcu-
lated. We have also derived �xðx; y; zÞ and �yðx; y; zÞ data
which correspond to the shear (deflection) from the
equilibrium position of the relaxed atomic planes relative
to the fixed atomic plane of the same layer as illustrated in
Fig. 2(c). The matrices of these data are arranged for each

nanostructure using the mesh spacing of�0:2 �A in x and y
directions. The forces exerting on the displacing top layer
in the course of relative motion of layers are calculated
from the gradient of the total energy of the interacting

system, namely ~Fðx; y; zÞ ¼ � ~rETðx; y; zÞ at each mesh
point (x, y). These forces are in agreement with the result-
ant of the atomic forces calculated for the top layer using
Hellman-Feynman theorem. Eventually, the matrices of all
data, namely ETðx; y; zÞ, �xðx; y; zÞ, �yðx; y; zÞ, and
~Fðx; y; zÞ are made finer down to a mesh spacing of

�0:05 �A using spline interpolation.
The properties affecting the friction between layers

should be derived under a given constant loading force.
First of all we preset the value of applied loading, Fz0 ,

which corresponds to the operation pressure when divided
by the cell area A, namely �N ¼ Fz0=A. We obtain the

normal force from Fzðx; y; zÞ ¼ �@ETðx; y; zÞ=@z and for
each x and ywe calculate the value of zwhere Fzðx; y; zÞ ¼
Fz0 and abbreviate it as z0ðx; yÞ. Then by using spline

interpolation in the z direction we calculate the x and y
dependence of Fx0½x; y; z0ðx; yÞ� and Fy0½x; y; z0ðx; yÞ�, as
well as �x0½x; y; z0ðx; yÞ� and �y0½x; y; z0ðx; yÞ� for a given
Fz0 . The lateral force is then ~FL½x; y; z0ðx; yÞ� ¼
Fxo îþ Fy0 ĵ. Integrating the lateral force over the rectan-

gular unit cell we obtain,

EI½x; y; z0ðx; yÞ� ¼
Z x

0

Z y

0

~FLðx; y; z0ðx; yÞÞ � ~dr

where EI½x; y; z0ðx; yÞ� is the interaction energy for dis-
placement (x, y) in the cell under applied constant loading
force Fz0 . It should be noted that EI is different from
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FIG. 2 (color online). (a) Ball and stick model showing the
honeycomb structure of graphane CH (fluorographene CF) (top)
and MoS2 (WO2) (bottom). Calculated values of energy gaps Eg

and in-plane stiffness C are also given in units of eV and J=m2,
respectively. (b) Two MoS2 layers sliding over each other have
the distance z between their outermost atomic planes. (c) Each
layer is treated as a separate elastic block. Lateral FL and normal
(loading) Fz0 forces, the shear of bottom atomic plane relative to

top atomic plane in each layer �xðyÞ, and the width of the layer
w, are indicated.
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ETðx; y; zÞ (but EI ! ET for z � 1) and is essential to
reveal the friction coefficient. Contour plots of EI of two
sliding MoS2 layers calculated for �N ¼ 15 GPa are
shown in Fig. 3(a) and those of CH, CF, WO2 in
Supplemental Material A [26]. The profile of EI is com-
posed of hills arranged in a triangular lattice. These hills
correspond to the relative positions when the charged
atoms of adjacent layers have the minimum distance.
The hills are surrounded by two kinds of wells. The
difference between these two wells is enhanced with in-
creasing pressure. The wells form a honeycomb structure
and are connected to each other through the saddle points
(SPs). When the layers are moved over each other they
will avoid the relative positions corresponding to the hills.
For example, if the layers are pulled in the y direction they
will follow the curved Fx ¼ 0 path passing through the
wells and SPs but not the straight one passing through the
hills as shown in the Fig. 3(b). This makes the SP very
important because in order to move from one well to the
adjacent one, a barrier must be overcome at this point. We
note that the critical stiffness can be calculated from the
curvature of E0

I , which is obtained by subtracting the
strain energies of two sliding MoS2 layers, namely E0

I ¼
EI � ksð�x20 þ �y20Þ and by replacing x by x� 2�x0.
While the SP serves as a barrier in the direction joining
the nearby wells it acts as a well in the perpendicular
direction joining the hills. Since we are interested in the
curvature of the SP in the former direction we have made
a plot along the Fy ¼ 0 line which passes through the hill,

the wells, and the SP in between as shown in the Fig. 3(b).
We derive two critical stiffness values from the E0

I curve
for a given normal loading force; namely kc1 at the SP and
kc2 at the hill by fitting the curve at the maxima of the
barriers to a parabola. Although the hills will be avoided
during sliding motion the curvatures at these points are
calculated for completeness. In Fig. 3(c) the variation of
kc1 and kc2 of CH, CF, MoS2, and WO2 with loading
pressure �N is presented. Generally, the critical stiffness,
in particular kc1 is low due to repulsive interaction be-
tween sliding layers. This facilitates the transition to
continuous sliding.

Next we calculate the intrinsic stiffness ks of individual
MoS2 layers using the force and the displacement data.
For each x and y the lateral forces Fx0½x; y; z0ðx; yÞ�
and Fy0½x; y; z0ðx; yÞ� versus the displacements

�x0½x; y; z0ðx; yÞ� and �y0½x; y; z0ðx; yÞ�, respectively, are
plotted. As shown in the inset of Fig. 3(b), this data falls on
a straight line having a negative slope as expected from
Hook’s law of elasticity. We note that the elastic properties
of layers having honeycomb structure are uniform and are
independent of the direction of displacement and force
[20]. The magnitude of the slope, ks ¼ �FxðyÞ0=�xðyÞ0
gives us the stiffness of the layers [27]. Calculated intrinsic
stiffness values of CH, CF, MoS2, and WO2 in the
range of �N from 5 GPa to 30 GPa are found to be
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FIG. 3 (color online). (a) The contour plot of the interaction
energy EI of two sliding layers of MoS2. The zero of energy is
set to EI½0; 0; z0ð0; 0Þ�. The energy profile is periodic and here we
present the rectangular unit cell of it. The width of this unit cell
in y direction is equal to the lattice constant a of the hexagonal
lattice. Force in x (y) direction is zero along the red [medium
gray] and green [light gray] dashed lines, respectively. There
are several points at which the lateral force ~FL, is zero. The
arrows at these critical points indicate the directions where
the energy decreases. (b) The energy profiles of EI (blue [dark
gray] line) and E0

I (red [medium gray] line) along the horizontal

line with Fy ¼ 0 for MoS2. The inset presents force versus shear

values along x and y directions for each mesh point by red
and green dots, respectively, which fall on the same line.
Loading pressure in all cases is �N ¼ 15 GPa. (c) The variation
of kc1 and kc2 with loading pressure. (d) The variation of
the ratios of ks=kc1 and ks=kc2, i.e., frictional figures of merit
with the loading pressure calculated for CH, CF, MoS2,
and WO2.
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6:15� 0:15 eV= �A2, 4:5 eV= �A2, 10:0� 0:3 eV= �A2 and

15:2� 0:3 eV= �A2, respectively. Clearly, these values of
ks, in particular those of MoS2 and WO2, are rather high.

Based on the discussion at the beginning, the ratios
ks=kc1 and ks=kc2 give us a dimensionless measure of
performance of our layered structures in sliding friction.
When these ratios are above two (since both layers in
relative motion contribute), the stick-slip process is re-
placed by continuous sliding, whereby the dissipation of
mechanical energy through phonons is ended. Under these
circumstances the friction coefficient diminishes, if other
mechanisms of energy dissipation were neglected. For this
reason one may call these ratios frictional figures of merit
of the layered materials. In Fig. 3(d) we present the varia-
tions of the ratios ks=kc1 and ks=kc2 with normal loading
forces. Even for very large �N , ks=kc1 > 2 and ks=kc2 > 2.
For usual loading pressures, the stiffness ofMoS2, CF, and
CH is an order of magnitude higher than corresponding
critical values. Interestingly, for WO2 this ratio can reach
to two orders of magnitude at low pressures. The absence
of mechanical instabilities has been also tested by perform-
ing extensive simulations of the sliding motion of layers in
very small displacements. C-H, C-F, Mo-S and W-O bonds
in each case of two layers in relative motion under signifi-
cant loading force did not display the stick-slip motion.

Conversely, we now examine the sliding of two silicane
[28] layers (abbreviated as SiH and composed of silicene
[29] saturated by hydrogen atoms from both sides, like

graphane) with ks ¼ 2:1� 0:1 eV= �A2 for 2 GPa � �N �
8 GPa. This is an interesting material because the onset of
stick-slip occurs already at low loading pressures and
exhibits a pronounced asymmetry in the direction of slid-
ing between twowells. In Fig. 4 we present the lateral force
variation calculated for two different loading pressures.
For small loading pressure, �N ¼ 2 GPa the stick-slip
motion is absent since approaching the SP from well I,

the curvature is kc;I ¼ 0:28 eV= �A2 and from well II it is

kc;II ¼ 0:16 eV= �A2, thus ks=kc;I or II > 2 for both direc-

tions. Whereas, once the pressure is raised to �N ¼
8 GPa stick-slip already governs the sliding friction, since

kc;I reaches 1:38 eV= �A2. Interestingly, since kc;II is only

0:28 eV= �A2 for�N ¼ 8 GPa, going from well II to well I a
slip event occurs at SP. Eventually, one sees in Fig. 4 a
hysteresis in the variation of FL leading to energy
dissipation.
Earlier, the sliding motion of the diamondlike carbon

(DLC) coatings exposed to hydrogen plasma resulted in a
very low friction coefficient [30]. Ultralow friction was
attributed to repulsive Coulomb forces between DLC films
facing each other in sliding. However, when exposed to
open air in ambient conditions, positively charged H atoms
were replaced by negatively charged O and hence the
uniformity in the charging was destroyed. In the present
study, graphane coating is reminiscent of the hydrogenated
DLC and accordingly is found to have ultralow friction, but
vulnerable to degradation by oxygen atoms. Unlike graph-
ane coating, WO2 coating consists of negatively charged
oxygen atoms and hence immune to oxidation.
In conclusion, using a criterion for the transition from

the stick-slip to dissipationless continuous sliding regime,
which is calculated from the first-principles, we showed
that two sliding layered nanostructures, such as CH, CF,
MoS2, and WO2, execute continuous sliding with ultralow
friction. The minute variation of the amplitude of the
interaction potential due to the repulsive interaction, as
well as stiff C-H(F), Mo-S, and W-O bonds, underlie the
ultralow friction predicted in the present study. Our pre-
dictions put forward an important field of application,
ultralow friction coating for the layered honeycomb struc-
tures, which can be achieved easily to hinder energy dis-
sipation and wear in sliding friction.
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