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An Upper Bound on the Zero-Error 
List-Coding Capacity 

Erdal Arikan 

rMpbac-We present an upper bound on the zero-error list-coding 
capacity of discrete memoryless channels. Using this bound, we show 
that the list3 capacity of the 4 / 3  channel is at most 03512 b, 
improving the best previous bound. The relatien of the bound to earlier 
similar bouads, in particular, to Korner's graph+ntropy bound, is 
discussed. 

Index Tenns-Zero-error capacity, list-coding, perfect-hashing, 
graph-entrok, Shannon capacity of graphs. 

I. INTRODUC~ON 
In ordinary point to point communications, the communica- 

tion system delivers to the destination a single estimate of the 
transmitted message. Such a system is said to be a zero-error 
system if the estimate is always correct. Zero-error systems of 
this type were first studied by Shannon [l]. Elias [2] considered a 
more general type of system in which L estimates (L fixed) of 
the transmitted message are delivered to the destination and an 
error is said to occur if and only if all L estimates are wrong. 
The major problem of information-theoretic interest about such 
systems is to determine the zero-error list-L capacity C,, i.e., 
the highest possible rate of communication under the zero error 
list-L condition. Unfortunately, no formula or algorithm is known 
for computing C,. The aim of this correspondence is to give an 
upper bound on C,. 

We consider a system consisting of a finite discrete memory- 
less channel K with input alphabet I, output alphabet J, and 
transition probability matrix [P(jli)], where P( j l i )  is the proba- 
bility that output letter j is received when input letter i is 
transmitted. We write PN(ylx) to denote the probability that 
y E JN is received when x E IN is transmitted; since the chan- 
nel is memoryless, P,(ylx) = n:= ;P(y,,lxn). 

A block code 0 is employed in the system, mapping M 
messages into codewords x( l ) , - - . ,  x(M), with each codeword a 
sequence of length N from I .  When a codeword is transmitted 
through K, the receiver observes the channel output y ,  and 
generates the list a y )  = {m : PN[ylx(m)] > 0) of all messages 
that may have been transmitted. D is called a list-L code if, for 
each y,*y) contains at most L messages. Thus, for a list-L 
code, the receiver can identify the transmitted message as one of 
at most L alternatives. 

In general, the codewords of a list-L code do not have to be 
distinct. However, in a list-L code at most L - 1 codewords can 
be identical to any given codeword. So, if we discard repeated 
codewords from a list-L code, the size of the code is reduced at 
most by a factor of 1/L. Since we shall be interested in asymp- 
totic code rates for fixed L, there is no loss of generality in 
assuming, as we shall do hencefbrth, that all codewords in the 
codes under consideration are distinct. (This allows identifica- 
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tion of codewords with messages and simplifies the notation 
considerably.) 

The list-L capacity of K is defined by 
1 

C,  = limsup-logM(N,L) 

where M( N, L) is the maximum possible size for a list-L code of 
length N.' 

The upper bound on C ,  given in this correspondence is an 
extension of earlier bounds by Shannon [l], Elias [2], Fredman 
and Koml6s [3], Komer [41, Komer and Marton 151, [61. These 
bounds have in common the use of the information-theoretic 
mutual information function. 

To obtain the basic mutual-information bound on C,, con- 
sider the above system again. Let 8 be a list-L code. Let 
R = (l/N)log M denote the rate of D. Suppose a codeword X 
is chosen equiprobably from B and transmitted through K. Let 
Y denote the resulting channel output. Then, NR = H ( X )  = 

H(XIY)  + Z(X; Y) I log L + I ( X ,  Y), where the equalities fol- 
low from the definitions of entropy and mutual information 
functions (see, e.g., [81 for the definitions), and the inequality 
follows by noting that there are at most L possibilities for X 
when Y is given. We may upper bound I ( X ,  Y) by NC where C 
is the ordinary Shannon capacity [8, p. 741 of K. Then, consider- 
ing a sequence of list-L codes with increasing block lengths and 
with rates approaching C,, we obtain C, I C. 

This bound may be tightened by observing that C,  depends 
on the transition probabilities of K only through the chaqnel 
adjacency function tPK, defined as follows. For any n 2 1 and 
s c I", 

4 d S )  

N + m  N 

1 if there exists y E J" s.t. P,(ylx) > 0 for all x E S;  

Thus, c#J,(S) = 1 if and only if the sequences in S are adjacent 
in the sense that there is a common channel output sequence 
reachable from all of them. (Note that, since K is memoryless, 
4K is determined by its values on subsets of I.) 

It is easy to see that 8 is a list-L code for K if and only if 
&(S) = 0 for each S c 0 with more than L elements. Thus, if 
K' is any other channel with the same input alphabet as K and 
&, I &, then CL(K) I C,(K'). This observation leads to the 
Shannon-Elias bound [ll, [21: 

= (  0 otherwise. 

The bound (1) turns out to be rather weak in many examples, 
apparently because the channel output Y (whichever admissible 
K' is considered) carries more than enough information neces- 
sary to identify the transmitted X as one of L possible altema- 
tives. That list-L codes fail to achieve rates as high as C (unlike 
codes designed for an average probability of error criterion) may 
be attributed to the rigid combinatorial constraints that they 
must satisfy. 

A more general framework for obtaining bounds on CL, which 
allows exploitation of the combinatorial constraints on the struc- 
ture of list-L codes, is to choose K' from the class of multiinput 
channels with side information, as we shall do in the next section 
and as previously done (in a different notation) in the papers 

'It is not known if the lim sup can be replaced by lim for any L 2 2. 
For L = 1, this is possible [I]. 
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[3]-[6]. In Section I11 we show that for the example of the 4/3 
channel the bound developed in Section I1 improves earlier 
bounds on its list-3 capacity. In general, by a b/l channel we 
mean a channel K with a b-letter input alphabet Z such that 
+K(S) = 1 if and only if S c Z has not more than 1 elements. 
Application of the same bound to arbitrary b/l channels is 
considered in [lo]. 

Finally, we would like to note that zero-error list-coding is 
closely related to perfect-hashing, which is a method of informa- 
tion storage and retrieval (cf. [7] for a general discussion of 
hashing). Komer and Marton [5 ]  give the following formal 
definition of perfect hashing. Call a set of sequences of length t 
over a b-letter alphabet k-separated if for every k tuple of 
sequences there exists a coordinate in which they all differ. For 
fixed t, b, k, let N(t, b, k) denote the largest possible size for 
such a set of sequences. A main problem of interest in perfect 
hashing is to determine the numbers 

1 

t + m  t 
c b , k  = lhl SUP - log N ( t ,  b, k). 

It can be seen that Cb,k equals the list-(k - 1) capacity Ck-l of 
a b/(k - 1) channel. Thus, the bound developed in Section I1 
readily yields upper bounds on Cb,k, and in some distances 
improves earlier such bounds, as demonstrated in Section I11 for 
(b ,  k) = (4,4) and in [lo] for several other (b, k). 

11. THE NEW BOUND 
Throughout this section, let K be the channel specified in 

Section I. To obtain a bound on C,(K), we consider an altema- 
tive communication system with a discrete memoryless channel 
K' that has input alphabet Z', output alphabet J', and transition 
probabilities [ P ( j l i ,  h)], j E J ' ,  i = (i1;--, i,) E I", h = 
(h,; . . ,h,)  E Z k ,  m + k = t. We assume that the h input of the 
channel is provided to the receiver in the system as side-infor- 
mation, i.e., when (i, h)  is transmitted, the receiver observes h 
(in addition to the channel output j ) .  The parameters m and k 
are arbitrary integers satisfying m 2 1 and k 2 0, respectively. 
Let Z , , k  denote the class of all such channels for fixed m, k. 

is any 
subset of IN', the set of t tuples over I N .  We write 
the codewords of such a code in the form ( x ,  z )  = 
(x,;.., x,, zl,..*, zk), where x,, z,  E I", r = I;. . ,  m, s = 
l,..., k. The sequence x,  is transmitted via the rth i input, and 
z ,  via the sth h input of K'. When a codeword ( x ,  z )  is sent, the 
receiver observes the channel output y and the side-information 
z ,  and produces the list a y ,  z )  = { ( x ' ,  z )  E 8': PN(ylx', z )  > 
0) of all possible codewords that may have been transmitted. 8' 
is called a list-L' code for K' if a y ,  z )  contains not more than 
L' elements for every possible y and z. 

We introduce some notation before proceeding. Let T be a 
set of m tuples over IN. Let z be a k tuple over Z N .  We use the 
notation C+~,(TIZ) as a shorthand for + K , ( S )  where S = T X {z} 
= { (x ,  z): x E TI. We write [TI to denote the set of all words 
in I N  that appear as coordinates of m tuples in T .  More 
precisely, if the elements of T are denoted by xu = (xu1;-.,  x,,), 
xu, E I N ,  U = l,..., IT], r = l,..., m, then [TI is the set of all 
such xu,. We write [z] to denote {zl,-**, Z k } ,  the set of coordi- 
nates of z. For any finite set S, IS1 denotes the carwality of S. 

For any set U c I" and any z E zNk, we define xm,k(U, z )  
as the set of all K'  EX",^ such that, for any T c U with 
IT1 2 2, + K , ( T l ~ )  I +,([TI U tzD. Note that xm,k(U,z) is 
nonempty, always containing the trivial channel K' whose out- 
put identically equals its input. 

A block code 8' of length N for a channel K' 

Lemma 1: Let 8 be a list-L code for K , g h  any subset of 
B", and z any point in Qk. Then, 0' = Fm x { z }  = { (x ,  z): x E 
8,} is a list-L" code for every K' Exm,k(8, ,  z).  

Proofi 8; X {z }  is a list-L" d e  for K' if (and only if) 
+&"lz) = 0 for every T c BA with IT1 2 L" + 1. Suppose, for 
a proof by contradiction, that there exists T c 8; such that 
IT1 2 L"' + 1 and +, , (T~z)  = 1. Then, +K(S)  = 1 for S = [TI 
U [ z ] ,  since K' Exm,&(@;, z). But S is a subset of B, a list-L 
code for K; so, +,(SI = 1 implies IS1 5 L. Also, IT1 5 ]SI", 
since T is a set of m tuples over S. Thus, IT1 5 L", a contradic- 

0 
Let S, em, z, K' be as in the hypothesis of the lemma. Let X 

denote a random variable from the equiprobable distribution on 
BA, and Y the output of K' when ( X ,  z )  is transmitted. That is, 
suppose that P,(x) = l/l8;l for x E Fm, and Pyl,(ylx) = 
PN(yJx,  z ) ,  where PN is the transition probability for K'. Then, 
we have 

tion, and the proof is complete. 

- < log L" + Z(X; Ylz) (2) 

where the second equality follows by the independence of X and 
z (a constant) and the inequality by Lemma 1. 

Inequality (2) can be used to obtain upper bounds on the sue 
M of B by choosing particular forms for F,. For example, 
setting BA = 8'" yields H ( X )  = m log M. Another possibility, 
which has yielded better results in applications, is to set B, 
= 0'"s {(x1;~-, x m )  E 8" : x l ; - - ,  x ,  are distinct}. Then, 
H ( X )  = log M E  where M E  = 17Ei1(M - i). The rest of the 
paper will be basedon this latter choice with the further 
restriction that z E Bk. The result thus far can be summarized 
as follows. 
Proposition 1: The size M of any list-L code 0 for a discrete 

memoryless channel K satisfies, for any k 2 0, m 2 1 

log M E  I m log L + m k  min- Z(X;Yl z )  (3) 

- 

rei?" K ' d m , k ( g m . Z )  

c e r e  X is a random variable from the uniform distribution on 
8" and Pyl,(ylx) = PN(yIx, z )  with PN the transition probabil- 
ity for K'. 

Inequality (3) represents the general form of the bound pro- 
posed in this correspondence. An equivalent bound is implicit in 
Komer's work 141. The bound (3) is not amenable to computa- 
tion due to its involuted structure. In actual calculations, one 
finds it necessary to make the range of minimization over K' 
independent of 8. Such a simplified form of the bound is 

log M E  I m log L + min m&Z(X; Y l z )  (4) 
K ' q , k  r e g k  

where x , k  is the intersecttn of xm,k(p, z )  over all list-L 
codes 8 for K and all z E Bk. 

Another form of the bound is obtained by observing that for 
fixed K' the minimum over z in (4) can be replaced by an 
average. This gives 

log M E  I m log L + min Z(X; YIZ)  ( 5 )  
K'<,k 

where Z is a random variable from an arbitrary probability 
distribution on gk. By choosing the distribution of Z suitably, 
the bound (5) may be computed relatively easily in specific 
instances. For example, in [6], the bound (5) was applied& 
L-uniform channels with Z from the uniform distribution on Qk 
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(and with m = 1, 0 -< k I L - 21.2 (A channel K is called 
L-uniform if +,(S) = 0 implies IS1 2 L.) 

Clearly, the bound (5) with a uniform Z may be significantly 
weaker than (4). Indeed, the main contribution of the present 
work is the demonstration of this fact. For the 4/3 channel 
considered in the next section, starting from (4), we derive a 
bound on its list-3 capacity that improves all previous bounds, in 
particular, the bound (5) with Z uniform. 

To end this section, let us note that the Shannon-Elias bound 
(1) is a special case of (4) with m = 1, k = 0. Let us also note 
that, due to the memoryless property of the channels involved, 
the term I(X, Y l z )  in the above bounds can be upper bounded 
by Cf='=,I(X("); Y,,Idn)), where X ( , )  = (X, , ; . . ,  X,J and z(") = 

(z,, , ,-*-, z,,) are the nth coordinates of the vectors X and z.This 
yields a single-letter form that may be easier to compute. 

111. THE 4 / 3 CHANNEL 
In this section, we consider a 4/3 channel K, and apply the 

bound (4) to show that its list-3 capacity satisfies C,  I 0.3512 b. 
This improves the best previous bound C, I 3/8 b, which was 
obtained by applying (5)  with m = 1, k = 0, and 2 uniform [3], 
[61. This demonstrates that choosing the random variable 2 in 
(5) from a nonuniform distribution [in particular, concentrating 
it on a single point as in (4)] may yield better bounds, as might 
be expected. In the following, all rates will be in bits and all 
logarithms to base two. 

The combinatorial property characterizing list-3 codes for a 
4/3 channel is that for any four distinct codewords x , ,  x,, x,, x4, 
there exists a coordinate n such that x l n , ~ 2 n , ~ 3 n , ~ 4 n  are 
distinct. To obtain a bound on C,  we employ the method of 
Section I1 with a channel K' from Xl,2. Thus, the inputs of K '  
are of the form ( i , ,h , ,h , )  E 13, where I denotes the input 
alphabet of K, and the inputs h,, h,  are provided as side-infor- 
mation at the channel output: We specify the output alphabet of 
K' as J' = I U {e} where e is a symbol not contained in I, and 
its transition probabilities as follows: 

P(&, hl ,  h,) 

8,e ifh, = h,  

1/2 = if h,  Z! h,, i ,  E {h , ,h , } ,  j E I\ {h , ,h , )  1 1 if { i , , h , , h , , j }  =I. 

Lemma 2: K' specified above belongs to 3?&. 
Proof Let 8 be an arbsary list-3 code for K, and z = 

(zl, z2 )  an arbitrary point in 8'. We must show that, for every 
T c 8 with IT1 2 2, &JTIz) I c#&Y), where S = [TI U 121. 

We only need consider T for which &(S) = 0. Any such T 
contains at least two codewords x,, x2 such that x,,  x,, z l ,  z, 
are distinct. So, by the defining property of list-3 codes, there 
exists a coordinate n such that xln, xZn,  zln, z,, are distinct. 
Hence ,  by the way K '  has  been specified, 
4KXxln, xZn)Kz1,, Z J  = 0. This implies 4Ke[(~1, x,)lzl = 0, 
which in turn implies &,(Tlz) = 0 (since ( x , ,  x , )  is a subset of 
T) ,  completing the proof. 0 

HenceEh fix B as a list-3 code for K and z = (zl, 2,) as a 
point in B2. Let N be the length, M the size, R the rate of 8. 
Let X be a random variable equiprobable on 8, and Y the 
random variable observed at the output of K' when ( X ,  z )  is 
transmitted. Thus, Pxu(x, y )  = ( l /M)P, (y lx ,  z )  for x E B. By 

'The choice m = 1 here is not optimum. For example, for the 5/4 
channel, m = 2 yields a better result. 

(4), the rate of 8 satisfies 
NR I log3 + I ( X ; Y l z ) .  (6) 

In the rest of this section we develop an upper bound on 
Z(x; Ylz) .  

For any two sequences ul, u2 of equal length, let d(ul, 1.4,) 
denote the number of coordinates n such that uln f U,,, (the 
Hamming distance). Likewise, for any three sequences U,, U,, u3 
of equal length, let d(ul, u2, U,) denote the number of coordi- 
nates n such that U,,, U,,, U,, are distinct. 

Lemma 3: I ( X ;  Y I Z )  I C X E g ~ - l d ( x ,  zl, 2 2 )  = Cf=# - 
Q,(z1,) - Q, ,~z~ , ) ]d ( z , , ,  z,,) where e , ( . )  is the empirical dis- 
tribution of the nth coordinate of the codewords in B, i.e., 

number of x in B such that x, = i 
M Q J i )  = 

Prmt For coordinates n where zln = z2,, we have Y, = e. 
For zln # z2,, Y,, can take one of at most two values. So, the 
number of possible values of Y is at most 2d(r1,22). This gives 
H(Ylz) I d(z , ,  z2). On the other hand, for each x,  y we have 
either P,(yJx, z) = 0 or P,(ylx, zl, z 2 )  = 2-~d(21~2~)-d(x~z1~zzn. 

I ( X ;  Y l z )  = H(Y1.z) - H(YIX, z) ,  the inequality follows. 
The proof is completed by noting that d(x ,  zl, z2)  = 

Thus, H(YIX, z )  = d(z,, 2,) - C,,cM-'d(x,  z,,z2). since 

Cf=idx,, z ln ,  ~ 2 , )  and 
M-'d(x,,  zln, 22,) [1 - Q n ( Z 1 n )  - Qn(z2n)Id(~ln,z2n). 

X E D  

0 
Lemma 3 and (6) give the following constraint on the rate and 

composition of 8: 
N 

NR I log3 + [1 - Q,(z,,> - Qn(z2,)Id(z~,,zz,) .  (7) 

To obtain a tight bound on C,  using (71, we need to show that 8 
can be chosen with rate close to C, and with Qn(i) not too small 
for any n,i .  

Lemma 4: Given any E > 0, there exist list-3 codes (for the 
4/3 channel) of arbitrarily large lengths, with rates 2 C ,  - E, 
and for which Q,(i) 2 1 - 2-(C3-2r) for all n, i. 

Proof For any E > 0, there exists a finite integer NE such 
that every list-3 code with length N 2 N, has rate I C, + E. 

This follows from the definition of C,. Fix E > 0, and consider a 
list-3 code 8 with rate R 2 C, - e and length N > 3N,. The 
existence of such a code for arbitrarily large N is also guaran- 
teed by the definition of C,. 

If there exist n,i  such that Q,(i) < 1 - 2-(c3-2'), consider 
the subcode 8' = (n E 8: x,  # i}. B' is a list3 code (any 
subcode of 8 is a list-3 code) with M I  = M[1 - Q,(i)l > 
2N(C3-')-(c3-Za) codewords, where M = 2NR is the number of 
codewords in 8. Let 0, be the code obtained by deleting the 
nth coordinate of each codeword in 0'. el has length N - 1, 
and it is easy to see that it is also a list-3 code for the 4/3 
channel. Thus, B, has M I  codewords and rate R ,  = [1/(N - 
1)Ilog M ,  > C ,  - E + E/(N - 1). Since R, > C, - E, we may 
iterate the above procedure with g1 in place of 8. At the end of 
the k th round, we shall have a code %?k with length Nk = N - k, 
number of codewords Mk > M2-k(C3-2'), and rate R, > c, - 
E + kE/(N - k). If this process could continue for more than 
2N/3 rounds, at round k = 12N/31 we would have a code with 
length 1N/3] and rate > C3 + e. But that would contradict the 
assumption that N > 3N,. So, the process terminates at some 
step k < 2N/3, yielding a list-3 code with length Nk = N - k > 
N/3, rate R, > C, - E, and for which Q,(i> 2 1 - 2-(c3-2E) 
for all n = l;.., N, and all i E I. Since N/3 can be arbitrarily 

0 

n =  1 

large, this completes the proof. 

I 
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Proposition 2: The list-3 capacity of the 4/3 channel satisfies 
C,  5 0.3512 b. 

h f i  Let e > 0 be arbitrary and consider a list-3 code 8 
with rate R 2 C,  - E and QJi )  2 1 - 2--(C3--2E) for all n, i. By 
Lemma 4, such a code exists and its length N can be assumed 
arbitrarily large. Substituting the parameters for this code into 
(71, we obtain 

N(C3 - E) 5 log3 + (2.2-(”-”) - l ) d ( z l ,  2,). 

Let d ( B )  = min {d ( z l ,  z,) : zl, 2, E B, z1 # 2,) and let 

6 ( R )  = limsup{d(g)/N: 
N+ m 

0 is a quaternary code with length N and rate 2 R}. 

Taking zl, z, at distance d(B),  letting e + 0, and N + m, we 
get 

(8) 

By the Plotkin bound [8, p. 5451 (as modified for a quaternary 
alphabet), S(R) 5 (1 - R/2X3/4). Substituting this into (8) 
yields C,  I (Z1-‘3 - 1x1 - C3/2x3/4), from which we obtain 

C,  5 (21-c3 - 1)6(c3). 

C3 I SUP {CY : (Y I (2l-” - 1)(1 - (~/2)(3/4)} < 0.351 152 268 

0 

Clearly, the above bound can be improved by using better 
estimates of S(C3), e.g., the Elias bound in its general form as 
discussed in [9, p. 4101. We note that a direct combinatorial 
proof of the inequality (7) is possible? Finally, let us also note 
that the method used in this section has been generalized to 
arbitrary b / l  channels in [lo]. 
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Bounds on the Zero-Error Capacity of the Input- 
Constrained Bit-SM Channel 

Victor Yu. KrachkovsQ 

Ashzct-New lower and upper bounds on a “l achievable rate 
tor runlength-limited codes, capable of comcting any combiontion of 
bit-shift errors (i.e., a zero-error esp.dtr of the bit-- channel), are 
presented. The lower bonnd is a generalization of the bound obtained by . 
Shamai and Zebav4. It is sbarrn that in certain cases, the upper and the 
lower bounds asymptotialtJr edni.hlc 

Index Terms-Runlength-limited d e s ,  error correction, zerwrror 
capacity. 

I. INTRODUC~ON 
Let X be a finite alphabet, and let X” be the set of all 

n-words x = (xl,***, x,), x, E X. A constrained system is a subset 
of words from X” that comply with some limitation L. One of 
the most notable types of limitations is a runlength limitation. 
Let I ,  m be a pair of integers, m > 1. We say that a word x E X“ 
over the binary alphabet X = {0,1} is an ( I ,  m)-runlength limited 
or RLL,(l, m)-sequence if the following conditions are satisfied. 

1) Every two binary “1”’s in x are separated by at least 1 
“0” ’s. 

2) Any m + 1 consecutive symbols in x contain at least one 

If only the first condition is satisfied, we set m = Q) and call x 
an RLL,(l, m)-sequence. For the convenience of analysis, we also 
suppose that 

symbol “1.” 

3) x begins by at least 1 “0” ’s. 
4) the last symbol in x is “1.” 

The additional conditions 3) and 4) guarantee a “merging” 
property for x and do not play any role in asymptotics. The set 
of all words, satisfying 1)-4), presents a runlength-limited con- 
strained system, denoted by XL G X ” .  Any subset of M se- 
quences A, A (x,;..,~,} G X ~  is called an runlength-limited 
block‘code of length n and rate R, l/n log, M. The maxi- 
mal achievable rate of a runlength-limited block code is called 
the capacity of the constrained system X l  and is denoted by C. 
Shannon [9] showed that for a broad class of irreducible and 
deterministic constrained systems (this class also includes run- 
length-limited systems), 

C = log, A 

where A is the largest positive eigenvalue of a system’s charac- 
teristic equation. 

Runlength-limited codes are used in high-quality digital sys- 
tems such as optical and magnetic recordings. They could also 
be used for data transmission over ceitain narrow-band chan- 
nels. For noisy channels, runlength-limited codes need to pos- 
sess some error-correcting ability. In recent times, attention has 
been given to the problem of designing runlength-limited error- 
correcting codes for a symmetric memoryless channel (see, for 
example, [ 11, [7], [ 101). For most applications, however, the 
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