
IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000 443

Experience Using a Project-Based Approach in an
Introductory Programming Course

David Davenport

Abstract—This paper describes how and why our department
chose to integrate a sophisticated visual programming envi-
ronment (DELPHI) into the introductory programming course
(CS101/2) of the first-year undergraduate engineering curriculum.
It also reports on the outcome of this venture, which involved a
switch from a conventional lecture-based approach to teaching
CS102 to a project-based approach. While it meant more work for
both students and teachers the overall response from both parties
was very positive. Indeed, the resulting designs and subsequent
survey results seem to confirm that students achieved a better
appreciation and understanding of the course’s objectives.

Index Terms—Computer programming languages, CS1, CS2,
DELPHI, introductory programming, PASCAL, project-based
learning, ROBO, software engineering education, student centered
learning, undergraduate engineering education.

I. INTRODUCTION

A PROGRAMMING class in the first-year undergraduate
curriculum is something of an enigma. It seems somehow

out of place alongside conventional subjects, such as physics
and calculus. While most students find it useful and even enjoy-
able to learn how to use a computer, teachers often find it diffi-
cult to arrange and justify the course’s contents. Somehow it is
necessary to balance the need to give students general computer
literacy and vocational skills, with the demands for a rigorous
engineering education. The result of these often-conflicting ob-
jectives is wide variations in style, a constant reappraisal of
contents, and never-ending arguments over which programming
language to use. Rapid advances in technology merely serve to
aggravate the situation and ensure that introductory program-
ming classes, hereafter referred to as CS101/102, are in a con-
tinual state of flux.

This paper describes our experience in designing and
teaching this course. It begins by examining the rationale
for including programming in the first-year curriculum and
derives a clear set of objectives that it is felt such a course
should be designed to achieve. It then describes the particular
implementation, which takes students with no prior experience
of computers and, via a combination of lectures, laboratory
assignments, and group-based project work, enables them to
produce sophisticated software products. The survey results,
presented in the final section, evaluate the strengths and
weaknesses of this approach.

Manuscript received May 8, 1997; revised August 21, 2000.
The author is with the Computer Engineering and Information Science De-

partment, Bilkent University, Ankara, Turkey (e-mail: david@bilkent.edu.tr).
Publisher Item Identifier S 0018-9359(00)10083-4.

II. WHY TEACH PROGRAMMING IN THE FIRST YEAR?

Computer science (CS) has not traditionally been thought of
as science in the same mold as physics, chemistry, and biology.
It is certainly not a science of the natural world, but, some would
argue, of the artificial. Thus, CS is taught in first-year under-
graduate courses, not so much because it is part of the world
around us, as because it is a tool with which to help explain and
analyze it, much as calculus is (and philosophy was?)

Programming entered the curriculum only a few decades ago,
as computers first moved out of research labs and into more gen-
eral use. At that time, anyone who wanted to make use of the
machine had to be able to write programs. It was also necessary
to know how to punch cards and to be extremely patient while
waiting, sometimes days, for the next output, after correcting
the inevitable missing comma error which had ruined the pre-
vious day’s run! In that era it made sense to teach budding engi-
neers about the computer so that they could make good use of it
later. Today, however, the computer is all pervasive. Moreover,
there are now cheap, readily available, package programs that
can accomplish nearly all the basic tasks students’ face. There
is almost no need to write programs anymore!

Why then, are undergraduates still taught to program? In the
case of computer science students the rationale is perhaps ob-
vious, however, CS101/2 tends to be taught to all freshmen en-
gineers. Why? Probably because university curricula have not
yet caught up with reality. Universities tend to be rather conser-
vative. This is not necessarily a bad thing, of course, however, it
does leave the (interim) problem of justifying what is taught (or
melding it to other ends?) Indeed, this is all the more difficult
given that, in many countries, students now entering university
already have a good background in computing.

The response to these changes has been an attempt to jus-
tify the course on the basis that it enhances logical thinking
and problem solving skills. While this may be true the evidence
seems far from clear and, besides, there may be simpler/easier
ways of teaching them. In any case, those who enter university
(particularly engineering departments) already tend to have a
reasonable (albeit, perhaps intuitive) grasp of such skills other-
wise they would never have gotten there in the first place.1

1This may vary somewhat across countries and cultures. In Turkey, a large
youth population and the perceived need to obtain a good education, has resulted
in a fiercely competitive nationwide university entrance examination system.
The huge demand for an engineering education means that such departments
are able to select the very best students—those that have excelled in math and
science at high school, and are therefore much better than average, at least in
terms of their ability to think logically and to solve certain types of problems.

0018–9359/00$10.00 © 2000 IEEE

444 IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000

III. W HAT SHOULD BE TAUGHT?

How then, might the teaching of an introductory program-
ming and algorithms course be justified in today’s first-year
undergraduate curricula? What should be taught? Five over-
reaching objectives come to mind. Students should be encour-
aged to develop the following:

1) an engineering approach to problem solving and design;
2) improved communication skills;
3) the ability to work together in a team;
4) the ability to use complex modern computer systems;
5) the ability to learn independently.
The first recognizes that, while university students are rel-

atively good at problem solving and are generally capable of
clear logical thinking, their abilities tend to be very intuitive.
That is, they have a natural (instinctive) mental capacity that
makes them particularly adept at answering exam questions.
Unfortunately, such skills do not necessarily translate into suc-
cess in the larger engineering arena. The difficulty is one of
scale. People can often handle small problems because they can
readily hold the entire task in their head and apply their intu-
ition to solve it. Nowadays, however, practicing engineers have
to deal with very complex systems. In such cases, there is simply
no way to apply intuition since the system is beyond the indi-
vidual’s ability to fully comprehend. The aim then, should be
the teaching of a methodology for tackling large engineering
type problems [1]. The mentality, common in programming cir-
cles, which relies on experiment and test, must be replaced by
a rigorous design methodology. It is important to cultivate the
idea that engineering is about producing complex products that
function “right-first-time and are maintainable.”

One of the difficulties faced here is that CS101/2 is an intro-
ductory course, so most students are grappling with very basic
programming concepts. It is thus almost impossible to assign
them large problems, since they plainly lack the means to solve
them. Yet if they do not get to work on complex problems they
do not appreciate the need for a methodology in the first place.
This dilemma would appear to be at heart of most of the up-
heaval experienced in CS101/2.

The second objective should be to help students develop
their communication skills, both written and oral. Engineering
students have traditionally viewed language skills as irrelevant
or, at the very least, secondary to technical ability. They resist
writing reports, considering it just boring overhead, not part
of the real intellectual work! But this attitude is regrettable
for two reasons. First, and perhaps foremost, the very process
of design requires and is significantly aided by putting one’s
ideas down on paper. Not only is this necessitated by personal
limited cognitive abilities, but it is usually the case that the very
act of communicating forces one to better organize and clarify
his/her ideas. Moreover, it opens up those ideas to criticism by
others. The result, then, is a much more focused view of the
problem and less chance of overlooking something. The second
reason why neglecting communication skills is regrettable, is
that, to be successful in today’s highly competitive markets,
engineers really do have to be extremely good communicators.
They must be able to talk with customers, first to understand
their requirements, to negotiate and agree upon a product

specification, and later to “sell” the resulting design back
to them. And, of course, engineering is no longer a solitary
discipline. Building complex products involves many people,
often with a variety of different skills and backgrounds, so
it is vital to the success of a project that everyone be able to
communicate effectively with other members of the team. This
brings us to the third major objective that CS101/2 should aim
for. Given that engineering is now very much a team effort and
that people do not necessarily find it easy to work together, it
makes good sense to help students develop these all-important
interpersonal skills as early as possible. Replacing the highly
competitive attitude prevalent in the high school system2 with
one of cooperation and sharing can only be good for everyone.

Finally, the fourth and fifth objectives are intended to get stu-
dents familiar with the use of sophisticated modern computer
systems. This entails not just basic computer literacy, the use
of word processors and communications, but also complex pro-
gramming environments. Early familiarity with such systems
will make it easier for students to learn to use other products
and even to design new software themselves. Initially, of course,
students need to be taught to use certain programs, however, it
is important that students acquire the capability to learn on their
own. This is vital in the computer industry where new products
appear very frequently. Giving students the confidence that they
can find out about, and learn to use complex systems, from man-
uals, books, online help, the Internet and friends, is extremely
important and one of the major reasons for the shift toward stu-
dent-centered learning.

IV. COURSEDESIGN CONSIDERATIONS

Having decided upon what would appear to be justifiable ob-
jectives for the course, the next step is to determine how to put
them into practice. Obviously, the students, the way the course
has been implemented and taught in the past, the overall cur-
riculum, and the available equipment, will have a significant in-
fluence on decisions at this stage. Each of these aspects will now
be examined in more detail.

A. Students and Equipment

Bilkent University is a private institution, the first in Turkey.
Set up as a center of excellence in research, it has consistently
managed to attract the very best students. Every year more than
a million students apply to enter Turkish universities. From the
national entrance exam Bilkent accepts and awards scholarships
to, only about 150 students from those in the top three hun-
dred (or less) for admission to the engineering faculty. The stu-
dents are thus very bright, competitive, and highly self-moti-
vated. Unlike their counterparts in more developed countries,
however, Turkish students generally have little experience with
computers. Although the situation is changing as computers
gradually find their way into high schools and homes, currently
at least 50% of freshmen students have absolutely no prior ex-
posure to computers. For this reason, Bilkent has placed con-
siderable emphasis on making computer facilities available to

2The situation will obviously vary widely from one country to another. Cir-
cumstances in Turkey have resulted in a highly competitive high school educa-
tion system (see footnote.)

DAVENPORT: EXPERIENCE USING A PROJECT-BASED APPROACH 445

both students and staff. While the backbone of the university’s
network is formed of Unix machines, student labs have always
been equipped with PC compatibles, originally XT’s running
MSDOS, nowadays, Pentiums running MS Windows NT.

B. The Existing Course

The introductory CS101/CS102 programming and algo-
rithms course is mandatory for all freshmen engineering
students entering Bilkent University. Since the university’s
inception ten short years ago, the course has been taught using
Turbo Pascal and Koffman’s textbook [2]. Both the software
and the book have gone through many editions, however, the
basic content and form of the course has remained unchanged.
The first semester gets students familiar with using the com-
puter and provides an introduction to basic programming
concepts. These include the notions of comments, sequence,
decision, repetition, variables and constants, procedures and
functions, parameters, arrays and records. Emphasis is placed
on top-down structured algorithm development as a means of
problem solving. The second semester continues with more
sophisticated programming techniques, stressing the need for
time and space efficient solutions to real-world problems.
File processing, recursion, searching, and sorting are covered,
including binary search, hashing, selection sort, quicksort and
mergesort, plus a variety of data structures such as lists, stacks,
queues and trees. This corresponds broadly with the ACM
recommendations for CS1/2 courses [3].

A midterm exam (25%), a final exam (30%), weekly labora-
tory assignments (30%), and homework, usually essays on so-
cial or other aspects of computing (15%), determine grades. In
recent years, students have been given the option of undertaking
an individual project in place of the homework component in
the second semester only. This has proved successful in terms
of motivating students, but has failed to meet broader objectives
(such as those outlined above) due mainly, perhaps, to a lack of
rigorous reporting requirements, necessitated by its low overall
weight in the course.

One departure from what would otherwise be a very conven-
tional approach to teaching CS101/2, occurs during the first few
weeks of the course. A tool, called Robo [4], developed specifi-
cally to acquaint students having absolutely no prior background
in the subject, with the basic concepts and rationale of program-
ming and software engineering, is employed. In essence, Robo
is a very simple stand-alone implementation of LOGO’s turtle
graphics [5], [6]. It providesaveryconcretemeansof introducing
basic ideas and skills, including sequence, repetition, comments,
meaningfullynamedproceduresandparameters, top-downstruc-
tured design, pre/post conditions, etc. This program and an out-
line course are freely available to teachers [7].

In Bilkent, CS101/2 was followed in the second year by a one-
semester course on data structures and a two-semester sequence
on fundamental structures of computer science. These courses
assume that students have gained the rudiments of programming
in the first year and hence concentrate on more analytical skills.
They also switch to the C language. Several common complaints
have echoed down the years, 1) there is too much repetition of
data structures; 2) students do not have enough familiarity with
C; and 3) students lack design skills. It was hoped to resolve some

of these problems by reducing the data structures component in
CS102 and concentrating instead on engineering design skills.

C. The Dreaded Question of Language

As always, one of the major choices to be made concerns
the programming language to be taught [8]. While Borland’s
Turbo Pascal has been used for the last ten years, there has
been significant and recurring pressure to change to C, C++ and
even Scheme (not to mention other possibilities such as ADA,
Oberon, Eiffel and so on!) The reasons usually given for consid-
ering such alternatives are 1) they are cleaner, purer, academi-
cally more acceptable or 2) they are in wide use and hence more
commercially acceptable. Both of these are true, which is ex-
actly why we chose to stay with Pascal!

Pascal seems to offer a good compromise. Of course, standard
(ANSI) Pascal is too restricted to be useful for commercial appli-
cations (and hence education), however, almost all actual imple-
mentations offer a full range of extensions. Although obviously
not as portable or widely used as C, Pascal is nevertheless very
popular.Nowadays,C’sportability is lesssignificant,becausethe
large user-interface component typical of windows-based pro-
grams isnotdirectly transferableacrossoperatingsystems.Com-
pared to C, Pascal has a relatively natural English-like syntax
making it easier for students to learn, allowing them to concen-
trate on program design, which presumably is what is important!
Although Pascal is certainly not the purist’s language, it is very
concrete which also makes it a good choice for newcomers, and
the fact that it is a conventional language means that having once
masteredPascal, studentscanveryquicklypickupmostcommer-
cial languages. In one of its latest guises, (Borland Pascal version
7.0) it also provides a relatively smooth transition to object-ori-
ented-programming. Last, but certainly not least, Pascal is now
available in a powerful integrated visual programming environ-
ment, in the guise of Borland’s Delphi [9]. This product allows
students to be introduced to complex event-driven object-based
systems with GUIs, and, as will be seen shortly, have them pro-
ducing very good results extremely quickly. Delphi not only of-
fers a superbly clean implementation of object-oriented features,
italsohandlesmuchof themundaneprogramwriting, freeingstu-
dents to concentrate on more important matters.

V. THE FINAL COURSEDESIGN

Given that up to 50% of freshmen students entering Bilkent
haveabsolutelynoexperiencewithcomputers, itwasdecidedthat
thefirstsemesterCS101courseshouldretain itsconventional lec-
ture/lab framework. Since these students are usually away from
homefor thefirst time, inanewenvironment,makingnewfriends,
etc., thisoptionwouldseemtooffer the leastadditionalstressand,
anyway, would ensure that they did learn the necessary concepts.
It also gives the opportunity to reorient those students who have
learned programming in school, using the Basic language! It is
these students, who tend to program by trial and error, who gen-
erally have the most difficulty.

So CS101 stayed pretty much the same as described above, al-
though an additional lab, specifically intended to get students fa-
miliar with word processors and network communications in the
form of MSWord and Netscape, was introduced. CS102, how-
ever, underwent a complete redesign. In line with the objectives

446 IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000

outlined previously, a team-based project approach was chosen.
In order to smooth the transition and to provide additional tech-
niques which students might need in their projects, some lec-
tures continued to be given as before. This allowed the teaching
of certain important topics, such as recursion, direct-access file
processing and some pointer-based data structures (list, stacks,
and queues) although at a much reduced level. Most such lec-
tures were given early in the semester, others being slotted in
when project work allowed.

The projects themselves were much the more important com-
ponent of the course. They accounted for 70% of the overall
grade, a conventional final exam and laboratory assignments
making up the remaining 30%. Students were allowed to form
their own groups and to select their own project, choosing ei-
ther from a list of possible projects or proposing one of their
own (subject to the instructors approval.) It was decided to en-
force the figure of six students per group in order to limit each
class to a maximum of eight groups, which was considered to be
the most an instructor could reasonably be expected to follow.
While there was a danger that this might allow some students to
avoid work, it would provide enough hands/minds to tackle sen-
sible sized projects assuming they did work. Having relatively
large groups also has the advantage (from the instructor’s point
of view) of making it more likely that group-related problems
will arise, forcing students to experience and learn about real
teamwork!

Projects were divided up into four stages, corresponding
roughly to conventional software engineering practice. In the
first three stages students were required to submit written
reports covering the project requirements, user-interface
design and then detailed design of their proposed program.
At each stage, groups would exchange reports and write a
summary and critique of another group’s project. Instructors
also provided detailed written feedback. Before seeing the
written critiques, each group had to present their report orally
to the whole class and receive feedback and criticism from
everyone. Reports were then rewritten based on the feedback.
Each of these activities was graded on a group basis, including
the comments/questions in the classroom. The fourth stage
was implementation, culminating in an open demonstration
of the, hopefully functional, software. The source code was
checked and an overall grade was assigned for this stage too.
The reports accounted for 25%, critiques and presentations
for another 25%, and the implementation and coding for only
15%, reflecting the emphasis on design, communication and
teamwork. While students were certainly encouraged to com-
plete the implementation of their projects, it was recognized
that time was limited and clearly indicated that demonstrating
a finished working program was not essential.3 Providing a
solid foundation had been laid (in terms of design and coding)
so that they or others could complete the project (without
having to throw everything away and start again), then this
was perfectly acceptable. In order to encourage cooperation,

3Lack of time also meant that students would have little chance to experience
the testing and maintenance phases of the project. In part, this issue was ad-
dressed by organizing a project open day/contest the following semester. It was
hoped that students would complete their work and demonstrate it there; public
recognition and possibly cash prizes providing the incentive!

a local Unix newsgroup was set up to serve as a forum where
students could post problems related to their implementation
and hopefully receive answers from other groups. Additional
grades were awarded for publishing helpful bits and pieces.
The final component of the project mark was a peer grade given
secretly by fellow group members and accounting for 5%.

A course webpage [10] provided a convenient means for co-
ordination of the course, ensuring that all instructors, assistants
and students, knew what was required of them each week. It
also provided a mechanism for distributing lab assignments and
course handouts. Students were expected to check the webpage
frequently and were also encouraged to submit queries to the
instructors and assistants via email. By providing up-to-date in-
formation and quick responses it was hoped to get students to
use and appreciate this new technology.

VI. FIRST IMPRESSIONS

With objectives clear and the means of achieving them
planned out, the semester began with more than 100 students
in two sections. Students were told what was expected of
them. It was also explained to them that this was something
of an experiment, in that, it was the first time such a course
was being attempted and things might not work out exactly
as planned. Indeed, there were difficulties, but mostly minor.
Initial presentations overran badly, so much so that written
critiques of the second and third reports had to be dropped in
order to stay roughly on schedule. Plans to arrange a sort of
“open day” where students could show off their projects before
the semester finally ended, also had to be dropped.

There were technical difficulties too, related both to instal-
lation and programming. For example, although students could
read the newsgroup, posting to it proved to be very difficult.
This was eventually resolved by getting students to send email
to the instructor, who then posted the message on the group’s
behalf. There were also difficulties with the particular network
configuration of Delphi, especially the database engine, which
resulted in considerable delay and frustration for some groups.
On the programming side too, problems sometimes took a long
time to solve, due mainly to a lack of familiarity with Delphi
and the fact that no specialist books were then available in the
library. Ignorance in this regard did have one unexpected ben-
efit, however, in that problem solving became a joint activity.
The resulting atmosphere, in which both students and staff tried
to resolve problems together, was particularly rewarding.

Projects undertaken included several advanced versions of
Robo (using color, animation, and 3-D), a calculus tutor, a
digital circuit simulator, a bus seat reservation system, a patient
tracking system, a join the dots game, a geography quiz, and a
paint program. They were all potentially marketable products,
most employing not just a GUI, but also online help and even
databases.

VII. SURVEY RESULTS

To evaluate the new style course, an anonymous survey was
conducted at the end of the semester. The results, presented
below, seem very encouraging given that this was the first time
a project-based approach had been tried.

DAVENPORT: EXPERIENCE USING A PROJECT-BASED APPROACH 447

Overall, there was general understanding that the course had
proved valuable. Some 60% of the students said that they began
the university with absolutely no prior programming experience.
Most viewed CS101 and CS102 as a well-integrated introduc-
tion to computers and programming. Students were given the
choice of doing their projects in Delphi under Windows or in
Pascal under MSDOS. More than 70% of the class opted for
Delphi. There were a few complaints about the failure to explic-
itly teach Delphi and it appears that devoting a few (more) class
hours to this may indeed have been a good idea. There was al-
most unanimous agreement amongst students that they should
gain experience with sophisticated tools like Delphi, although
about 30% suggested it might be better in the following year!
Around 35–40% of students who undertook a project in Delphi
found it quite difficult and suggested that maybe it was too big a
jump. On the other hand, students were not expected to become
proficient in Delphi (recall that only 15% of the grade was al-
located for implementation). Furthermore, the Delphi projects
were generally better and the groups seemingly more motivated
than those doing Pascal projects, possibly due in part to the
relative ease of producing sophisticated, professional looking
programs using such a tool. It is pleasing to be able to report
that when students were asked to state what they thought were
the major objectives of the course, they did so reasonably accu-
rately. Perhaps more importantly, when asked what major skills
or lessons they felt they had learned in the course, their re-
sponses showed considerable overlap with those objectives (es-
sentially only the ordering was different).

More than 60% of students reported difficulties working to-
gether in a group. The major complaints were members not
working, and the problem of gathering and communicating. In
fact, lab hours were often left free so that groups could work to-
gether, however, they were not required to do so. It seems that
many did not take advantage of such times and, moreover, failed
to find other times to compensate. Generally, six people groups
were considered ok, but many thought it would be easier/better
with fewer people, the ideal being 4.5! One group completely
fell apart, unable to meet or agree upon anything. It was even-
tually accepted that its members would complete the project in-
dividually. Ultimately, only two of them did any work at all, the
others simply dropping out despite attempts to persuade them
they could succeed.

Students estimated that they spent an average of six to
seven additional hours per week on CS102, more than on other
first-year courses. Many felt that there was too much emphasis
on the project and suggested more weight be given to conven-
tional lectures and assignments. Electronic communications
proved very successful, even the newsgroup despite suffering
from the technical problems mentioned earlier. Although there
were problems with computers, including technical difficulties,
actually getting access to a machine at certain times, and
working in a crowded noisy laboratory environment, more
than 60% “completed” their projects. All reported being very
pleased/proud of the work they had done.

Last, but by no means least, only 20% viewed report writing
as a waste of time. Some 40% said they found it valuable, while
the other 40% saw it as quite valuable. This is, perhaps, one of
the major achievements of the new style course. Never before

had students been convinced that putting their design ideas on
paper was a worthwhile, even essential, part of programming.
Finally, it seems, the message has gotten across.

VIII. C ONCLUDING REMARKS

The survey results seem to indicate that students have under-
stood and appreciated the essentials of engineering design, in-
dicating that the course has successfully fulfilled its objectives.
Consequently, it will be repeated in the same form next year.
Some minor changes are begin considered, such as requiring
students to meet in the scheduled lab periods and assigning
assistants as observers to try to ensure more equality in work
load. In response to student pressure it is planned to change the
project/exam ratio slightly to 60/40, however, the group size will
remain the same both to ensure a manageable number of groups
and to make sure that groupwork problems are likely to arise!

Reading reports, actively listening to and criticizing presen-
tations, and finally helping resolve implementation problems,
demanded a lot of time, not to mention patience, on the part
of the instructors. Despite this, however, they strongly believed
that it was all worthwhile and certainly more enjoyable than
reading hundreds of identical examination papers! Major differ-
ences in exam scores or in performance on later courses (except
possibly those related to design) are not expected, given that
the objectives are generally different. While the really impor-
tant benefits are perhaps impossible to quantify, the immediate
outcome is clear. The amount of effort students expended on
their projects, and the sheer joy and pride they had in their work
were obvious. They were active and they were involved. They
had learned something!

Whether or not it is really necessary to teach programming in
first-year undergraduate engineering classes, the restyled course
described here would appear to offer significant advantages. In
the interim, it provides a vehicle whereby those students who
have not yet been exposed to the computer, can be brought up to
speed. More importantly, focusing on those skills which are cen-
tral to the practice of engineering (methodology, communica-
tion, teamwork, and independent learning and motivation) and
using the computer merely as a means to develop them, helps
justify the inclusion of such a course in the curriculum of both
CS and non-CS majors.

1) Postscript: As the new semester approaches, the dreaded
question of language once again raises its ugly head. This time
the suggestion is to switch to Java. Although it retains many
of C’s idiosyncrasies, Java is a relatively clean object-oriented
programming language. Being not only cross platform (Unix,
PC, and Mac compatible), but also Internet compatible, its pop-
ularity is assured and visual development environments similar
to Delphi are already appearing, such that switching the course
to Java would not prove too difficult. The major problem, how-
ever, is that Java is still very new, and subject to substantial and
rapid change. Compared to Delphi, it is also quite restricted and
pedagogically not as nice, requiring students to include a sub-
stantial amount of initially “incomprehensible” code for even
the most basic of programs. Early adoption of Java is thus a
somewhat daunting prospect, especially considering that there
are only a few introductory-level textbooks presently available.

448 IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000

ACKNOWLEDGMENT

The author would like to thank his co-instructor, Dr. E. Tyn,
the CS101/2 assistants and, of course, all the first-year CS and
EE students at Bilkent, who worked so hard to make this ex-
periment successful. A special thanks is also due to O. Özhan,
for collating and analyzing the survey results, and to Prof. M.
Baray, Dean and Head of Department, for allowing us the flex-
ibility to implement this program.

REFERENCES

[1] W. K. Durfee, “Engineering education gets real,”Technol. Rev., vol. 97,
no. 2, p. 42, Feb/Mar 1994.

[2] E. B. Koffman,Turbo Pascal, 5th ed. Reading, MA: Addison-Wesley,
1995.

[3] [online] Available http://www.acm.org/education/curr91/homepage.html
A. B. Tucker, Ed., Computing Curricula 1991, Report of the
ACM/IEEE-CS Joint Curriculum Task Force,: ACM Press and
IEEE Computer Society Press, 1991.

[4] D. Davenport, “Robo: A programming system for teaching introductory
software engineering concepts,” inProc. ISCIS-V Int. Symp. Comput.
Inform. Syst., Cappadocia, Turkey, Oct. 30—Nov. 2 1990, pp. 953–962.

[5] S. Papert,Mindstorms: Children Computers & Powerful Ideas. New
York: Basic Books, 1980.

[6] N. J. Yelland, “Encouraging young children’s thinking skills with
Logo,” Childhood Educ., vol. 71, no. 3, p. 152, Spring 1995.

[7] Robo webpage. [Online] Available http://www.cs.bilkent.edu.tr
/~david/robo.htm

[8] L. F. Johnson, “C in the first course considered harmful,”Commun.
ACM, vol. 38, no. 5, p. 99, 1995.

[9] Delphi. Turbo and Borland Pascal are products of Borland Int. [Online].
Available http://www.borland.com

[10] CS102 course webpage. [Online]. Available http://www.cs.
bilkent.edu.tr/~david/cs102

David Davenport received the B.Sc. and Ph.D. degrees in electrical and elec-
tronic engineering from the University of Birmingham, U.K.

Previously he was Electronics Design Engineer, Independent Software Con-
sultant, and Assistant Professor of Marine Sciences. He is currently an Assistant
Professor in the Computer Engineering and Information Science Department,
Bilkent University, Ankara, Turkey, where he acts as Lecturer and Coordinator
for all first-year undergraduate programming classes in the engineering faculty.
His research interests now center on cognition and the use of computers for ed-
ucation.

Dr. Davenport is a Member of the ACM and Cofounder and Acting Chair-
person of the local ACM SIGART group.

