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Abstract

Purpose – The purpose of this paper is to study joint inventory and pricing strategy for a continuous
inventory review system. While dynamic pricing decisions are often studied in the literature along
with inventory management, the authors’ aim in this study is to obtain a single long-run optimal price;
also to gain insight about how to obtain the optimal price and inventory control variables
simultaneously and then the benefits of joint optimization of the inventory and pricing decisions over
the sequential optimization policy often followed in practice.

Design/methodology/approach – A general (R;Q) policy system with fixed cost of ordering is
modelled and then the case where unsatisfied demand is lost is studied. General forms of both the
additive and multiplicative demand models are used to obtain structural results.

Findings – By showing optimality conditions on the price and inventory decision variables, two
algorithms on how to obtain optimal decision variables, one for additive and another for multiplicative
demand-price model are provided. Through extensive numerical analyses, the potential profit
increases are reported if the price and inventory problem are solved simultaneously instead of
sequentially. In addition, the sensitivities of optimal decision variables to system parameters are
revealed.

Practical implications – Although there are several studies in the literature investigating
emergency price change models, they use arbitrary exogenous prices menus. However, the value of a
price change can be better appreciated if the long-run price is optimal for the system.

Originality/value – Very few researchers have investigated constant price and inventory
optimization, and while there are several past studies demonstrating the benefits of dynamic
pricing over a static one, there still are not many findings on the benefit of joint price and inventory
optimization.

Keywords Inventory control, Pricing, Demand model, Optimal pricing, R;Q policy, Lost sales,
Sequential optimization

Paper type Research paper

1. Introduction
Retail replenishment is a high value activity and as such according to the US
Commerce Department (2004), 1.1 trillion US dollars in inventory supports 3.2 trillion
US dollars in annual US retail sales. This inventory is spread out across the value
chain, with 400 billion US dollars at retail locations. Firms are now sourcing up to 75%
of the value of goods and services globally and uncertainty of demand creates longer
safety lead times resulting in high inventory value. Demand conditions are such that
it is difficult to meet supply chain expectations as either some supply chain member
will be required to expedite shipments (high cost) or hold high levels of inventory
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(Farris and Hutchison, 2002; Hoffman, 2009). High levels of stock adversely affect
profitability (Bhatnagar and Teo, 2009).

To coordinate demand requests, transportation and inventory management utilize the
benefits of strategic supply chain tools such as information technology to assist in keeping
inventory lower and ordering more efficient (Auramo et al., 2005). This real-time
information in regard to inventory levels throughout the supply chain assists in lowering
the costs of back orders, lost orders, and obsolescence (Yao et al., 2007; Lumsden and
Mirzabeiki, 2008). However, inventories at retailers actually have not decreased in time
(Chen et al., 2007). Also, Gaur et al. (2005) use firm-level data and conclude that inventory
turnover has a downward sloping trend between 1987-2000 for US retailers. With such a
large stockpile of inventory, it should be expected that stockouts at the retail level should
be very low, but research suggests that it is not the case. Global studies have shown that
stockouts occur at 8.3% of all retail sales worldwide (Gruen et al., 2002). Research studying
71,000 customers worldwide concluded that customers lose patience with stockouts.
Only 15% of the customers will delay the purchase to another time until the item is back in
stock. Even after recouping some of the loss with sales of alternative products,
retailers will still suffer about 4% of sales due to stockouts (Gruen et al., 2002). Thistakes
an enormous toll on retail margins. Rapidly increasing product variety (Hoole, 2006) with
long lead times due to sourcing from overseas to assure low cost (Quint and Shorten, 2005)
enhance the difficulty of aligning the supply with the demand.

To cope with the increasing uncertainty both on demand and supply sides, it becomes
a crucial requirement to make demand and supply decisions through the cooperation of
marketing and operations managers. Traditionally, demand management is
theresponsibility of marketing managers who estimate demand determinants such as
pricing, promotion, and advertising. To anticipate pricing, demand forecasts have
become sophisticated, though still flawed due to the sheer number of products in a
retailer’s store (the US typical grocery store carries up to 31,000 items (Kahn and
McDonough, 1997))(Srinivasan et al., 2008). Pricing appropriately for retailers is so
complicated that often they do not adapt prices based on demand conditions which lead
to past price dependency and lower margins (Nijs et al., 2007).

On the other side, supply management (which includes supplier selection, contracting,
and quality and inventory control) is the responsibility of operations managers. Due to
global supply chains, inventory interactions often involve many differentfirms with long
product replenishment times and inventory imbalances (Bhatnagar and Teo, 2009). The
supply chain focus in today’s marketplace is increasingly important, as for example, the
US imported 1.48 trillion in 2004 (CIA, 2004) and Wal-Mart would be China’s eight largest
trading partner if it was a nation (Jiang, 2004).

The combination of both Marketing and Operations management
(demand and supply) are by two different departments in a firm and the difficulty of
coordinated decision making and possible benefits of such collaboration is of interest to
researchers. When coordinated effectively these interdepartmental relations will
contribute greatly to supply chain effectiveness (Kim et al., 2006). Various marketing
and operations conflicts have been studied in literature including quality versusprice
(Balasubramanian and Bhardwaj, 2004), lead time versus price (Pekgün et al., 2008),
product variety versus production flexibility (De Groote, 1994), advertising versus
inventory control (Khouja and Robbins, 2003), and price versus inventory control
decision making (Li and Atkins, 2002; Yin and Rajaram, 2007), which is main question
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area of this study. For a review on marketing and operations collaboration issues, see
Eliashberg and Steinberg (1993) and Tang (2010).

The incompatibility between pricing and inventory decisions can lead to important
profit losses, while a good match has promising profit improvements. For example, in new
market entry, the simple cost-plus strategy (which does not take inventory into
consideration) has accounted for many business failures. Following the earthquake on
March 11, 2011 in Japan, for certain models of Japanese cars, US dealers realized shortages
by the beginning of the spring 2011 and expected even more in summer months with the
significant losses in production capacities. To keep up with the decreases in supply in
upcoming months, dealers aimed “to boost prices on Japanese cars and trucks by an
average of about $400 a vehicle”, which may decrease demand, but would increase profits
(Boudette, 2011).

Research conducted among more than 11,000 euro-area companies, suggested half of
the companies do not use an information set that includes future expectations and costs
in their price-setting and rather base their decisions on rule of thumb or past experiences
(Fabiani et al., 2006). Moreover, firms in the survey change their price once a year, which
indicates the use of constant prices rather than dynamic pricing. Firms’ stickiness to
constant prices is explained mainly by the implicit and explicit contracts with the
customers. Thus, every company should first incorporate future operational concerns
such as inventory planning into its price-setting process to obtain its optimal constant
market-price, then any complex price strategies can be considered building on these
information.

In this study, joint inventory and pricing decisions are considered in a continuous
review inventory replenishment system, where the orders are triggered whenever the
inventory level drops below a certain level. Continuous review policy models are widely
used in practice. Their popularity is supported by the existence of supplier-buyer
contracts as a supplier would prefer to supply a fixed quantity for each order instead of
arbitrary amounts (Urban, 2000). Orders arriveafter a significant lead time and most
unsatisfied demand is lost. Customers arrive according to a general price dependent
demand function, where a higher price leads to lower demand arrival rate. Our first
interest is to gain insights about how to obtain optimal inventory and constant price
variables simultaneously.

Our second purpose is to investigate the benefits that can be obtained by making
the price decision along with the inventory control decisions. While there are several
past studies demonstrating the benefits of dynamic pricing over a static one, there still
are not many findings on the benefit of joint price and inventory optimization.

Obtaining the optimal constant price jointly with inventory policy is also important
to evaluate the benefit of dynamic pricing policies. To reveal the correct benefit of a price
change decision, the base price considered should be the optimal constant price of
the system. So any improvement in system payoff after price change can be devoted to
the price change policy due to the changing needs of the system. Otherwise, if the base
price is not already optimal for the base system setting, a price change may improve
system payoff not because of being a better fit for changing system conditions, but
the new price can be more closer to the optimal base price. For example, studies
investigating the profit increases of a supplier due to the price discounts offered
(Cheung, 1998; Klastorin et al., 2002) would provide better results when the price before
the discount would be taken as the optimal price for the system.
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There are a quite large number of studies on joint pricing and inventory decisions in
the literature. The earliest work on integrating inventory control was with the
endogenous demand model by Whitin (1955). This study and a number of later research
focus on non-perishable and replenishable products, which does not have have narrow
life span like perishable goods and unsold units can be carried between consecutive
replenishment cycles. Some further research incorporated pricing decisions also with the
use of limited perishable inventories termed revenue management (Gallego and van
Ryzin (1994). Our study focuses on the stream of literature in regard to replenishable
inventory.

Very few constant price and inventory optimization studies have followed Whitin
(1955) (Chan et al., 2004). Petruzzi and Dada (1999) study the constant price and
inventory decisions in a newsboy setting. Kunreuther and Schrage (1973), Gilbert
(1999) and Gilbert (2000) consider demand as a deterministic function of single price,
which is to be determined along with ordering quantities in multiple periods, with
additive demand, multiplicative demand, and multiplicative demand with multiple
products sharing a common capacity, respectively.

Previous studies on inventory-pricing coordination have mainly focused on joint
inventory control and dynamic pricing, where pricing decisions are made either after
every customer arrival or at every replenishment epochs. Some of these dynamic
pricing problems are studied with periodic review systems (Federgruen and Heching,
1999; Chen and Simchi-Levi, 2004) and some with continuous review systems (Chen
and Simchi-Levi, 2006; Gayon et al., 2009). For complete reviews on joint dynamic
pricing and inventory control problems, see Chan et al. (2004), Yano and Gilbert (2005),
Gimpl-Heersink et al. (2008) and Chen and Simchi-Levi (2010).

Although the research on joint control of inventories and dynamic pricing has
promising benefits, several studies show that only a few good prices are enough to
capture most of these benefits. Chen et al. (2010) and Gayon et al. (2009) show that most
of the benefit of multiple pricing is reached by using only two prices. The optimal
constant price decision along with the optimal inventory decisions should be defined
initially. Although optimal single price might be obtained asa special case of dynamic
pricing in previous studies, to our knowledge, there is no model in the literature that is
similar to our study. For example, Chen and Simchi-Levi (2006) and Feng and Chen
(2003) state the challenges in modeling positive lead time, so they do not include it.

There are several past studies that can be more closely related to our work than
others. Guan and Zhao (2011) study joint constant price and inventory decisions of
multiple retailers under both the centralized and decentralized settingswith Poisson
demand and backlogged model. Chao and Zhou (2006) investigate joint dynamic pricing
and inventory strategy for a continuous review system. They assume that the lead time
is zero, unsatisfied demand can be backlogged, and demand has Poisson distribution.
Chen et al. (2010) show the benefits of dynamic pricing in a continuous review system
where replenishments can be done instantaneously when the inventory level drops to
zero. So no stocking-out is allowed.

This paper is organized as follows. In §2, the demand function is first introduced and
then the objective function is developed. In §3 and §4, respectively, the optimality
properties of systems with additive and multiplicative demands are obtained. In §5,
numerical studies on the expected performance of the joint price and inventory
optimization over sequential optimization and also sensitivity of optimal decision
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variables to system parameters are reported. §6 concludes the paper by summarizing the
results and further research areas.

2. Model framework
This study’s focus is a continuously reviewed inventory replenishment model. The
replenishment policy has the form such as whenever the inventory level hits R, an
order of Q units is placed. After the placement of a regular order, it takes L time units to
receive the order. This is the well-known (R, Q) policy.

The time of a replenishment decision is called a reorder point and the arrival of an
order is called a regeneration point. Referring to renewal theory, the system goes
through one replenishment cycle between the placement of two successive orders
where the inventory level regenerates itself from the inventory level R to R during a
cycle. Unlike the case for deterministic demands, the system might not exactly repeat
itself within each cycle. Even the length of the cycle is now a random variable.
However, the system does repeat itself in the sense that the inventory level returns
back to same point after a random cycle time.

A price sensitive, stochastic demand model is used, where the demand at any point
depends on price p charged. Let D( p, t) be the demand during any time interval t, when
price p is charged and the demands realized in consecutive time units are independent.
Randomness in demand is defined to be price independent and the total demand is
composed of a price dependent deterministic portion and the random demand portion.
Then the demand per unit timeD ( p, 1) is a function of the deterministic portion y( p) and
random factor 1, which is a non-negative, continuous random variable defined on the
range [A, B ] and distributed with the probability density function f ( · ), the cumulative
function F( · ), expected value E(1) ¼ m, and the standard deviation s. The mean of
D( p,1) is denoted by v( p). The random and deterministic demand effects can combined in
additive or multiplicative form, which are detailed in §3 and S 4, respectively.

The objective is to maximize the long-run average profit of the firm, which is
composed of the revenue obtained from sales, fixed costK charged per ordering, variable
cost c paid per unit ordered, holding cost h incurred per unit kept in stock per unit time,
and the cost of unsatisfied, which is lost in this study, sales b incurred per unit lost.
Although, a profit maximization model implicitly incorporates the cost of a lost sales as
the profit lost from the available sales opportunity, the cost of a lost sales may be greater
than the per unit profit. It may include the goodwill loss, as well as the negative effects on
future sales. Thus, the profit maximization studies that explicitly define a lost sales cost
such as Petruzzi and Dada (1999), Chen et al. (2006) and Serel (2009) are followed. The
important notation used throughout the paper is summarized in Table I.

A cost and revenue calculation approach is used, which is similar to the seminal work
of Hadley and Whitin (1963) for the simple (R, Q) model. It is a well-known inventory
estimation approach where stockout probability is assumed to be sufficiently small. Low
stockout probability is clearly supported by our model, where pricing decision aims to
prevent stockouts. The exact computation can be done fairly more easily for Poisson
demand with backorders, but very complicated for other distributions and lost sales
case. It is easier to work with backorder model, because when demands arrive in single
units, the inventory position is uniformly distributed between R and R þ Q. When the
unsatisfied demand can be backordered, the inventory position change between two
states is independent of the current inventory state. On the other hand, when unsatisfied
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demand is lost, between two demand arrivals, the inventory position may not change, if
the system is already stocked-out (Sezen, 2006). Then the change in inventory position
after a demand arrival depends on whether the inventory level is positive or zero as
shown by Figure 1. Therefore, lost sales models are more scarce in the literature and
using the approximate payoff calculationof Hadley and Whitin (1963) is quite reasonable
for this model. For a detailed discussion on lost sales model for a continuous review
inventory system, see Bijvank and Vis (2011). Hadley and Whitin (1963)’s approximate
average profit treatment for a continuous review inventory model is highly common in
the literature (Moinzadeh and Nahmias, 1988; Cheung, 1998; Johansen and Thorstenson,
1998; Tekin et al., 2001; Durán et al., 2004). Also, it is shown by Lau and Lau (2002) that
Hadley-Whitin’s average inventory computing method is quite robust and often more
accurate than alternatives suggested in the literature.

At the outset, the assumption is that there is only a single order outstanding at
any time. When the unmet demand is lost, the number of outstanding orders is the
largest integer less than or equal to ðQþ RÞ=Q ¼ 1 þ R=Q (Hadley and Whitin, 1963).

Parameters
K Fixed ordering cost per order
C Purchasing cost per unit
h Inventory holding cost per unit per time unit
B Shortage cost per unit demand lost
L Lead time for an order
D ( p,t) Demand during a time interval t, when price p is charged
n ( p) Mean demand during a unit time interval
y ( p) Price dependent deterministic portion of the demand during unit time interval
1 Random portion of the demand per unit time interval distributed with density f ( · )

cumulative function F ( · ), mean m, and standard deviation s
�F ð · Þ Complement of cumulative distribution function F ( · ), i.e. F̄ ( · ) ¼ 1 2 F ( · )
Variables
Q Order quantity
R Reorder level
p A constant selling price per unit

Table I.
Notation for the

formulations

Figure 1.
The change in inventory

position and level in time
in a continuous review
system with lost sales
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Then, if itis assumed that R , Q, it is always true that there is only a single order
outstanding. Single outstanding order assumption is extensively utilized in the
literature especially with the lost sales model because of the difficulties in model
tractability detailed above; see Hadley and Whitin (1963), Archibald (1981), Tekin et al.
(2001) and Hill and Johansen (2006).

The objective of the firm is to maximize the long-run average profit with the
decision variables (Q, R, p). The expected revenue of a cycle is pQ, as the total units
sold between two replenishment epochs is Q. The expected amount of average
inventory held during a cycle includes first the average order level, which is Q/2. There
is also the safety stock that is equal to R2 E½Dð p;LÞ�, where E[D( p, L)] is the expected
demand during lead time. Note that the safety stock is not restricted to be non-negative,
which can be the case when backordering is possible. However, the inventory level is
always non-negative when unmet demand is lost. Therefore, consistent with Hadley
and Whitin (1963) for their lost sales treatment, the expected holding cost is adjusted
by adding the expected lost sales to the average inventory level to include the increased
holding costs when the unmet demand is lost instead of a backorder model. The
resulting expected average inventory level is Q=2 þ R2 E½Dð p;LÞ� þ E½S�, where
E [S ] is the expected lost sales during the lead time that is also the expected lost sales in
a cycle. The explicit lost sales cost is bE [S ] per cycle.

The expected length of a cycle in a backorder model is Q/v( p), where Q is the total
demand received and v( p) is the expected demand per unit time. When the unmet
demand is lost, the expected cycle time can be extended by an amount E[S ]/v( p), as the
total demand in a cycle is now Q þ E[S ]. However, when the lost sales is small enough,
the lost sales effect can be neglected and the expected cycle time is approximated by
Q/v( p), which is also done in Hadley and Whitin (1963).

The resulting expected long-run average profit, which is denoted by P(Q, R, p) is:

PðQ;R; pÞ ¼ ð p2 cÞnð pÞ2 K
n ð pÞ

Q
2 h

Q

2
þ R2 E½Dð p;LÞ�

� �
2 E½S�

�
bn ð pÞ

Q
þ h

� �
; ð1Þ

where E[S ], the expected lost sales per cycle can be obtained as follows:

S ¼
0; Dð p;LÞ # R

Dð p;LÞ2 R; Dð p;LÞ . R:

(

3. Additive demand model
The firm needs to find the best price p with the continuous review ordering policy
parameters Q and R. For this purpose, the demand function needs to be defined in more
detail. The price dependent random demand has been defined in the literature mainly by
two methods, additive and multiplicative forms of deterministic and random parts. In
additive form, demand during a unit time period is Dð p; 1Þ ¼ yð pÞ þ 1, where y( p) is a
decreasing function of pricep. Additive demand models are very common in the inventory
pricing literature (Petruzzi and Dada, 1999; Ray et al., 2005; Gimpl-Heersink et al., 2008).
Specifically, yð pÞ ¼ a2 bp, where a . 0 and b . 0. The demand is not allowed to take
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negative values, thus the price is restricted to the range [c, a/b] and A . 2a, where A is
the lower bound of the range of 1. Then the mean demand during a unit time interval is
nð pÞ ¼ yð pÞ þ m.D( p, t) has two parts: a certain demand part ty( p) and a random portion
that has a t-fold convolution of the distribution f ( · ) and denoted by ft ( · ) with mean tm and
standard deviation s

ffiffi
t

p
. So D( p, t) has the mean tv( p) and the standard deviation s

ffiffi
t

p
.

The total mean demand during t is denoted by v0t, when the lowest possible price c
is charged, n0 ¼ yðcÞ þ m. It is assumed that y(c) . m, i.e. highest certain demand rate
is greater than the mean uncertain demand rate.

Demand during period L is Dð p;LÞ ¼ Lyð pÞ þ 1L, where 1L is distributed with fL( · ).
By making a variable transformation similar to the one made by Petruzzi and Dada
(1999), z ¼ R2 Lyð pÞ, which denotes the stock intended to satisfy the random demand
part. By using the variable z, the lost sales can be rewritten as:

S ¼
0; 1L # z

Dð p;LÞ2 R; 1L . z:

(

The expected lost sales per cycle E[S ] can now be denoted as a function of z such as:

E½S� ¼ SðzÞ ¼

Z BL

z

ðx2 zÞf LðxÞdx:

As B is defined as the upper limit on the random demand per unit time, BL is the
maximum value 1L can take. Accordingly, the objective function of the problem in
equation (1) can be reformulated as a function of Q, z, and p as follows:

Q;z;p
max PðQ;z;pÞ ¼ ð p2 cÞn ð pÞ2K

n ð pÞ

Q
2 h

Q

2
þ z2Lm

� �
2SðzÞ

bn ð pÞ

Q
þ h

� �
: ð2Þ

To analyze the existence of optimal pricing and inventory policy, the first and second
partial derivatives of P(Q, z, p) with respect to Q, z, and p are:

›PðQ; z; pÞ

›Q
¼

n ð pÞ

Q 2
ðK þ bSðzÞÞ2

h

2
;

›2PðQ; z; pÞ

›Q 2
¼ 2

2n ð pÞ

Q 3
ðK þ bSðzÞÞ , 0; ð3Þ

›PðQ; z; pÞ

›z
¼ 2hþ �FLðzÞ

bn ð pÞ

Q
þ h

� �

›2PðQ; z; pÞ

›z 2
¼ 2f LðzÞ

bn ð pÞ

Q
þ h

� �
, 0;

ð4Þ

›PðQ; z; pÞ

›p
¼ n ð pÞ2 b p2 c2

K

Q
2 SðzÞ

b

Q

� �
ð5Þ

›2PðQ; z; pÞ

›p 2
¼ 22b , 0:
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As the second partial derivatives are negative, P(Q, z, p) is concave in each of three
decision variables separately. Then an optimal decision variable when the other two
variables are fixed can be extracted from the first order conditions.

From equation (5):

p *ðQ; zÞ ¼
n 0 þ 2cb

2b
þ

K þ bSðzÞ

2Q
:

In fact ðn 0 þ 2cbÞ=2b is the base price p 0 that maximizes the expected revenue minus
the purchase cost p ð pÞ ¼ ð p2 cÞ*n ð pÞ, such that p 0 ¼ ðn 0 þ 2cbÞ=2b. Thus, by
using p 0, the optimal price given (Q, z) is p *ðQ; zÞ ¼ p 0 þ ððK þ bSðzÞÞ=2QÞ. Since
(K þ bS(z))/2Q is non-negative, p * $ p 0. This result is the opposite of what has been
found for a single cycle newsboy problem. Studies by Mills (1959) and Petruzzi and
Dada (1999) show that when the newsboy problem is optimized jointly over ordering
quantity and single price with additive demand, the resulting best price is not greater
than the base price that is optimal for the expected marginal revenue. Our finding
shows that the result is different in a multiperiod continuous review model than the
newsboy problem.

By definition the price is limited to the region [c, a/b]. It can be easily shown that
given yðcÞ ¼ a2 bc $ 0, p *ðQ; zÞ $ c for all z and Q. Then p *(Q, z) is limited by its
upper limit a/b. Lemma 1 demonstrates our findings.

Lemma 1. (i) For a fixed z and p, P(Q, z, p) is concave in Q and optimal Q *(z, p) can
be uniquely defined as:

Q *ðz; pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n ð pÞðK þ SðzÞbÞ

h

r
: ð6Þ

(ii) For a fixed Q and p, P(Q, z, p) is concave in z and optimal z *(Q, p) can be uniquely
defined as:

FLðz
*ðQ; pÞÞ ¼

bn ð pÞ

hQþ bn ð pÞ
: ð7Þ

(iii) For a fixed Q and z, P(Q, z, p) is concave in p and optimal p *(Q, z) can be uniquely
defined as:

p *ðQ; zÞ ¼
p 0 þ ððK þ bSðzÞÞ=2QÞ; ðK þ bSðzÞÞ=Q , ðn 0 2 2mÞ=b

a=b; ðK þ bSðzÞÞ=Q $ ðn 0 2 2mÞ=b:

8<
:

By using the optimality conditions stated in Lemma 1, after fixing one of the decision
variables, the effect of a change in the second decision variable on the optimal value of
the third one can be seen. For example, from Lemma 1i, for a fixed z, Q decreases as the
price increases and so the demand rate. Similar findings are summarized in Table II.

Results indicate that in general, decision variables behave as substitutes such that
an increase in one of them leads to a decrease in the optimal value of the other. For
example, for a fixed price p, if the reorder level is increased, then the order quantity
should be decreased as otherwise the average inventory level would increase that
would cause high holding cost. Similarly, for a fixed reorder level, if the order quantity
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is increased, then the price should be decreased so that a higher demandrate can be
generated to sell the increased orders.

Next, the behavior of P(Q, z, p) in two decision variables is analyzed when the third
variable is kept fixed. For a fixed price p, the joint concavity of P(Q, z, p) in (Q, z) is
shown by Brooks and Lu (1969) under a restriction on the distribution of random
demand. Zipkin (1986) shows the joint concavity without any restriction for the model
where backorder costs are charged per unit per time and with the same constraint on
demand distribution when backorder cost is charged per item. This finding is
reproduced here and demonstrated in Lemma 2.

Lemma 2. For a fixed price p, P(Q, z, p) is jointly concave in (Q, z) for z $ mL given
that fL(z) is non-increasing for z $ mL. Thus, there is a unique optimal ordering
quantity Q *ðz *; pÞ and unique optimal z *ðQ *; pÞ such thatthe optimal reorder point is
R *ðQ *; pÞ ¼ Lyð pÞ þ z *.

The constraint is not very restrictive, as most of the well-known distributions such
as Normal and Poisson are non-increasing for the values greater than the mean.

For a fixed z, P(Q, z, p) can be reduced to a single variable of Q by replacing p with
the optimal price p *(Q, z) from Lemma 1iii. Then P(Q, z, p(Q, z)) becomes a function of
only Q and it has the properties stated in Lemma 3.

Lemma 3. For a fixed z, optimal ordering quantity is Q*ðz; p *Þ to sell at the optimal
price p *ðQ *; zÞ as specified in Lemma 1iii such that:

ðaÞ 2mðn 0 2 2mÞ2 # hb2ðK þ bSðzÞÞ

ðbÞ n 0 . 6m

(i) if both parameter relations (a) and (b) hold simultaneously, then Q* is either the
smallest or the largest of three Q’s satisfying ›PðQ; z; pðQ; zÞÞ=›Q ¼ 0,

(ii) if at least one of the parameter inequalities (a) and (b) fails, then Q* is the unique
Q satisfying ›PðQ; z; pðQ; zÞÞ=›Q ¼ 0.

For a fixed Q, P(Q, z, p) can be reduced to a single variable of z by replacing p with
the optimal price p *(Q, z) from Lemma 1iii. Then, how to obtain the optimal z follows
from Lemma.

Lemma 4. For a fixed Q, optimal reordering point is R *ðQ; p *Þ ¼ Lyð pÞ þ
z *ðQ; p *Þ and the optimal selling price is p *ðQ; z*Þ as specified in Lemma 1iii. z * is
obtained such as if the distribution of uncertain demand portion satisfies r0LðzÞ þ
2ðrLðzÞÞ

2 . 0 for z [ [AL, BL ], where rð · Þ ¼ f ð · Þ=ð1 2 Fð · ÞÞ is the failure rate, then
z* is equal to the single root or either the smallest or the largest of three roots
of ›PðQ; z; pðQ; zÞÞ=›Q ¼ 0. Otherwise z* can be obtained by an extensive search over
different values of z.

Fixed Effect Cause

z p b Q d

z Q b p d

Q p b z d

Q z b p d

p z b Q d

p Q b z d

Table II.
Interaction of optimal

decision variables with
additive demand form
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The condition r0LðzÞ þ 2ðrLðzÞÞ
2 . 0 is always satisfied when the failure rate rL( · ) of

uncertain demand function fL( · ) is nondecreasing. Many commonly used theoretical
distributions in the literature such as Normal and Exponential have nondecreasing
failure rates. A similar conditioning on the failure rate of the demand function is also
needed in the pricing-inventory analysis for a single period problem as in Petruzzi and
Dada (1999) and Chen et al. (2006), which also provide a discussion on the generality of
nondecreasing failure rates.

Given the structure of the long-run profit function over two variables through
Lemmas 2-4, it can be easily conjectured that the simultaneous analysis of the long-run
profit P(Q, z, p) over all three decision variables Q, z, and p is hard to develop. In fact,
P(Q, z, p) is not jointly concave in (Q, z, p). Therefore, the optimal solution of the
problem can be found by an algorithm building on Lemmas 1-4 based on the
assumption that the failure rate rL( · ) of fL( · ) satisfies r 0

LðzÞ þ 2ðrLðzÞÞ
2 . 0.

The algorithm is given in Table III.

4. Multiplicative demand model
The demand can be also defined in multiplicative form of deterministic and random
demand portions such that unit time demand is Dð p; 1Þ ¼ yð pÞ1, where yð pÞ ¼ ap2b,
a . 0 and b . 1. Petruzzi and Dada (1999) also workwith a similar demand model.
As demand should be always positive, the lower limit of range of 1 should satisfyA . 0.
The demand per unit time has a mean n ð pÞ ¼ yð pÞm, standard deviation s, a density
function f ( · ), and cumulative functionF( · ). The demand during t time periods has a mean
y ( p)mt, standard deviation s

ffiffi
t

p
, density function ft ( · ), and cumulative function F t( · ).

To customize the expected profit function (1) for the multiplicative demand,
let z ¼ R/y( p) and substitute R with z. The expected lost sales per cycle can be
rewritten as:

S ¼
0; 1L # z

Dð p;LÞ2 R; 1L . z:

(

The expected lost sales per cycle E[S ] can now be denoted as a function of z such as:

E½S� ¼ yð pÞ

Z BL

z

ðx2 zÞf LðxÞdx

¼ yðpÞSðzÞ:

Initialize j ¼ 1. Set z ¼ AL, where A is the lower limit on 1 and Best p ¼ 2M , where
M is a large number

Step 1. Compute S(z)
Step 2. If 2mðn 0 2 2mÞ2 # hb 2ðK þ bSðzÞÞ and n 0 . 6m, ½Q1;Q2;Q3� ¼ roots½›p ðQ; z; pðQ; zÞÞ=›Q�

Q * ¼ arg maxQ1 ;Q3
ðp ðQ1; z; pðQ1; zÞÞ; p ðQ3; z; pðQ3; zÞÞÞ. Otherwise

Q * ¼ root½›p ðQ; z; pðQ; zÞÞ=›Q�
Step 3. Compute p* ¼ (n 0 þ 2cb)/(2b) þ (K þ bS(z))/(2Q *) and p ðQ *; z; p *Þ

Step 4. If p ðQ *; z; p *Þ . Best p, Best p ¼ p ðQ *; z; p *Þ, Best z ¼ z, Best p ¼ p *;
Best R ¼ zþ yð p *Þ, j ¼ j þ 1, z ¼ z þ 1, and go to Step 1 if z # BL

Step 5. Stop

Table III.
Optimal constant price
and inventory policy
algorithm for additive
demand form
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Then the expected profit function becomes:

p ðQ; z; pÞ ¼
Q;z;p
max PðQ; z; pÞ ¼ ð p2 cÞn ð pÞ

2 K
n ð pÞ

Q
2 h

Q

2
þ yð pÞðz2 LmÞ

� �
2 yð pÞSðzÞ

bn ð pÞ

Q
þ h

� �
:

ð8Þ

To analyze the existence of optimal pricing and inventory policy, the first and second
partial derivatives of P(Q, z, p) with respect to Q and z are considered:

›PðQ; z; pÞ

›Q
¼

n ð pÞ

Q 2
ðK þ byð pÞSðzÞÞ2

h

2
;

›2PðQ; z; pÞ

›Q 2
¼ 2

2n ð pÞ

Q 3
ðK þ byð pÞSðzÞÞ , 0;

›PðQ; z; pÞ

›z
¼ 2hyð pÞ þ yð pÞ �FLðzÞ

bn ð pÞ

Q
þ h

� �

›2PðQ; z; pÞ

›z2
¼ 2yð pÞf LðzÞ

bn ð pÞ

Q
þ h

� �
, 0;

As the second partial derivatives are negative, P(Q, z, p) is concave in Q for fixed (z, p)
and in z for fixed (Q, p). Then an optimal decision variable when the other two variables
are fixed can be extracted from the first order conditions.

For fixed (Q, z), the pattern of p (Q, z, p) in p is more complex:

›PðQ; z; pÞ

›p
¼ mðb2 1Þ

�
yð pÞ

p
2pþ

b

b2 1
cþ

K

Q
þ

h

m
ðz2 mLþ SðzÞÞ

� �
þ

2bbyð pÞSðzÞ

ðb2 1ÞQ

� �
;

ð9Þ

In equation (9), mðb2 1Þð yð pÞ=pÞ is always positive as b . 1 and y( p) . 0 by
definition. Regarding the part in parenthesis [ · ], as p increases y( p) decreases given
that yð pÞ ¼ ap2b. z2 mLþ SðzÞ isnon-negative as:Z BL

AL

ðx2 zÞf LðxÞdx ¼

Z z

AL

ðx2 zÞf LðxÞdxþ

Z BL

z

ðx2 zÞf LðxÞdx;

mL2 z ¼

Z z

AL

ðx2 zÞf LðxÞdxþ SðzÞ;

z2 mLþ SðzÞ ¼ 2

Z z

AL

ðx2 zÞf LðxÞdx;

ð10Þ

where the right hand side of equation (10) is non-negative. Thus,
cþ K=Qþ hðz2 mLþ SðzÞÞ=m . 0. When the p is small the value of [ · ] in
equation (9) can be small. As p increases, y( p) decreases, so the value in [ · ] decreases.
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So, as p increases, the value of [ · ] can be equal to zero only once at the global maxima.
Therefore, for a given (Q, z), there exits a single price that maximizes the expected
profit function. These results are summarized in Lemma 5.

Lemma 5. (i) For a fixed z and p, P(Q, z, p) is concave in Q and optimal Q *(z, p) can
be uniquely defined as:

Q *ðz; pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n ð pÞðK þ byð pÞSðzÞÞ

h

r
: ð11Þ

(ii) For a fixed Q and p, P(Q, z, p) is concave in z and optimal z *(Q, p) can be uniquely
defined as:

FLðz
*ðQ; pÞÞ ¼

bn ð pÞ

hQþ bn ð pÞ
: ð12Þ

(iii) For a fixed Q and z, there exits a single p *(Q, z) that maximizes P(Q, z, p) such that:

p *ðQ; zÞ2 yð p *ðQ; zÞÞ
2bbSðzÞ

b2 1
¼

b

b2 1
cþ

K

Q
þ

h

m
ðz2 mLþ SðzÞÞ

� �
: ð13Þ

When the demand has a multiplicative form, the base price p 0 that maximizes the
expected revenue minus the purchase cost pð pÞ ¼ ð p2 cÞ*n ð pÞ is p 0 ¼ cb=ðb2 1Þ.
Thus, by using p 0, the optimal price given (Q, z) is p *ðQ; zÞ ¼ p 0 þ ðb=ðb2 1ÞÞ
ðK=Qþ hðz2 mLþ SðzÞÞ=mþ 2byð p *ðQ; zÞÞSðzÞ. From the discussion preceding the
Lemma 5, it is known that the part added to p 0 is always positive. So, p * $ p 0. This
result is similar to that is shown by Petruzzi and Dada (1999) for the multiplicative
demand in a newsboy setting. Our result shows that this finding is also confirmed in a
multiperiod continuous review model.

The effect of a change in a decision variable on the other one is studied by using
the optimality conditions stated in Lemma 5. For example, from Lemma 5i, for a fixed z,
Q decreases as the price increases as the demand rate decreases. Similar findings are
summarized in Table IV.

As in the case of additive demand form summarized by Table II, according to
Table table:effects-multiplicative, decision variables work as substitutes, in general, to
minimize costs. For example, for a fixed price order level, if the order quantity happens
to be below its optimal value as a result of quality issue or a supplier delivery problem,
then the optimal price to charge should be increased to sell the available inventory at a
slower rate but more profitably.

Fixed Effect Cause

z p b Q d

z Q b p d

Q p b z d

Q z b p d b

p z b Q d

p Q b z d

Table IV.
Interaction of optimal
decision variables
with multiplicative
demand form
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As a closed-form solution for p *(Q, z) cannot be obtained, it is difficult to investigate
the joint optimality of p (Q, z, p) for more than one variable for the multiplicative
demand form. Still, the results (11), (12), and (13) can be used to simplify the algorithm
to search for the optimal set of (Q, z, p) as given in Table V.

5. Numerical experiments
After getting some information on optimality conditions of a joint constant price and
inventory model, through numerical exercises, insights on the (i) sensitivity of optimal
variables to the system parameters, (ii) value gained by joint optimization overa
sequential price and inventory optimization, and (ii) sensitivity of these gains to system
parameters are obtained.

During the numerical analyses, it is assumed that random demand portion of the
demand has Poisson arrivals with mean mL during the lead time L. To define the base
problem setting, it is benefited from the parameter values used in Chen et al. (2006) and
Chen and Simchi-Levi (2006). It would be preferable to test our results on exact
parameter settings that are already used in other studies, but any study with a price
dependent demand, fixed ordering cost, non-zero lead time, and lost salescosts could
not be found in the literature. The base problem setting has K ¼ 45, c ¼ 3, L ¼ 3,
h ¼ 0.2, and b ¼ 3.5. The similar tests are done first with additive demand model and
then for multiplicative demand. For the additive demand form, the base demand
settings are a ¼ 27, b ¼ 3.5, and m ¼ 4.5.

The algorithm defined in Table III is run first for the 29 problem settings defined in
Table VI by changing each system parameter at a time by keeping the others fixed. In
each problem setting, only the parameter that is changed wrt the base setting is reported
for clarity of the table. As the random demand distribution is defined as Poisson,
running the optimal solution algorithm over only integer values of z is reasonable,
because z is the amountof stock kept for the random demand portion. Although the
optimal z * in Table VI is always integer, the optimal order quantity and reorder level can
be non-integer as R ¼ z * þ yð p *Þ and y( p*) can be non-integer at optimal p*.

The results indicate that each parameter may have different effects on decision
variables. For example, as the mean of the random demand m or lead time L increases,
the main effect is on the optimal reorder levelR, while the order quantity and the optimal
price change slightly or not at all. On the other hand, the optimal ordering quantity Q
changes radically with the fixed cost of ordering K or the holding cost per unit h, while
the reorder level and the price change relatively less. The demand-price relationship
factor b and the unit purchase price c affect all variables at a great extent. The main

Initialize j ¼ 1. Set z ¼ AL, where A is the lower limit on 1 and Best p ¼ 2M, where
M is a large number. Compute p 0 ¼ cb=ðb2 1Þ and EOQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n ð p 0ÞK=h

p
Step 1. Compute S(z).
Step 2. For 0 # Q # EOQ,

i. Compute p * ¼ root½ p2 yð pÞ2bSðzÞb=ðb2 1Þ ¼ b=ðb2 1Þðcþ K=Qþ hðz2 mLþ SðzÞÞ=mÞ�
ii. Compute p ðQ; z; p*Þ
iii. If p ðQ; z; p *Þ . Best p, Best p ¼ p ðQ; z; p *Þ, Best z ¼ z, Best R ¼ zyð p *Þ,
and Best p ¼ p *

Step 3. Set j ¼ jþ 1, z ¼ zþ 1, and go to Step 1 if z # BL
Step 4. Stop

Table V.
Optimal constant price

and inventory policy
algorithm for
multiplicative
demand form
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reason is that bothb and c are two parameters that have important effects onthe optimal
price. As the price changes, then the demand rate changes, so do the ordering quantity
and the reorder level. One interesting result that can deducted from Table VI is that the
lost sales cost rate b has a very slight effect on optimality results. The intuition behind
this result is that the profit maximization model implicity incorporates the cost of a lost
sales as the profit margin. So the additional stockout cost does not effect the optimal
decision variables, unless it is very significant wrt the profit margin.

According to the traditional business definitions in a firm, marketing determines the
sales price of a product after evaluating the competitor and customer preference effects,
which in fact shapes the customer demand. The supply and operations management
does the routine inventory decisions given the demand structure. So a sequential price
and inventory control mechanism is in effect. The joint price and inventory control
optimization offered in this study aims to eliminate possible inefficiencies in sequential
optimization. For this purpose, through numerical analyses, the gap between the joint
and sequential solutions of the price and inventory control problems is measured.

In a sequential solution, first the price is optimized by considering the demand
function and only the purchasing cost, as holding and stockout costs are results

Parameter setting Optimal solution
a b m K c L h b Q * R * p * z * p *

P0 27 3.5 4.5 45 3 3 0.2 3.5 66.6 29.2 6.4 15 17.3
P1 2.5 72.5 36.1 8.1 16 42.2
P2 3.0 69.3 33.2 7.1 16 27.4
P3 4.0 62.8 26.2 5.8 15 10.1
P4 4.5 58.6 23.0 5.4 15 5.1
P5 3.5 64.3 27.6 6.2 12 14.8
P6 4.0 65.1 28.9 6.3 14 16.0
P7 5.0 67.3 30.5 6.4 17 18.6
P8 5.5 68.1 31.8 6.5 19 19.9
P9 35 59.0 30.7 6.3 16 18.7
P10 40 62.6 30.5 6.3 16 18.0
P11 50 69.7 29.0 6.4 15 16.6
P12 55 72.7 28.8 6.4 15 15.9
P13 2.0 72.3 35.8 5.8 16 27.4
P14 2.5 69.2 33.1 6.1 16 22.1
P15 3.5 63.1 26.4 6.6 15 12.9
P16 4.0 59.3 23.5 6.9 15 9.0
P17 1 65.4 10.8 6.4 6 17.6
P18 2 65.7 20.5 6.4 11 17.4
P19 4 66.7 38.9 6.4 20 17.1
P20 5 66.7 48.7 6.4 25 17.0
P21 0.10 95.2 31.4 6.2 16 21.5
P22 0.15 76.9 30.8 6.3 16 19.2
P23 0.25 59.0 28.7 6.4 15 15.6
P24 0.30 53.4 28.3 6.4 15 14.1
P25 2.5 66.0 29.3 6.4 15 17.4
P26 3.0 66.3 29.2 6.4 15 17.3
P27 4.0 66.1 30.2 6.4 16 17.2
P28 4.5 66.3 30.2 6.4 16 17.2

Table VI.
Optimal constant price
and inventory control
variables with
additive demand
Dð p; 1Þ ¼ a2 bpþ 1
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of inventory decisions. In joint pricing and inventory literature, this optimal price is
called the base price denoted by p 0. The base price for additive and multiplicative
demand models are shown in §3 and §4, respectively. Given a base price, which also
determines the structure of the demand function, the inventory problem in our setting
reduces to a regular (R, Q) problem.

The percent increase in the expected profit of a firm by using a joint price and
inventory control is denoted byDp, soDp ¼ ðp ðQ; z; pÞ2 p ðQ; zjp 0ÞÞ=p ðQ; zjp 0Þ*100;
where p ðQ; zjp 0Þ is the expected profit under sequential optimization. Also the percent
change in optimal decision variables by joint optimization over sequential optimization are
measured where DQ, DR, Dp, and Dz denote, respectively, the percent change in the
optimal ordering quantity, reorder level, price, and the stock indented for random demand
portion during the lead time. The gap between joint and sequential optimizations is
evaluated for 29 problem scenarios defined in Table VI. The results are reported in
Table VII.

According to Table VII, as expected, the optimal price in the joint optimization is
larger than the base price of sequential optimization, i.e. p * $ p 0. The gap in optimal
price increases especially when b or h increases. The sequential optimization leads to
lower price, so higher demand rate, which results in higher optimal ordering quantity
and reorder levels than those in joint optimization. The differences in optimal ordering
quantity and reorder level areamplified as b, c, and h increase. The change in the lead
time L and b seem not to affect the gap significantly. Except the base problem P0, the
optimal stock for the random demand portion z is the same in both joint and sequential
optimization. Thus, the gap can be mainly devoted to the difference in optimal price
and the resulting effect in demand rate.

The average increase in expected profit by joint optimization of price and inventory
variables is over 3% in Table VII. This profit improvement can be as much as 15%
when b is high. The improvement by the joint optimization is also measured for
1,000 problem instances with randomly chosen parameter values for each problem.
Each parameter is randomly generated using a uniform distribution from the ranges
given in Table VIII. Our results demonstrate average profit improvements of 4.97%
over sequential optimization provided by the joint price and inventory control for the
tested problems with a standard deviation of 5.75. These results indicate that by using
our joint optimization algorithm, significant improvements can be provided over the
sequential decision making, which is common in practice.

Numerical tests are also repeated with the multiplicative demand. The algorithm
defined in Table V is run for 29 problem settings defined in Table IX by changing each
system parameter at a time by keeping the others fixed. In each problem setting, only
the parameter that is changed wrt the base setting, which is named as P0, is reported
for clarity of the table.

The sensitivity of optimal decision variables to system variables are mainly similar to
those reported for additive demand in Table VI. However, there are two exceptional results
that is worth pointing. With multiplicative demand, as the mean of the random demandm
increases, the optimal price decreases, which is the opposite with additive demand. As
the price decreases, the demand increases. So the increases in ordering quantity and
reorder level with the increase in m are greater than those with the additive demand.

The second difference between the additive and multiplicative demand cases is
the sensitivity of the optimal price to holding cost. While the holding cost does not
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have a direct effect on optimal price with additive demand from Lemma 1iii, it has also
a direct increasing effect on optimal price with multiplicative demand from Lemma 5.
As a result, p* increases with h in Table IX.

The performance of the joint optimization over sequential solution is also
evaluated with multiplicative demand. The gap between joint and sequential
optimizations is evaluated for 29 problem scenarios defined in Table IX. The results

a 27 b U(2.5, 4.5) m U(3, 6) K U(35, 60)
c U(2, 4) L U(1, 4) h U(0.1, 0.4) b U(2.5, 5)

Table VIII.
Distributions of random
parameters used for
additive demand model

Problem Dp DQ DR Dp Dz

P0 2.51 25.2 214.1 6.0 26.3
Increasing b
P1 0.60 23.4 26.3 4.2 0
P2 1.21 24.6 28.4 5.0 0
P3 5.55 28.2 214.9 7.0 0
P4 15.23 210.8 219.4 8.2 0
Increasing m
P5 3.09 26.7 212.3 6.3 0
P6 2.76 26.4 211.6 6.1 0
P7 2.27 25.9 210.9 5.8 0
P8 2.05 25.7 210.3 5.7 0
Increasing K
P9 1.77 25.4 29.7 5.2 0
P10 2.11 25.8 210.4 5.6 0
P11 2.93 26.5 212.1 6.3 0
P12 3.36 26.9 212.7 6.7 0
Increasing c
P13 1.30 24.8 28.7 5.9 0
P14 1.76 25.4 29.7 5.9 0
P15 3.78 27.2 213.1 6.1 0
P16 6.18 28.4 215.3 6.2 0
Increasing L
P17 2.37 26.1 210.3 5.9 0
P18 2.43 26.1 210.8 5.9 0
P19 2.56 26.2 211.5 6.0 0
P20 2.58 26.2 211.5 6.0 0
Increasing h
P21 0.96 24.2 27.6 4.1 0
P22 1.64 25.2 29.4 5.1 0
P23 3.56 27.0 212.9 6.8 0
P24 4.83 27.8 214.3 7.5 0
Increasing b
P25 2.46 26.1 211.4 5.9 0
P26 2.49 26.2 211.4 6.0 0
P27 2.49 26.1 211.0 6.0 0
P28 2.52 26.2 211.1 6.0 0
Average Dp : 3.08 percent

Table VII.
The performance of joint
optimization over
sequential optimization
for additive demand as %
change in optimal
variables
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are reported in Table X. The range of gap between the optimality results of joint and
sequential optimization are different for multiplicative and additive demands because
of the change in ranges of b and m. However, the sensitivity of the gap is mainly
similar. The only exception is the effect of purchasing cost c. While the relative
performance of joint optimization improves with c in additive demand model, it
deteriorates with multiplicative demand.

6. Conclusion
Firm performance increases when supply chain members work together in cooperation,
as customer demands are often unpredictable (Richey et al., 2009). Contrarily, research
suggests that the links between pricing, inventory control, supply chain management
and firm performance have not been empirically substantiated (Frohlich and
Westbrook, 2001). However, some conclusions have been suggested: reducing
inventory holding costs through improved inventory management improves
profitability (Stapleton et al., 2002).

While much of the supply chain management literature has concentrated on
inter-firm conflicts and collaboration, there is still a need for research within each firm;

Parameter setting Optimal solution
a b m K c L h b Q * R * p * z * p *

P0 27 2 35 45 3 3 0.2 3.5 93.0 58.9 7.2 113.0 57.0
P1 1.6 112.0 85.4 9.4 114 143.8
P2 1.8 103.5 72.3 8.0 113 90.0
P3 2.2 82.5 46.0 6.7 112 36.1
P4 2.4 72.0 34.8 6.4 111 22.5
P5 25 76.5 39.4 7.4 80 38.3
P6 30 85.0 49.1 7.3 97 47.6
P7 40 101.0 69.1 7.1 129 66.6
P8 45 108.5 79.9 7.0 145 76.2
P9 35 84 60.5 7.1 113 59.1
P10 40 89 60.5 7.1 113 58.0
P11 50 98 58.3 7.2 112 56.1
P12 55 101 56.7 7.3 112 55.2
P13 2.0 138.5 129.3 4.9 115 84.0
P14 2.5 112.0 85.5 6.0 114 67.9
P15 3.5 80.5 43.9 8.3 112 49.1
P16 4.0 70.0 33.2 9.5 111 43.1
P17 1 93.5 20.9 7.1 39 57.6
P18 2 95.0 40.7 7.1 76 57.3
P19 4 93.5 77.6 7.2 149 56.8
P20 5 93.5 96.4 7.2 185 56.6
P21 0.10 138.5 67.1 6.8 115 63.2
P22 0.15 110.0 62.8 7.0 114 59.8
P23 0.25 81.0 55.2 7.4 112 54.6
P24 0.30 73.5 53.3 7.5 111 52.5
P25 2.5 93.0 57.8 7.2 111 57.2
P26 3.0 93.0 58.3 7.2 112 57.1
P27 4.0 93.5 58.9 7.2 113 56.9
P28 4.5 93.0 59.4 7.2 114 56.9

Table IX.
Optimal constant price
and inventory control

variables with
multiplicative demand

Dð p; 1Þ ¼ ap2b1
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that of intra-firm departmental collaboration. Our research hoped to illustrate that
intra-firm conflicts between marketing and operations management of supply and
demand can be successfully modeled and coordinated. Demand management is the
marketing department’s focus which is known to be a function of price, advertising,
and product variety; manipulating these variables to achieve the greatest revenue.
Supply management then coordinates supply with the given demand at lowest cost.
For example, recent research into efficient consumer response (for retailers and
suppliers to work closely together to reduce costs and add customer value) focus on
both demand management as well as cost control such as: store assortment,
efficient replenishment, efficient promotion and product introduction (Martens and
Dooley, 2010).

Problem Dp DQ DR Dp Dz

P0 4.01 217.1 231.2 20.0 20.9
Increasing b
P1 1.32 212.9 222.7 17.5 0.0
P2 2.33 214.6 227.0 18.5 20.9
P3 6.92 220.0 235.8 21.8 20.9
P4 12.30 223.3 241.9 24.4 21.8
Increasing m
P5 5.96 219.7 235.1 23.3 21.2
P6 4.80 218.1 233.1 21.7 21.0
P7 3.45 215.8 229.1 18.3 20.8
P8 3.02 214.7 227.0 16.7 20.7
Increasing K
P9 3.18 215.8 229.2 18.3 20.9
P10 3.59 216.1 229.2 18.3 20.9
P11 4.44 217.3 231.2 20.0 20.9
P12 4.88 218.5 233.0 21.7 20.9
Increasing c
P13 5.11 219.1 233.9 22.5 20.9
P14 4.42 217.3 231.2 20.0 20.9
P15 3.74 215.9 229.5 18.6 20.9
P16 3.55 216.2 229.7 18.8 20.9
Increasing L
P17 3.40 215.7 230.4 18.3 22.5
P18 3.74 215.0 229.5 18.3 21.3
P19 4.25 217.2 231.0 20.0 20.7
P20 4.46 217.6 230.9 20.0 20.5
Increasing h
P21 1.65 211.9 222.8 13.3 20.9
P22 2.75 214.6 227.2 16.7 20.9
P23 5.43 219.7 234.8 23.3 20.9
P24 7.01 220.7 236.6 25.0 20.9
Increasing b
P25 3.86 217.1 231.2 20 20.9
P26 3.94 217.1 231.2 20 20.9
P27 4.07 216.5 231.8 20 21.7
P28 4.12 217.3 231.2 20 20.9
Average Dp : 4.33 percent

Table X.
The performance of joint
optimization over
sequential optimization
for multiplicative demand
as % change in optimal
variables
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The frequent mismatches between supply and demand such as unexpectedly short
lasting promotion periods due to out-of-stocks or piled-up stocks due to overpriced
products, have directed researchers and practitioners to rethink the hierarchical decision
making between marketing and operations. From just such a need in the research stream
in collaborated decision-making our study integrated the joint price and inventory
management. We chose to work with a continuous review inventory system, non-zero
lead time, fixed ordering cost, and lost sales model in case of a stockout. While
continuous inventory review systems are highly practical because of constant ordering
quantities, lead time, fixed cost; lost sales are unavoidable in reality and difficult to
include in analytical studies. Our aim by this study is to gain knowledge on the
relationship between price and inventory optimization by incorporating as many
aspects of reality as possible.

The issue of inventory management within the supply chain has become
exacerbated on a global scale to such an extent that firms are developing unique
concepts to combat the high costs of insufficient customer focus and stock out. An
example of an innovate technique to combat this issue are that firms are shipping large
containers of goods (called floating docks) without demand requirements, towards the
customers drawing upon both transportation and inventory control issues. This
floating dock concept maylead to less storage costs and a shorter order time, but the
amount of inventory may actually be increased, but in different locations of the supply
chain (Dekker et al., 2009).

Although the joint inventory and pricing research has been improving in recent
years, most of the research’s focus has been in obtaining dynamic pricing strategies,
where price can be updated after every demand arrival or at each replenishment
opportunity. While dynamic pricing is easier to implement with improving price tagging
and point-of-sales technologies and transition to online sales, still many sellers follow a
static price policy especially for functional products. Without dealing with complex
dynamic price policies, a seller should know how to determine the best long-run prices
for his products along with the best inventory replenishment decisions. The supply
chain complexity, although sophisticated models are continuously assisting
practitioners, still cannot ever provide full information as the level of coordination
will vary due to organizational culture, size, technology, etc. (Choi and Krause, 2006;
Jonsson et al., 2007).

Therefore, in this study, our focus is on joint optimization of inventory replenishment
and the constant selling price. By showing optimality conditions on the price and
inventory decision variables, two algorithms on how to obtain optimal decision variables,
one for additive and another for multiplicative demand-price model, are provided.
Through extensive numerical analyses, the potential profit increases are reported if price
and inventory problem is solved simultaneously instead of sequentially. In addition, the
sensitivities of optimal decision variables to system parameters are revealed.

Our results mainly support the practical intuition that marketing wants to sell
more with lower prices, while operations is more concerned about inventory levels such
that if price and inventory decisions are made together, the optimal price is higher
andstocking levels are lower than those in sequential decision making. Moreover, the
benefit of joint decision making increases significantly as the fixed ordering and/or
holding costs increase. This indicates the increasing importance of coordination for
expensive to order and stock products.
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The model used in this study incorporates many aspects of reality such as
replenishment fixed cost and lead time, both multiplicative and additive forms of price
dependent demand function, and lost sales in case of a stockout. The analytical
optimality results provided would help a practitioner to obtain the optimal decision
variables in a reasonable time period. Among the inputs that are required to implement
the model, the most time consuming to obtain might be the demand function and the
shortage cost per unit lost demand, while the rest of parameters are relatively
straightforward to obtain. The price dependent demand function can be obtained by
analyzing the past data, which can be even more useful if enough price changes are
made in the past. The lost sales cost can be approximately obtained by considering the
follow-up service revenues from a sale as in auto-dealer industry and/or repetitive
purchases of customers that is measured by customer loyalty.

The study in this paper can be further extended. A price change model in the case of
low inventory levels where a price discount or increase can be exercised can be studied
by first utilizing the methodology described in this study to obtain the optimal
constant price. Although there are several studies in the literature investigating
emergency price change models, they use arbitrary exogenous prices. However, the
value of a price change can be better appreciated if the long-run price is optimal for the
system. Another follow-up study can be a backordering model in a similar problem
context. Any difference in optimal decision variables can be investigated with the lost
sales model.
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Appendix
Proof of Lemma 2. For a fixed price p, to show the joint concavity in (Q, z), the Hessian matrix of
the profit function p (Q, z) needs to be checked. The first principal minors should negative and the
second principal minor, which is also the determinant, should be positive. The first principal
minors ›2PðQ; zÞ=›Q 2 and ›2PðQ; zÞ=›z 2 are negative from equations (3) and (4), respectively. To
calculate the determinant we also need:

›2PðQ; zÞ

›Q›z
¼

›2PðQ; zÞ

›z›Q
¼ 2

b �FLðzÞn ð pÞ

Q 2
:

Then the determinant is:

jH j ¼
›2PðQ; zÞ

›Q 2

›2PðQ; zÞ

›z 2
2

›2PðQ; zÞ

›Q›z

›2PðQ; zÞ

›z›Q

¼
n ð pÞ

Q 4
ð2ðK þ bSðzÞÞf LðzÞðbn ð pÞ þ hQÞ2 b 2 �FLðzÞ

2n ð pÞÞ: ðA1Þ

To show that the determinant jHj is positive, first the limit according to z is checked, which is:

z!1
limjH j ¼ 0:

Then, check how jHj approaches the limit in z:

›jH j

›z
¼

2n ð pÞ

Q 4
2bhQ �FLðzÞf LðzÞ þ ðbn ð pÞ þ hQÞðK þ bSðzÞÞ

df LðzÞ

dz

� �
; ðA2Þ

which is negative if dfL(z)/dz # 0. Remember that z ¼ R 2 Ly( p) and f Lð · Þ has a mean mL. So, if
fL( · ) is nondecreasing for all values greater than equal to Lm and z $ mL then jHj . 0 as it has a
limit zero and is non-increasing while approaching the limit. This concludes the proof that p (Q, z)
is jointly concave in (Q, z) if fL(x) is non-increasing for x $ mL. A

IJPDLM
42,2

198



Proof of Lemma 3. Given p *(Q, z), the optimal price for fixed Q and z from Lemma 3iii and
assuming that z is fixed, the profit function as a function of only Q is obtained as follows:

p aðQ; z; pðQ; zÞÞ ¼
1

b

n0

2
2 b

K þ bSðzÞ

2Q

� �2
 !

2 h
q

2
þ z2 mLþ SðzÞ

� �
; ðA3Þ

for ðK þ bSðzÞÞ=Q , ðn0 2 2mÞ=b. The superscript “a” is added to denote this condition.
Otherwise:

p bðQ; z; pðQ; zÞÞ ¼ m
n0 2 m

b
2

K þ bSðzÞ

Q

� �
2 h

Q

2
þ z2 mLþ SðzÞ

� �
; ðA4Þ

where the superscript “b” is added to denote the second possible case.
First take the derivative of p (Q, z, p(Q, z)) wrt Q and check, whether it is a continuous

function of Q. The derivative of equation (A3) is as follows:

RaðQÞ ¼
›p aðQ; z; pðQ; zÞÞ

›Q
¼

K þ bSðzÞ

2Q 3
ðn0Q2 bðK þ bSðzÞÞÞ2

h

2
: ðA5Þ

Then the derivative of equation (A4) is:

RbðQÞ ¼
›p bðQ; z; pðQ; zÞÞ

›Q
¼

K þ bSðzÞ

2Q 3
ðn0Q2 bðK þ bSðzÞÞÞ2

h

2
: ðA6Þ

As the z is taken as fixed and p is a function of Q and z, RðQÞ ¼ ð›p ðQ; z; pðQ; zÞÞÞ=›Q for ease of
notation.

To check whether R(Q) is continuous on Q, first find the Q 0, where the optimal price is at its
upper limit p *ðQ 0; zÞ ¼ a=b. By using the definition of p *(Q, z):

Q 0 ¼
bðK þ bSðzÞÞ

n0 2 2m
:

By definition, n0 ¼ yðcÞ þ m and yðcÞ . m, so n0 2 2m . 0. Thus, Q 0 . 0, for K . 0. It is easy to
confirm that RaðQÞ ¼ RbðQÞ at Q ¼ Q 0. So, R(Q) is continuous on Q.

It is known from the limit condition of the price, while p bðQ; z; pðQ; zÞÞ is valid for
Q [ [0,Q 0), p aðQ; z; pðQ; zÞÞ is defined on Q [ [Q 0, 1). So let us first check the behavior of R(Q)
for Q [ [0, Q 0). For Q ¼ 0, RbðQÞ ¼ 1, from equation (A6). Between 0 and Q 0:

dR bðQÞ

dQ
¼ 2

2mðK þ bSðzÞÞ

Q 3
, 0: ðA7Þ

So, R(Q) is decreasing from infinity on [0, Q 0). Next, check the behavior of R(Q) on [Q 0,1):

dRaðQÞ

dQ
¼

K þ bSðzÞ

2Q 3
22n0 þ

3b

Q
ðK þ bSðzÞÞ

� �
; ðA8Þ

d 2R aðQÞ

dQ 2
jdRðQ=dQ¼0 ¼

16n5
0

18b 4ðK þ bSðzÞÞ3
, 0: ðA9Þ

From equation (A9), it can be concluded that R a(z) is unimodal, as it first increases and then
decreases. Combining all obtained information, R(Q) might have one of the three possible paths
shown in Figure A1.

If R(Q) is positive at Q 0, then R(Q) ¼ 0 can be satisfied only at a single Q, around which R(Q)
turns from positive to negative. Thus, this single root of R(Q) is the single and the global
maximum for p ðQ; z; pðQ; zÞÞ, denoted by Q * in the figure.

Joint inventory
and constant

price decisions

199



If R(Q) is non-positive at Q 0, this indicates that RbðQÞ ¼ Q at a single point Q [ (0, Q 0). In the
region [Q 0, 1), as R a(Q) is first increasing, and then decreasing, R a(Q) ¼ 0 can be satisfied at
two points or none. These two possibilities are illustrated by cases (B) and (C), respectively, in
Figure A1. In case (B), there can be two maxima Q*1 and Q*2 that satisfy R(Q) ¼ 0 and around
which R(Q) changes from positive to negative. The global maxima can be obtained by comparing
p ðQ*1 ; z; pðQ

*
1 ; zÞÞ and p ðQ*2 ; z; pðQ

*
2 ; zÞÞ. In case (C), the single and global maximum is attained

at R b(Q) ¼ 0.
To get more information on which case described above apply for any given problem setting,

check whether R(Q 0 ) is positive or non-positive. By using the definition of Q 0, and equation (A5)

or (A6):

RðQ 0Þ ¼
mðn0 2 2mÞ2

b 2ðK þ bSðzÞÞ
2

h

2
: ðA10Þ

Equation (A10) is positive, if 2mðn0 2 2mÞ2 . hb 2ðK þ bSðzÞÞ. So, case (A) in Figure (A1) applies
and there is a single Q that maximizes p ðQ; z; pðQ; zÞÞ.

If Equation (A10) is non-positive, but R(Q) is non-increasing for Q $ Q 0, there is still a single
root maxima of R(Q). For this case to hold, equation (A8) should be non-positive for Q $ Q 0,
which requires:

3bðK þ bSðzÞÞ

2m
# Q 0 ¼

bðK þ bSðzÞÞ

n0 2 2m
;

n0 # 6m:

Figure A1.
For a fixed z, in search for
the optimal Q

(A)

R(Q)

Q
Q0 Q*

Q2
*Q1

*

Q*

(B)

(C)
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If 2mðn0 2 2mÞ2 # hb 2ðK þ bSðzÞÞ and n0 # 6m, then case (C) in Figure (A1) applies and there is
a single maxima of p ðQ; z; pðQ; zÞÞ.

If neither of these conditions are satisfied, there can be at most three roots of RðQÞ, where the
smallest and largest ones can be local maxima, while the second root is a local minima. This
completes the proof of the lemma. A

Proof of Lemma 4. Using p *ðQ; zÞ from Lemma 3iii and assuming that Q is fixed, the profit
function as a function of Q, z can be obtained as in equations (A3) and (A4). Similar to the proof of
Lemma 4, first check whether the derivative of p ðQ; z; pðQ; zÞÞ is continuous on z. p *ðQ; zÞ
reaches its upper limit a=b at z 0 that satisfies the following equality:

Sðz 0Þ ¼
Qðn0 2 2mÞ2 Kb

bb
:

It is known from the limit condition of the price that while p bðQ; z; pðQ; zÞÞ is valid for
z [ ½AL; z 0Þ, p aðQ; z; pðQ; zÞÞ is defined on z [ ½z 0;BL�, where A and B are the lower and upper
limits of the range of the random demand per unit time, respectively.

The derivative of equation (A3) wrt to z is as follows:

RaðzÞ ¼
›p aðQ; z; pðQ; zÞÞ

›z
¼

b �FLðzÞ

Q

n0

2
2

b

2Q
ðK þ bSðzÞÞ

� �
2 hFLðzÞ: ðA11Þ

Then the derivative of equation (A4) wrt to z is:

RbðzÞ ¼
›p bðQ; z; pðQ; zÞÞ

›z
¼ �FLðzÞ

bm

Q
þ h

� �
2 h: ðA12Þ

As the Q is taken as fixed and p is a function of Q and z, RðzÞ ¼ ð›p ðQ; z; pðQ; zÞÞÞ=›z for ease of
notation.

At z 0, it is easy to show that RaðzÞ ¼ RbðzÞ. So RðzÞ is continuous on z. Then let us first check
the behavior of RðzÞ for z [ ½AL; z 0Þ. For z ¼ AL, RbðzÞ ¼ bm=Q, from equation (A12). Between
AL and z 0:

dR bðQzÞ

dz
¼ 2f LðzÞ

bm

Q
þ h

� �
, 0: ðA13Þ

So, RðzÞ is decreasing from bm=Q on ½AL; z 0Þ. Next, check the behavior of RðzÞ on ½z 0;BL�:

dRaðzÞ

dQz
¼ 2f LðzÞ hþ

n0b

2Q
2

bb

2Q 2
ðK þ bSðzÞÞ

� �
þ �FLðzÞ

2 b
2b

2Q 2
; ðA14Þ

d 2RaðzÞ

dz 2
¼ 2

df LðzÞ

dz
hþ

n0b

2Q
2

bb

2Q 2
ðK þ bSðzÞÞ

� �
2 �FLðzÞf LðzÞ

3b 2b

2Q 2
;

d 2RaðzÞ

dz 2
jdRðzÞ=dz¼0 ¼ 2

�FLðzÞb
2b

2f LðzÞQ 2

df LðzÞ

dz
�FLðzÞ þ 3f LðzÞ

2

� �
:

ðA15Þ

Equation (A15) is negative if df LðzÞ=dz* �FLðzÞ þ 3f LðzÞ
2 is positive. Let rð · Þ denote a

failure rate function such that rð · Þ ¼ f ð · Þ= �Fð · Þ. Then 2rLðzÞ
2 þ drLðzÞ=dz ¼ ðdf LðzÞ=dz �FLðzÞþ

3f LðzÞ
2Þ= �FLðzÞ

2. Thus, if 2rLðzÞ
2 þ drLðzÞ=dz . 0, then df LðzÞ=dz* �FLðzÞ þ 3f LðzÞ

2 . 0, which
makes sure that equation (A15) is less than zero. The negativity of equation (A15) indicates that
RaðzÞ is unimodal over ½z 0;BL�, first increasing and then decreasing.
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Combining all obtained information, it is known that RðzÞ is first decreasing on z until z ¼ z 0

and then unimodal beyond z 0. Similar to the pattern of RðQÞ in Lemma 4, RðzÞ can have either
one root at the point where RbðzÞ ¼ 0, or three roots, one at RbðzÞ ¼ 0 and two for RaðzÞ ¼ 0. If
there is single root at RbðzÞ ¼ 0, then this is the single global maximum of p ðQ; z; pðQ; zÞÞ for the
fixed Q. If RaðzÞ ¼ 0 at two values of z, then the global maximum is either at RaðzÞ ¼ 0 or the
larger root of RbðzÞ ¼ 0. This completes the proof of the lemma. A
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