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Guessing Subject to Distortion

Erdal Arikan, Senior Member, IEEEand Neri MerhavSenior Member, IEEE

Abstract—We investigate the problem of guessing a random payoff for each bet that is close enough to the actual outcome.
vector X within distortion level D. Our aim is to characterize The expected number of guessEX:(X) may serve as a
the best attainable performance in the sense of minimizing, in measure of the number of bets to be placed for a fair chance of

some probabilistic sense, the number of required guess&s(X) L f# Thi del Is0 b ful f tudvi
until the error falls below D. The underlying motivation is that ~WINNING a payoll. ThiS model may aiso be usetul for studying

G(X) is the number of candidate codewords to be examined by Pattern-matching and database search algorithms. Another
a rate-distortion block encoder until a satisfactory codeword is motivation in studying this problem is its natural relevance to

found. In particular, for memoryless sources, we provide a single- rate-distortion coding. Suppose that the random variabke
letter characterization of the least achievable exponential growth be guessed is a randai¥i-vector X, drawn by an information

rate of the pth moment of G(X) as the dimension of the random . .
vector X grows without boan(;_ In this context, we propose an SOUrCe, and to be encoded by a rate-distortion codebook. The

asymptotically optimal guessing scheme that is universal both Number of guesse&(X) is then interpreted as the number
with respect to the information source and the value ofp. We of candidate codebook vectors to be examined (and hence

then study some properties of the exponent function®(D.p) also the number of metric computations) before a satisfactory
along with its relation to the source-coding exponents. Finally, cogeword is found. It should be emphasized, however, that
we provide extensions of our main results to the Gaussian case,G(X) indeed measures the search complexity onlv for a simple
guessing with side information, and sources with memory. ) p _y y p
o o ) ) ) search algorithm that scans the codebook in a fixed order. In
Index Terms—Fidelity criterion, guessing, rate-distortion the- e )ity the difference between the guessing problem and the
ory, side information, source coding, source coding error expo- search problem of lossy coding, is that in the latter, after each
nent. P y 9’ ; ’
“guess,” we know the exact distortion, and not only whether
or not it is below the desired threshold. Therefore, in this
. INTRODUCTION context, the motivation of the guessing problem as a rate-
ONSIDER the following game: Bob draws a sample distortion search problem should be considered relevant only

from a random variableX. Then, Alice, who does not With respect to (w.r.t.) this class of simple search schemes.
seex but wishes to learn it at least approximately, presents Ngvertheless, it serves as a first step towards possible further
Bob a (fixed) sequence of guessgs),#(2), - - -. Bob checks extensions that include classes of more sophisticated search
the guesses successively until a gue&s is found such that algorithms (see also Section VII below).

d(z,2(i)) < D for some distortion measuré and distortion  In an earlier related work, driven by a s?milar motivat_ion,
level D. Bob informs Alice ofi(i) and in return Alice pays among others, Merhav [14] has characterized the maximum

Bob an amountG(z) = i equal to the number of guesse@chievable expectation of the number of codewords that are

examined by Bob. What is the best Alice can do in designingthin distance D from a randomly chosen source vector
a clever guessing lisfz(1),4(2), - -} so as to minimize the X. The larger this number, the easier it is, typically, to
typical number of guesses(X) in some probabilistic sense?find quickly a suitable codeword. In a more closely related
For the discrete distortionless caéP = 0), it is easy to Work, Arikan [2] studied the guessing problem for discrete
see [2] that if the probability distributio®® of X is known memoryless sources (DMS’s) in the lossless cgBe= 0).
to Alice, the best she can do is simply to order her guesd&sparticular, Arikan developed a single-letter characterization
according to decreasing probabilities. The extensiaPts 0, Of the smallest attainable exponential growth rate of jtte
however, seems to be more involved. moment of the number of guessdG(X)” (p being an
This game may serve as a model for certain betting gamegiipitrary nonnegative real) as the vector dimenstrtends
which a player places a number of bets concerning the outcoffeinfinity.
of a chance eveni, such as a horse race, and receives aThis work is primarily aimed at extending Arikan's study
[2] to the lossy caseD > 0, which is more difficult, as
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whereR(D, Q) is the rate-distortion function of a memorylessingle-letter distortion measure. L&t" and XN denote the
source@ on X and D(Q || P) is the relative entropy betweenNth-order Cartesian powers of and X, respectively. The
@ and P. Thus for the special cage = 0, R(D, Q) becomes distortion between a source vector= (zy,---,zy) € XY
the entropyH (Q) and the maximization above givestimes and a reproduction vect@r = (i1, - --,&y) € XN is defined
Rényi's entropy [16] of orderl/(1 + p) (see [2] for more as

detail). In view of this,E(D, p)/p, for D > 0, can be thought N

of as Renyi's analog to the rate-distortion function (see also Az, &) = Z d(z;, %)

[5]). We also demonstrate the existence of an asymptotically pet

optimum guessing scheme that is universal both w.r.t. the

underlying memoryless source, and the moment ordep. Throughout the paper, scalar random variables will be

It is interesting to note that iy = 1, for example, then denoted by capital letters while their sample values will
the guessing exponenE(D, 1) is in ,general Iarge,r than 0€ denoted by the respective lower case letters. A similar

R(D, P), in spite of the well-known fact that a COdebookconvention will apply to randomV-dimensional vectors and
whose size is exponentially™ B(”:P) s sufficient to keep their sample values, which will be denoted by boldface let-

the average distortion below. In particular, E(D, p) is in ters. Thus for exampleX will denote a randomN-vector
general positive at a certain range of distortion levels for WhiMl"ﬁ")f\Q’)' andz = (“71""’“71\’)_ is a specific vector
R(D, P) = 0. The roots of these phenomena lie in the ta}{alue inX* . Sources and channels will be denoted generically
7 * .
behavior of the distribution of7(X). We shall elaborate on by capital letters, .92, @, "?de‘ For memoryless sources
this point later on. and channels, the respective lower case letters will denote
In this context, we also study the closely related Iarg%]e on(_a-d|men3|onal r_narglna}I probability densny_ funct_|ons

deviations performance criterio®r {G(X) > ¢V} for a (pdf's) if the alphabet is continuous, or the one-dimensional

given R > R(D, P). Obviously, the exponential behaviorProbability mass functions (pmf's) if it is discrete. Thus a
of this probability is given by the source-coding error exlémoryless sourcé” can be thought of as a vector (or a
ponent (R, D) [12], [4] for memoryless sources. It turnsfumt'on) {}1;(“7)’ &z G'IIXSI l;or N-\(/je%tori: the p;qb;@htyh of
out, indeed, that there is an intimate relation between tH& €ventX = z will be denoted byp™(x), which in the

. . N .
guessing exponent considered here and the well-known sour@g&moryless case is given bjf,_, p(x:). Throughout this
coding error exponent. In particular, we show in Section ppaper,P will denote the information source that generates the

that for any fixed distortion leveD, the pth-order guessing random variableX and the random vectaX unless specified

exponentE(D, p) as a function of is given by the one-sided EXPliCitly otherwise. -
Fenchel-Legendre transform (FLT) of the source-coding error/Ntégration w.r.t. a probability measure (e.gp(dz) f(x),

exponentF (R, D) as a function ofR. The inverse relation [q"(de)f(=), etc.) will be interpreted as expectation w.r.t.

is that the FLT of E(D, p) in p gives the lower convex this measure, which in the discrete case should be understood

hull of F(R, D) in R. Moreover, since the above mentioned@s an appropriate summation. Similar conventions will apply to
universal guessing scheme minimizes all moment&aX ) conditional probability measures associated with channels. The
- N o N
simultaneously it also gives the best attainable large deviatig9Pability of an eventi C ™ will be denoted byp™ { A},
performance, universally for every memoryless sourcand ©F PY Pr {4} if there is no room for ambiguity regarding the

every R > R(D, P). We also establish relations to two othef'"derlying probability measure. The operafof-} will denote
exponents in lossy source coding expectation w.r.t. the underlying sourd@ unless otherwise

In Section V, we study some basic properties of the functi&?ec'f'ed' | |
E(D, p), such as monotonicity, convexity in both arguments, FO" @ Memoryless sourag, let
continuity, asymptotics, and others. Since no closed-form
expression forE(D, p) has been found in general, we also H(Q) = _/
provide upper and lower bounds #6(D, p), and a double )
maximum parametric representation, which might be suitaff@" two given memoryless sourcésand @ on &', let
for iterative computation. _ q(z)

In Section VI, we provide several extensions and related b@lr) = /XQ(dx) In p(z) ®)
results, including the memoryless Gaussian case, the casgiéfiote the relative entropy betweéh and P. For a given
a source with memory, and the case of inCOprfating Si%mory|ess Souch and a memory|ess channel
information. . oD

Finally, in Section VII, we summarize our conclusions and W={w(@|z), e X, & G_X}
share with the reader related open problems, some of whieh(Q, W) denote the mutual information

have resisted our best efforts so far. 7
QW)= [ atan) [ w9 g
Il. DEFINITIONS AND NOTATION CONVENTIONS A x x4 ()

Consider an information source emitting symbols in afTihe rate-distortion functio®(D, Q) for a memoryless source
alphabetY, and letX’ denote a reproduction alphabet. Whe w.r.t. distortion measurd is defined as
X is continuous, so will beX, and both will be assumed .
o : ' . R(D,Q)=inf I(Q,W 5
to be the entire real line. Lef: X x X — [0,00) denote a D, Q) v (@ W) ®)

. q(dw)lng(x). (2)
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where the infimum is taken over all chann&ls such that ~ where gzy(a,b) = Ngy(a,b)/N, Ngy(a,b) being the number

A . . of joint occurrences oft; = a andy; = b. The joint type
AlQW) = /1 a(dz) Aw(dx | z)d(z, &) <D (6) classTyy, of (x,y) is the set of all pair sequencés’,y’) €

Comment: Throughout this paper we will assume that for"N.X YN for Which Qury = Quy. . _
everyz € X there existst € X' with d(z, %) = 0, that is, Finally, a conditional typély,,, for a givenz andy, is the
set of all sequences’ in X'V for which (z',y) € Ty
dunin(x) £ mind(z, #) = 0, forall z € X.
seX [ll. GUESSING EXPONENTS FORMEMORYLESS SOURCES

For distortion measures that do not satisfy this condition, theThe main result in this section is a single-letter characteri-
parameterD should be henceforth thought of as the excegation of a lower bound t&(D, p) for memoryless sources,
distortion beyonddi,(x). that is shown to be tight at least for the finite-alphabet case.

" - . Specifically, for two given memoryless sourcBsand (), and
Definition 1: A D-admissible guessing strategy w.r.t. aapgivenp); 0 let 9 y @

sourceP is a (possibly infinite) ordered list
Oy =A{#(1),(2),- -}

of vectors inX™, henceforth referred to as guessing code- Ex(D,p) =sup Ex(D, p, Q) (10)
words, such that Q

and let

N o ) where the supremum is taken over all PDE ®f memoryless
p{d(X,2(j)) < ND for somej} = 1. (") sources for whichR(D, Q) and D(Q|| P) are well-defined
and finite. Again, the subscripf of these two functions will
be omitted whenever there is no room for ambiguity regarding
the underlying sourcé’ that generates(.

We are now ready to state our main result in this section.

Definition 2: The guessing functio&’x (-) induced by aD-
admissible guessing strategy frvectorsGy, is the function
that maps eaclke € X" into a positive integer, which is the
index j of the first guessing codewor#j) € Gx such that
d(z,z(j)) < ND. If no such guessing codeword existsdr Theorem 1:Let P be a memoryless source .
for a givenz, then Gy (z) 2 co. a) (Converse part)Let {Gx}n>1 be an arbitrary sequence

Thus for a D-admissible guessing strategy, the induced  of p-admissible guessing strategies, and gebe an
guessing function takes on finite values with probability one.  arpitrary nonnegative real. Then

Definition 3: The optimum pth-order guessing exponent

1
iminf — (X)L >
theoretically attainable at distortion lev#l is defined, when- I%T&f N I B{G N (X)"} 2 B(D, p) (11)

ever the limit exists, as where G is the guessing function induced I6j .
1 b) (Direct part): If X and X’ are finite alphabets, then for
Ex(D,p) = Jm N icnflnE{GN(X)”} (8) any D > 0, there exists a sequence df-admissible
T guessing strategielgj} } v>1 such that for every mem-
where the infimum is taken over alP-admissible guessing oryless source” on X and everyp > 0
strategies. _ 1
The subscripX will be omitted whenever the sourd2 and hjl\flj;lop v BE{GH(X)"} < E(D, p) (12)

hence also the random variabl¥eassociated witl?, are clear

from the context. Throughout the sequglV) will serve as a whereGy is the guessing function induced g

generic notation for a quantity that tends to zeraMNas—~ oo. Corollary 1: For a finite alphabet memoryless source,
For a finite set4, the cardinality will be denoted bjA|. E(D, p) exists and is given by
Another set of definitions and notations is associated with E(D,p) = E(D,p). (13)

the method of types, which will be needed in some of the ;g0 sgion: A few comments are in order in the context
proofs for the finite alphabet case. of this result

For a given source vectare X', the empirical probability First, observe that Theorem 1 is asymmetric in that part

mass function (EPMF) is the vect@l, = {¢(a),a € X}, a) is general while part b) applies to the finite-alphabet case
wheregz(a) = Nw(“_)/N’ Na(a) being the number of oFcur- only. This does not mean that part b) is necessarily false when
rences O.f th]evletteaz n the _vector:r. Tr,1e se_:t of all EP_MFS of it comes to a general memoryless source. Nevertheless, so
vgctors inA"", that is, rational PMF's with denomm_ath, far we were unable to prove that it applies in general. The
will be denoted b}QN'AThe type clasg of a vectorz is the reason is primarily the fact that the method of types, which is
set of all vectorsr’ € X such thal)y = Qx. When we need used heavily in the proof below, does not lend itself easily to

. . . N

totﬁ\ttrltt;]ute ta type class ?H‘é certat;n ”rat'ont?]l PI\@:: Et Q deal with the continuous case except for certain exponential

rather than fo a sequencedn”, we shafl use te n?va '(ﬂ? families, like the Gaussian case, as will be discussed in Sec-
In the same manner, for sequence pairgy) € A x Y&, w0\ A

the joint EPMF is the matrix Clearly, as one expects, in the finite-alphabet lossless case
Qzy = {gy(a,0),a € X,b € V} (D = 0), the result of [2] is obtained as a special case
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sincemaxg[pH(Q) — D(Q || P)] gives pH, /14,y (P), where because the performance criterion (momentsGof(X)) is

Hy(P) is Rényi's entropy [16] of orde#, defined as different than the one in source coding.
1 Note that part b) of Theorem 1 actually states that there
Hy(P) = In Zp(a;)e, (14) exists auniversal guessing scheme, because it tells us that
1-6 ZCX there exists a single scheme that is asymptotically optimum

. . ! for every P and everyp. Specifically, the proposed guessing
As another point of view, Theorem 1 and its proof below "echeme is composed from ordering codebooks that correspond

main valid if instead of the guessing problem, we consider t?g - : ;
: : X 10 type classe§) in an increasing order ak(D, Q) (see proof
exponential behavior a{e"")}, that is, the characteristic of part b) below). This can be viewed as an extension of [18]

function of the lengthZ(X) associated with vanable—lengthfrom the lossless to the lossy case, as universal ordering of

lossy coding subject to maximum distortidh In this context, . : I . .
: equences in decreasing probabilities was carried out therein
Theorem 1 serves as a tool to extend earlier results on the' "~ . . . -
according to increasing empirical entrogif(().

buffer overflow problem in lossless source coding (see, €0-ac an alternative proof to part b), one can show the

Ltcg;a[(:ltgr,iz[;g]’t))[/lgw)ﬁysv heer:';ero?);;tmum performance is agalrEaxistence of an optimalource-specifiguessing scheme using

i i i ; the classical random coding technique. Of course, once we
It was mentioned briefly in Section | and should be emph%}31 & o unversal seherms. there 1S no feason to bother about a
sized again that/(D, p) is in general larger thapR(D, P). Ve a univ , i u

The latter is the exponential behavior that could have be urge-specjfic scheme for the purpose of proving Theorem 1.
expected at a first glance on the problem, because expon e interesting point here, however, is that the optimal random

tially eNE(.P) codewords are known to suffice in order tocoding distribution for guessing is, in general, different than
keep the average distortion less thAn The intuition behind that of the ordinary rate-distortion coding problem. While in

the larger exponential order that we obtain is that, while §3€ latter, we use the output distribution corresponding to the
the classical rate-distortion problem performance is judg&gft channel of(D, P), here it is best to use the one that
on the basis of theoding rate which is roughly speaking, COresponds td(D, @), whereQ™ maximizesE(D, p,Q).
equivalent toE log G y(X), here the criterion i£G x(X)” Since optlmum guessing codgboqks have dlffere_nt statistics
or equivalently,log EGx(X)?, which assigns much mortha” optimum .ordmary rate-distortion _codebooks in gener:_;ll,
weight to large values of the random varialey (X). To It seems, at first glance, that guessing and source coding
put this even more in focus, observe that while in the ordinaffe conflicting goals. Nevertheless, it is possible to enjoy
source coding setting, the contribution of nontypical sequend®§ benefits of both by interlacing the codewords of a good
can be ignored by using the asymptotic equipartition properigte-distortion code-and a good guessing |ISt.. S!nce thg mdgx
(AEP), here the major contribution is provided bgntypical ©f each codeword is at most doubled by this interlacing, it
sequences, in particular, sequences whose empirical PMregsentially neither affects the behavior Bfln G (X), nor
close toQ*, the maximizer ofE(D, p, @), which in general that ofln EGy(X)”. Thus the main message to be conveyed
may differ from P. Furthermore, while the above explanatiort this point is that if one wishes not only to attain the rate-
is valid even in the lossless cage= 0, the fact that we are distortion function, but also to minimize the expected number
dealing here with the lossy cagg> 0 gives another aspect toof candidate codewords to be examined by the encoder, then
the difference between the classical source-coding problem &@pd guessing codewords must be included in the codebook
the guessing problem: In source coding, essentidllff(”- ) in addition to the usual rate-distortion codewords. In this con-
codewords suffice in order to guarantaeeragedistortion text, it should be mentioned that the asymptotically optimum
within D, namely, if the rate is fixed, the distortion is a randorgniversal guessing scheme proposed in the proof of part b)
variable whose expectation can be made arbitrarily clog.to below attains also the rate-distortion function when used as a
This is achieved essentially by covering only the set of typicapdebook followed by appropriate entropy coding.

sequences by spheres of radills However, if we insist on ~ The remaining part of this section is devoted to the proof
fixed (or maximun) distortion less thatD for everyrealization of Theorem 1.

of the source, like in the guessing problem discussed here, then

. Proof of Theorem 1:We begin with part a). Let be
we must cover thentire space by a number of spheres that ©X1 arbitrary D-admissible quessing strateay with quessin
ponentially exceedsN(P: ) in general. (For example, when y g g 9y 9 9

the source has unbounded support, it takes infinitely mal;]uynctlon Gly. Then, for any memoryless sourck

spheres to cover the space.) Even then, if the rate-distortion
codewords are encoded by a suitable variable-length codeE[Gy(X)”]

(entropy coding), then an average rate (approximately given N ,

by N-1Elog G (X)) that asymptotically attains the rate- = /XNp (dz)G ()

distortion bound, can be achieved. In summary, the important . 7 (z)
point here is the following: While the source-coding problem = /1V q" (dz)exp [— In W}

is “insensitive” to whether we are dealing with fixed distortion
or average distortion (because this difference can be traded for > exp {—ND(Q | P) + p/ qN(dx) In GN(:,;)} (15)
average rate as opposed to fixed rate), the guessing problem N

is sensitive to the difference between the two cases. Thiswbkere we have used Jensen’s inequality in the last step.
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The underlying idea behind the remaining part of the proef refined version), stating that every type cldss can be
is thatln Gy (z) is essentially a length function associateéntirely covered by exponentially (P- @) spheres of radius
with a certain entropy encoder that operates on the guessifid@ in the sense of the distortion measureMore precisely,
list, and therefore the combination of the guessing list arnide type covering lemma is the following.

the entropy coder can be thought of as a rate-distortion COdeLemma 1 ([6], [20]): For anyQ € Q" and distortion level

Thus by the converse to the rate-distortion coding theorem, the ; SN
. . > al
expectation ofln Gy (X) w.r.t. a source essentially cannot B = 0, there exists a codebodk, C 4™ such that for every

be smaller thanVR(D, ). Specifically, if we define z € 1q
min d(x,2) < ND (24)
o :/ ¢~ (dx) (16) #cCa
z:Gy (2)=1 and at the same time

then we have

%ln [Col < R(D,Q) + o(N). (25)
/ ¢ (dr)ln G (z) = ) oilni. 17)

For everyQ € QV, letC,, denote a certain codebook Y"

F vens ider the followi babil . that satisfies the type covering lemma. Let us now order the
or a giveno > 0, consider the following probability assign- ational PMF’s inQN as{Q:, Q2,---} according to increas-

ment on the positive integers: ing value of R(D, @), that is, R(D, Q;) < R(D, Qi41) for
C(8) , all i < |QN|. Our guessing lisg3 is composed of the ordered
pi = 1467 1=1,2,-- (18) concatenation of the corresponding codebogs,Cq.,, - - -,

where the order of guessing codewords within eégf is

where C(6) is a normalizing constant such that, 3; = 1. immaterial. We now have

Consider a lossless code for the positive integgrs with
length function[—log, ;] bits, which when applied to the  E[Gx(X)']= > pV(@)Gi (@)

index ¢ = Gy () of the guessing codeword fa, gives a wEXN
variable-length rate-distortion code with maximum per-letter _ Z Z PN ()G (z)”
distortionD. Thus by the converse to the rate-distortion coding T weTo, N
theorem ' o
NR(D,Q)logy e < Y ai[—log, ] <> N@) (Z ICq; |>

i i ®cTy, §<i

<1+ (146) > ailogyi—log, C(6) (19)

< 3 expl-ND(@: | P)] (Z e, |>

which then gives J<i

Li > NRD, Q)+ C(8) ~ 2 20 < Y exp{-ND(@Q| P)
zi:ai ng > TS . (20) OcoN
+ pN[R(D, Q) + o(N)]}
Combining this inequality with (15) and (17) yields < exp{N[E(D, p) + o(N)]} (26)
I E[GN(X)"] > =ND(Q]| P) where we have used the facts [6] that
NR(D, +InC(6)—1In2 i
y AL QMO = o PV(Tp) < exp[-ND(Q| P)
Dividing by N and taking the limit infimum of both sides asand tha Q™| grows polynomially inV'. Taking the logarithms
N — oo, we get of both sides, dividing byN, and passing to the limit as
) R(D N — oo, give the assertion of part b), and thus completes
liminf — In E[Gn(X)"] > PR(D,Q) _ D(Q||P). (22) the proof of Theorem 1. O
Nooo N 1+6
Since the left-hand side does not dependépomve may now IV. RELATIONS TO OTHER EXPONENTS
take the limit of the right-hand side &s— 0, and obtain IN LOSSY SOURCE CODING
... 1 In this section, we demonstrate that the guessing exponent
liminf n E[Gn(X)"] 2 E(D, p, Q). (23)  function E(D, p) is intimately related to optimum exponents

associated with certain other problems in lossy source coding.
These relations will help us to investigate the properties of
?(D, p) in Section V. Here and throughout the sequel, we
of V. : o

confine our attention to finite-alphabet memoryless sources
unless specified otherwise.

To prove part b), we shall invoke thgpe covering lemma  Intuitively, the moments off (X)) are closely related to the

due to Csisar and Korner [6, p. 181] (see also [20] forcumulative distribution function of this random variable, and

Finally, since the left-hand side does not depend)mve can
take the supremum over all allowable PDE) and thereby
obtain £(D, p) as a lower bound. This completes the pro
of part a).
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hence to the tail behavior, or equivalently, the large deviations Proof: Equation (29) is obtained as follows:
performancePr {Gn(X) > eNB}, for R > R(D, P). Obvi-

ously, l‘;he r?ESt attainal;l_e exponential ratl[?lg;‘ tFAi,S _ﬁ_);]obability i [PR— F(R,D)] = s Q:REIDLE}S)ZR[pR - D(Q|| P)]
given by thesource-coding error exponeffit2], [4, Theorem _ B

6.6.4], which is the best attainable exponential rate of the _mgxogRglng,Q)[pR D@ P)]
probability that a codebook of siz€"# would fail to encode = max[pR(D, Q) — D(Q|| P)]

a randomly drawn source vector with distortion less than or Q

equal toN D. The source-coding error exponent at r&tend = E(D,p). (31)

distortion level D, F/(&, D) is given by Equation (30) is a version of the duality lemma of the FLT

F(R,D) = min ~ D(Q]| P). (27) [7, p. 135, Theorem 4.5.10], [17, p. 104, Theorem 12.2 and
@R(D, Q)2 the preceding discussion]. Although the duality lemma therein
Using the same technique as in the proof of Theorem 1 b), itrisfers to thetwo-sidedFLT (i.e., with suprema taken over the
easy to see that the universal guessing scheme proposed theygiite real line) as opposed to the one-sided FLT considered
Gy attains the best attainable large deviations performancehigre, (30) can be obtained as a special case siicis

Marton’s sense [12], that is, monotone inRk. Nevertheless, for the sake of convenience and
. 1 . NR completeness, we prove in the Appendix the following duality
F(R=0,D) < liminf {_N InPr{Gx(X) > e }} lemma specifically for the one-sided FLT.
) 1 " NR Lemma 2: Let f(x) be an arbitrary nondecreasing function
< limsup [_N I Pr{Gy(X) z e }} defined forz > 0, and let
< *
SFE+0.D) 28) 7*(w) = suploy ~ f(2)] (32)

whereF'(R+0, D) andF(R—0, D) are limits of F(R+¢, D)
ase — 0, along positive values of and negative values ef be the one-sided FLT of. Let f** be the one-sided FLT of
respectively: This follows from the simple fact that by con- f*, i.e.,

struction ofG%,, the event{z : G4 (z) > eV £} is essentially

equivalent to the evenfx : R(D, Q) > R}, where@, is 7)) = ,Sli% by = Fw)l

the empirical PMF associated withh This result is not very v=

surprising if we recall thatj}, asymptotically minimizes all Then, f** equals the lower convex-hull of.

nonnegative moments &¥y (X) simultaneously. The natural This competes the proof of Theorem 2. O
guestion that arises at this point is: what is the relation betwee
the guessing exponerf(D, p) and the source-coding error
exponentF'(R, D)?

"Another related problem in lossy source coding is the

following: For a givenN-vector z and a codebook’n of

NR PN . i

The following theorem tells that for a fixed distortion level f:odewo[ds inX™, let d(z,Cn) denotg the minimum O.f
d(x, %), overz € Cy. Suppose we would like to characterize

D, the guessing exponei#t( D, p), as a function of, is the ; ; :
one-sided Fenchel-Legendre transform (FLTF6R, D) as a the small'esft attalqable asympto.tlc exponential rate of the
cyaracterlstlc function ofl(z,Cx), i.e.,

function of R. (See also [5, Theorem 1] for the lossless case.
As for the inverse relation, the FLT df(D, p) as a function RPN S sd(X,Cx)
of p is the lower convex hull o' (R, D) as a function ofD. T, 5) = Algréo N IglvnlnE{e b 5>0 (33)

Thus if F(, D) is itself convex inf, the inverse FLT relation provided that the limit exists. By using the same techniques

holds as well. It is easy to show that{ R, D) is convex inR L :
wheneverR(D, ) meets the Shannon lower bound for everas_above, Itis easy to ShO\.N that f°F me_moryless sources with
! Yinite & and X, J(R, s) exists and is given by

Q (e.g., binary source and Hamming distortion measure). This

follows from the fact that’(R, 0) is always convex, and that  7(R, s) = J(R, s) = max[sD(R, Q) — D(Q|| P)] (34)
in this caseF'(R, D) = F(R+¢(D), 0) for some functionp. Q

Theorem 2: For a given finite-alphabet memoryless sourc¢hereq is again a memoryless source &h and D(R, Q) is

P and distortion levelD its distortion-rate function. Thus this problem can be thought
of as being dual to the guessing problem in the sense that
ED.p) = Zli%[pR - IR, D), forallp=>0 (29) j(R s) has the same form aB(D, p) except that the rate-
- distortion function is replaced by the distortion-rate function.
and Moreover, whileE(D, p) and F(R, D) are a one-sided FLT
F(R, D) = sup[pR — E(D, p)], forall R >0 (30) Pair provided thati” is convex, it is easy to see thd{R, s)
p>0 and F(R, D) are also a one-sided FLT pair under a similar

= : . condition onF(R, D) as a function ofD. Thus in this case,
whereF(R, D) is the lower convex hull of (£, D) in E. J(R, s) and E(D, p) can be thought of as a two-dimensional
1The functionF (R, D) may not be continuous in general (see Ahlswedg| T pair.

[1]). However, monotonicity guarantees continuity everywhere except for . . .
countably many points. Sufficient conditions for everywhere continuity are F'na”y' to Complete the picture, let us consider now another

discussed in [1] and [12]. related problem which corresponds to minimizing a linear
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combination of the rate and the distortion. L&t denote a F(R,D)= sug[pR-E(D, p)
. > R,D
codebook as before, and for a given source vegidet ED, p E, o)~ sup [pRFR.D)] ; )
. A A B > T
V(z,Cx) = min [pL(#) + sd(z, )] x4 3 R
&eCxy R e
TI' T It 1
where L(z) is the coding length after entropy coding, and YE | o2 ﬁ zfé
and s are given nonnegative reals. It can be easily shown by & °% g g
using the same techniques that the best attainable exponential ;? b & =
behavior ofE{c" (®:¢~)} among all codebook&y;, is given by g g g ‘S
= ~ <

K{(s,p) = maxminlpI(Q, W) + sA(Q, W) — D(Q]| P)]. Y

\ J(R,s):;l:g)[K(s, p)-pR] —-

(35)

a

et Lt Rr

"& K(s, p )=inf[J(R,s)+p R] I(\/SD
R>0

Now, E(D, p) is given in terms ofK (s, p) as follows: Fig. 1. Transform relations among (D, p), F(R, D), J(R, s), and

E(D,p) Ko
:mgx[pR(D, Q) - D(Q]| P)] begin by listing a few simple facts aboWE(D, p), some
_ ) of which follow directly from known properties of the rate-
- mé;X{WA(IB}%,)SD}[M(Q’ W) - D@l P distortion function.
— paxmin {PI(QW) -D@Q|P), if AQW)<D Proposition 1: The guessing exponenE(D, p) has the
Q W | oo, elsewhere following properties:
= maxn%ysup [p1(Q,W) - D(Q]| P) a) E(D, p) is nonnegative; E(0,p) = pHy/14,)(P);
@ 520 E(D,0) = 0; the smallest distortion leveDy(p) beyond
+ 5(A(Q, W) — D)] which E(D, p) = 0 is given by
= supmaxmin [pI(Q,W) - D(Q|| P) Do(p) =sup{D : a(D) < p} (38)
+s(A(Q, W) — D)] where
= TR sne) = <0 (%) a(D) 2 inf F(R,D)/R.

which means thatZ(D, p) can be thought of as the verti-
cal axis intercept of the supporting line of sloge to the in [0, Dy(p)), for any fixedp > 0.

curve K(s, p) versuss for fixed p. The significance and the ¢) For fixed D, E(D, p) is a strictly increasing, convex
implications of this representation &(D, p) will be further function of p in the range ofp where E(D, p) > 0.
discussed in the next section. Also in this context, an importantd) E(D, p) is continuous inD > 0 and inp > 0.

property of K (s, p) is that it is monotonically increasing and e) E(D, p) > pR(D, P); lim, o E(D, p)/p = R(D, P).
concave in each argument, as will be restated and proved irf) E(D,p) < pRuax(D), where

the next section. Similarly as in the proof of (30) in Theorem

2, monotonicity and concavity of<(s, p) in s for fixed p Rumax(D) = mSXR(D’ Q)

leads to the inverse relation lim E(D - R D
pgrolo (D, p)/p max(D).

The proof appears in the Appendix.

b) E(D, p) is a strictly decreasing, convex function bH¥

K(s,p) = inf [E(D, p) + sD] 37)

inf
D>0
which means thatK (s, p) can be also interpreted as the We are not aware of the existence of a closed-form expres-
vertical axis intercept of the supporting line of slope to the sion for E(D, p) in general. Parts e) and f) of Proposition
curve E(D, p) versusD for fixed p. Similar relations hold 1 suggest a lower and an upper bound, respectively. Another
betweenK (s, p) and J(R, s) for fixed s, by replacings and simple and useful lower bound, which is sometimes tight and
D with p and R, respectively. All the relations among the fouthen gives a closed-form expression B§D, p), is induced
bivariate functionsE (D, p), F(R, D), J(R, s), andK(s, p) from the Shannon lower bound &B(D, @) [3, Sec. 4.3.1].

are summarized in Fig. 1. Again, it should be kept in mindhe Shannon lower bound applies to difference distortion
that the transform relations in the directions fra{D, p) measures, i.e., distortion measurélg;, ) that depend only

to F(R, D) and from J(R, s) to F(R, D) hold subject to on the difference: — 2 (for a suitable definition of subtraction
convexity conditions. of elements int’” from elements inY).

Theorem 3: For a difference distortion measure

E(D, p) > max{0, pH P) — pp(D 39
In this section, we study some more basic properties of (D. p) 2 max{0, pHi 14 (P) = pé(D)} (39)

the guessing exponent functiaBi(D, p) for finite-alphabet Wherng(D) is the maximum entropy of tf)e random variable
memoryless sources and finite reproduction alphabets. \W& — X) subject to the constraiffd(X — X) < D. Equality

V. PROPERTIES OF THEGUESSING EXPONENT FUNCTION
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Fig. 2. Curves ofE(D, p) versusD for a binary source with letter probabilitigg0) = 1 — p(1) = 0.4, and the Hamming distortion measure. The
solid line corresponds tp = 0.5, the dashed line tp = 1, and the dotted line tp = 2.

is attained if the distortion measure is such that the Shannacterization of E(D, p), which may be more suitable than
lower boundR(D, @) > max{0, H(Q) — ¢(D)} is met with the saddle-point form (35) for determining(D, p), we cite

equality for everyQ. without proof the following result from Gallager [9, Theorem
Proof: 9.4.1, p. 459].
E(D,p) = Inan[pR(D, Q) —D(Q| P)] Lemma 3: For any@ andr > 0

> maxlpmax{0, H(Q) = ¢(D)} = D(Q| P)] win[l(Q, W) +rA(Q, W)
= max max{~D(Q|| P), p[H(Q)

—¢(D)] = D@ P)}
= max { max[—D(Q || P)], max[p[H(Q) where F.. is the set of all vectory’ = {f(z),z € X'} with
Q Q nonnegative components such that
— ¢(D)] = D(Q|| P}

= max{0, pHy /(14,)(P) — pp(D)}- (40) > @i <1

zeX
O
Note, that if the distortion measuré is such that the
Shannon lower bound is tight for ap, e.g., binary sources
and the Hamming distortion measure (see also the Gaussian w(d | z)q(x) = m(&) fz)e ") (43)
case, Section VI-A), we have a closed-form expression for
E(D, p), and hence also foDy(p) as here
Ay A ~
Do(p) = ¢+ (H1/(4p)(P)). (41) m(E) = Zq(w)w(w =)

x

}nax Z Yn f(x (42)

forall & € X. Any feasibleW and f achieve, respectively, the
minimum and the maximum in (42) iff they satisfy for al] &

Moreover, the PMFY™ that attainsE'(D, p) does not depend  Substituting (42) in (35) withr = s/p, we obtain a

on D. Fig. 2 illustrates curves ofE(D,p) versus D for characterization of((s, p) as a double-maximum

a binary source with letter probabilitie8.4 and 0.6 and

the Hamming distortion measure. As can be s&éqD, p) K(s,p) = max max |pH(Q)

becomes zero at different distortion levéls(p) depending on ’ Q fE€F.,

p- SinceE(D, p) > pR(D, P), thenDy(p) is never smaller

than Dy,,x, the smallest distortion at whicR(D, P) = 0. +pz Yn f(x) — D(Q || P)
As mentioned earlierE(D, p) does not always have a

known closed-form expression. To obtain an alternative char- (44)
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which appears amenable to iterative numerical computation.fgt D in the range0 < D < (K — 1)/K. (At D = 0, we
is noteworthy for computational purposes that the maximumterprets* to be oc.) Using s* and f(x) = fs- in (46), we
here is achieved by a unique péip, f), as will be discussed have for anyp > 0, and0 < D < (K - 1)/K

later in this section.) Oncé((s, p) is determined E(D, p)

can be found by line search over> 0 using the rightmost E(D, p) 2 plHy/4p)(P) = WD) = DIn(K ~1)]  (50)

side of (36). where
A straightforward calculation shows that, for fixed the
maximum over( in (44) is achieved by D) =-Dn(D) - (1 - D)In(l — D).
q(z) = cp(x)l/(lﬂ)f(x)p/(lﬂ) (45) Itis easy to see that the condition for equality in (50) will be
satisfied if and only if
wherec is a normalizing constant so that 1 D
q*(z) 2 — = ., alzex (51
> q@)=1. e H(K—1) K-1

zC¥ where ¢*(x) is as defined in (45). Thus equality holds in

Substituting this into (44) and using (36), we obtain th&0) for all D > 0 sufficiently small. In particular, for?,
following expression forE(D, p). the uniform distribution, equality holds for all < D <
(K — 1)/K. Note also that (50) coincides with the Shannon

Theorem 4:For all D > 0 and p > 0, the guessing |gwer hound, as for the Hamming distortion measure,
exponent is given by

¢(D)=h(D)+ DIn(K —1). O
E(D, p) = sup max (1+p)In Y pla)/F7) As already pointed out in the previous sectidfi;s, p) can
°= o/ r€X be given a geometric interpretation, in view of (37), as the

vertical axis intercept of supporting line of slopes to the

curve E(D, p) versusD for fixed p > 0. The proof of the
inverse relation (37) as well as the one betwgé®, s) and

Necessary and sufficient conditions fére ,,, to achieve K(s, p) rely on the following properties of((s, p).

the maximum are that there exist$lasatisfying the condition | ¢yma 4: The function & (s, p) is monotonically increas-
(43) with = s/p and Q given by (45). ing and concave in each argument.

Theorem 4 can be used also to obtain lower bounds toThe proof appears in the Appendix.
E(D, p) by selecting an arbitrary feasible In certain simple e pext result establishes the uniqueness of the BMF
cases, as explored in the following examples, the optifaly,a; achieves(D, p) in its various possible representations.

can be guessed. This signifies, e.g., that the maximum inaxqg E(D, p, Q)

Example 1. The Lossless Caseet X = X, d(z,%) = 0 g achieved by a unique type class, with clear coding impli-
for = &, andd(z,2) = oo for = # &. Here, the only . tions.

interesting distortion level for guessing I3 = 0. It is easy

x fa)r/ ) SD] . (46)

to verify that K (s, p) is achieved byf(x) = 1 for all s > 0. Proposition 2: For any fixed distortion level in the range
For D = 0, we obtain from (46) that 0 < D < Dy(p), there exists a uniqu&* that achieves the
maximum inE(D, p) = maxg E(D, p, Q). The PMFQ* also
E(0,p) = (14 p)ln Zp(x)l/(ler)] (47) achieves uniquely the maximum in (35) and in (44) for each
z seS(D)={s>0: E(D,p) = K(s,p) — sD}.

which agrees with the result in [2]. ) , , Furthermore, the maximum in (44) is achieved by a unique
Comment: In the above example, if the distortion measurBair (Q*, f,) for eachs € S(D).

is modified so that it is finite but nontrivial in the sense th
0 < d(z,2) < oo for z £ &, then E(0, p) is still given by
the above form. By using the uniqueness @p*, it can be shown also that
Example 2. The Hamming Distortion Measutest X = X for bounded distortion measure&(D, p) is differentiable
be finite alphabets with siz& > 2, d(z,2) = 0if z =2, and W.I.L. both arguments. The derivative w.rf? is given by
d(z,2) = 1if z # 2. Forp > 0 fixed ands > 0 arbitrary, the pOR(D, Q*)/0D, and the derivative w.r.tp is given by
f with uniform components given by R(D, @*). In view of parts c), e), and f) of Proposition 1,
this means that the slope of the cur&D, p) versusp for
f(z) = fs £ 1 —, allz € ¥ (48) fixed D grows monotonically and continuously froR(D, P)
1+ (K = 1)e/r t0 Ruax(D) asp grows from zero to infinity.
i feasible, and for this choice (46) is maximized over 0by '€ following example shows that, similarly as the rate-
distortion function,E£(D, p) may not be differentiable w.r.t.
(K-1)(1-D) (49) D if the distortion measure is unbounded. Strictly speaking,
D in Example 1 above the distortion measure is unbounded as

at The proof is given in the Appendix.

s*=pln
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well. The difference, however, is that in Example 1 we havagrees with the Shannon lower bound, then by Theorem 3, we
examined only the poinD = 0 as there was no other pointobtain the closed-form expression
of finite distortion level.

Example 3. Unbounded Distortion Measurgcf. [9, Prob- E(D, p) = max {07 1 l
lem 9.4, p. 567]). LetX = {1,2,3,4}, X = {1,2,3, 2
4,5,6,7}, and let the distortion matrixd(x, )} be given by

2
g
1 p
PED

+ (14 p)In(1 + p) —p] } (58)

(52) Note that the slope of(D, p) as a function ofp for fixed
D, grows without bound ag — oc. This happens because
Rmax(D) = oo in this case (see Proposition 1 f)).
Itis easy to verify thaf{ (s, p) is achieved by arf with equal ~ The remaining part of this subsection is devoted to the proof
componentsf(z) = f,, where of Theorem 5.

W www

Proof of Theorem 5:Since the converse part of Theorem
1 applies to memoryless sources in general, it suffices to prove
the direct part. This in turn will be obtained as a simple
extension of the proof of Theorem 1 b), provided that we have
a suitable version of the type covering lemma for Gaussian
sources. Another slight complication is that, unlike in the

0.25¢3+/7)if 0 < 5 < £1n(2)
fs =1405eC/nif £1n(2) < s < pln(2) (53)
1, if s> pln(2).

Substituting the resultind{(s, p) in (36), we obtain

p(2 — D)In(2) fo<D<1 finite-alphabet case, here we have infinitely many (rather than
E(D,p) =< Lp(3 - D) ln(é) if1<D<3 (54) polynomially many) such type classes to take into account.
’ 5 ’ if D>3. Let us first define the notion of a Gaussian-type class. For

a given value ofs? > 0 and0 < e < 1, a Gaussian-type
class 7¢(c?) is defined as the set of alV-vectorsz with
VI. RELATED RESULTS AND EXTENSIONS the property|ztz — No?| < Neo?, wherez is understood
In this section we provide several extensions and variatiods a column vector and the superscriptdenotes vector
on our previous results for other situations of theoretical aihnsposition. It is easy to show (see Appendix) that the volume
practical interest. of T¢(o?) is upper-bounded by

Vol {T%(®)} < [2mec?(1 + )]/2. 59
A. Memoryless Gaussian Sources ey <1 ( ) 9)

We mentioned in the Discussion after Theorem 1 that we &Pnsider next, the forward test channiél of R(D, @),
not have an extension of the direct part to general continuddfined by

alphabet memoryless sources. However, for the special case N (1 - %)X +V, fD< 03
of a Gaussian memoryless source and the mean-squared error = {0 ! if D> o2 (60)
distortion measure, this can still be done relatively easily by ’ -1

applying a continuous-alphabet analog to the method of typesere X ~ A (0,02), V ~ N (0,D — D?/52), andV L X.

R 2 ) "
Theorem 5:If X = & = IR, P is a memoryless, zero—meanFor o; > D and0 < € < 1, we next define the conditional
- N A2 . type of anN-vectorz given anN-vectorz w.r.t. W as
Gaussian source, anlf{z, z) = (z — &)*, then&(D, p) exists

and is given by 2
(W) = {m o= (1_22)”@; 'vtv—N<D—D—2)‘
ag, o'q

E(D,p) = E(D,p) (55) !
D2 . D2 .
where the supremum in the definition B{ D, p) is now taken < Nel D— 2 ) |[v'z|<ey[N{ D- 52 jTE
over all memoryless, zero-mean Gaussian soufges B 1 (61)

Comment: For two zero-mean, Gaussian memoryless _ _
sourcesP and @ with variancesc? and o2, respectively, Itis shown in the Appendix that

D(Q|| P) is given by 3 D2\ 1N/
Vol {Tf(W)} > <1 - NT‘Z) [27r61_€ <D - )} .
(62

a2
1{02 a2 o2
P P We now want to prove that™(s2) can be covered by

exponentiallyexp{ NR(D, )} code vectors{z(z)} within

Since Euclidean distance essentially as smalvas D. Foro? < D,
1 o2 this is trivial as the vectos = 0 represents ang € T°(o7)
R(D, Q) =max<{0,-1ln-% (57) within distortion D + . Assume next, that2 > D and
2 D . 4
let 0 < ¢ < 1. Let us construct a gridd of all vectors
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in the Euclidean spac®” whose components are integewhere we have used the facts tHat + < ¢~* and that the
multiples of 26 for some small0 < 6§ < +/D. Consider the number of cubes i“(0?) cannot exceed the ratio between
N-dimenional cubes of siz& centered at the grid points. For athe volume of T“(02) and the volume of a cubg26)™.
given code&C = {&(1),---,&(M)}, letU(D) denote the subset It is readily seen that foE|U(D)] — 0 as N — oo, it

of cubes inT(¢0?) for which the cube center, satisfies is sufficient thatM would be of the exponential order of
exp{N[0.5In(c?/D) + 2n)]}.

Thus we have proved that, given the fact that 7°(o?2),
wherey is a small positive real which will be specified latere < 1+ 6, there exists &,/D + 1.+ §)*-admissible guessing
This means thal/(D) is the set of cubes ifi*(c2) whose strategy such thafy(z) = 1 if o7 < D and
centers are not covered lgywithin distortion D + .

Consider the following random coding argument. Let

Xg(l);”’X(M) denote i.i.d. vectors drawn uniformly in Equivalently, for D > (/i + 8)? there is aD-admissible
T¢(oq — D), where guessing stategy with

{=e(1+4y/D/(07 - D)). Gy (z) € exp{N[max{0,0.5 ln(ag/((\/ﬁ—é)Q—u))}+2n]}.

If we show thatE|U(D)| < 1, then there must exist a codeThus by lettingé ande (and hence als@ andz) be arbitrary
for which U(D) is empty, which means that all cube centersmall, we can make the exponential ordehf () arbitrarily
are covered within distortioD + p, and, therefore, by the close toexp[NR(D, Q)], whereQ is a zero-mean memoryless
triangle inequality,Tf(ag) is entirely covered by\/ spheres Gaussian source with varian@g.

within distortion (v/D + i + §)?. Now For a given0 < A < D, consider now the grid

E|UD)| o) =D+ N, i=12-.

M
_ E{ Z H 1]|zo — X(i)HQ > N(D + u)}} Clearly, the spheréz : 'z < ND} together with the sets

&y ESMTe(03) i=1 T2 TYP(o3(0), =12

|leo — 2()||*> > N(D+p), foralli=1,--- M

Gy (z) < exp{N[0.5In(c7/D) + 2]}, for o7 > D.

= > [L-Prillae- X < ND+ )Y

. N g . .
%€ SNT(02) entirely cover the spac&k”. With this choice, we have

e =A/D and 0—3 — D > A, and so,¢ and x are uniformly
upper-bounded byA/D + 4,/A/D and 5A, respectively,
It is easy to verify thafl; (W) is a subset OTf(o—g — D) for independently of. Therefore, similarly as in the proof of (59),
the above defined value ¢fand forz, € 7<(o2). In a similar it is easy to see that the probability 8f decays exponentially

q e
manner, it is easy to check that for a givew the setl; (W) at the rate ofD(Q; || P) (within a term that tends to zero

(63)

has onlyz-vectors with||zo — £||> < N(D + 1), where as A — 0 independently ofi), where (}; is a zero-mean
Gaussian source with varianeé(i) (see (56)). Consider now
p=eD(1+4,/D/o3). a guessing list whose first guessiis= 0, followed by code

vectors of a cod€; that coversI’ within distortion D, then
re{ncodeCQ that coversTs,, and so on. Since the codes are in
the order of increasing exponential size, we h&ue(z) = 1

Since the codewords are selected randomly w.r.t. a unifo
distribution within7* (s — D), then

Pr{||zo — X(1)|2 < N(D + p)} for z'z < ND, and
Vol{Tg (W)} i
= VOI{Tf(Ug—D)} G]\r(x)S1+Z|Cj| S1+i|ci|, forz e 1.
j=1
3 1 03
>(1- ~z e -N 5 In o+ (64) Therefore,
wheren = ¢ +In(1 + ¢), and where we have used the above E{GnX)'} <1+ ZPr {T}(IC))7. (66)
bounds on the volumes. Thus i=1
E|UD)| < |SmT€ (0_2)| From the above considerations, it follows that the product
- ! , o Pr{T;}|C;|” is upper-bounded by
3 1 o
' [1 - <1 - N—@>6XP{—N<§ ) +77> H exp{N[pR(D, Qi) = D(Q: || P) + ((A)]}
< (26)™ [2mea?(1 + 0] where¢(A) — 0 asA — 0, and so
- q
3 1. oF -
- exp [—M <1 - N—62>exp{—N<§ In 5(1 + 77) H E{GyX)'} <1+ ;exp{N[pR(D, Qi)

(65) — D(Qi[| P) + ((A) + plni/N]}. (67)
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Note that the exponential rate of each term of the last expr&ince this is true for every positive integkr then

sion, as a function of, is of the forml; = In (4i+B)—Ci— 1

D, whereA, B, andC are positive reals and is immaterial  liminf - infln E{Gx(X)"} > limsup E¥(D, p). (74)
since it represents multiplication by a constant factor. It is o hreo

shown in the Appendix that On the other hand, since
% N/k—1
; 'B/k ¢ (it
lim iln{Zexp[N(ln(Ai + B) - CL)]} pN(x) < NP H pF (aih ) (75)
N=eo N 1A i=0

= T;xgq[ln(Ai + B) — Ci]. (68) then if we apply the universal guessing strat&gy w.r.t. a
= superalphabet of-blocks, then by invoking the direct part of
Finally, from the continuity of the functiorpR(D,Q) — Theorem 1 w.r.tx*, we get
D(Q || P) as a function of?2 in the Gaussian case, it follows . 1. , X B
that in the limit/V — oo, followed by the limit of dense grids h}\ff;lop N bnvf I E{Gy(X)"} < EX(D, p) + T (76)
(A — 0), the maximum opR(D, Q;)—D(Q; || P)+plni/N

overs (which ismax;[In(A:+B)—C4]) tends to the maximum which then leads to

of pR(D, Q) — D(Q|| P) over the continuum. O lim sup % inf In B{Gx(X)"} < lim n E¥D, p).  (77)
N—ooo O~ o—00
B. Sources with Memory Combining (74) and (77), we conclude that both

A natural extension of Theorem 1 is to certain classes 8 *infg, M E{Gy(X)*} and E*(D,p) converge, and
stationary sources with memory. It is easy to extend Theordfthe same limit. This completes the proof of Theoreni®.

1 to stationary finite-alphabet sources with the following ginally, it should be pointed out that a similar result can
property: There eX|nslts a finite pgsmve numhbBrsuch that pe fyrther extended to a broader class of mixing sources by
for all m, n, w € &A™, andw € X creating “gaps” between successikeblocks. The length of
n 0 n each such gap should grow with in order to make the
I P(XY =v[ Xy =u) -l P(Xy =v)|< B (69) successive blocks asymptotically independent, but at the same
time should be kept small relative #oso that the distortion

where X7, for i < j, denoteg X, - - -, X;). This assumption _ Y
y ‘= < ) P incurred therein would be negligibly small.

is clearly met, e.g., for Markov processes.

Theorem 6:Let P be a finite-alphabet stationary source, Guessing with Side Information
with the above property for a giveB. Then,&E(D, p) exists

S Another direction of extending our basic results for DMS’s
and is given by

is in exploring the most efficient way of using side information.
E(D,p) = lim E¥D, p) (70) Consider a source that emits a sequence of independent and
k—oo identically distributed (i.i.d.) pairs of symbol§X;,Y;) in
X x Y w.rt. some joint probability measurg(z,y). The
guesser now has to guedé ¢ XV within distortion level
E*(D,p) = %mgx[ka(D,Q) — D¥Q | P)] (71) 5 gpg}r}robserving the statistically related side information

Q is a probability measure oA’*, D¥(Q || P) is the unnor-  Definition 4: A D-admissible guessing strategy with side
malized divergence betweed and thekth-order marginal of informationGy is a set{Gy(y),y € Y™V}, such that for every
P, the maximum is over alkth-order marginal PMF’s, and y € JV with positive probability,
RK¥(D, Q) is the rate-distortion function associated with-a . .
block memoryless sourc€ w.r.t. the alphabett* and the In () = {2y(1), 2y(2), -}
distortion measure induced k¥additively over ak-block. is a D-admissible guessing strategy w.pf (- | Y = g).

Proof: Assume, without essential loss of generality, that

k divides V, and parser into N/k nonoverlapping blocks of Definition 5: The guessing functiotr (z | y) induced by

length %, denoteoh:ﬁ’,:i’f, i=0,1,---,N/k — 1. Then, by the a D-admissible guesspg_ strategy _V\_nth _5|de |Qf0rm§t@@

above property ofP, we have maps(z,y) € A" x V" into a positive integey, which is
' the index of the first guessing codewdig(j) € Gy (y) such

where

N/k—1 ‘ thatd(z, z,(j)) < ND. If no such codeword exists ifix (y),
PN (@) > e NER T pF(=ifeh) (72) thenGy(z | y) £ oc.
= Similarly as in Section IlI, let us define
and so, by invoking the converse part of Theorem 1 to block 1
memoryless sources, we get Exy(D,p) = Ali_l)réoﬁi(;nf In E{Gn(X |Y)"} (78)
limint 1 infln E{Gy(X)"} > Ek(D7 p) — E (73) provided t_hat. the limit gxists, and. whe.re the ipfimum i§ over
N—oo N Gy k all D-admissible guessing strategies with side information. By
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using the same techniques as before, it can be easily shauch that
that for a memoryless sourde, if X', X', and) are all finite

~ _ P —sd(xz,&
alphabets, thedx |y (D, p) exists and is given by w(d | z,y)q(w | y) =m(@ | y)f(@ | y)e™ 20 (85)
Exiv (D, p) = Exy (D, p) £ swplpRyy (D, @)-D(@|| P)] " &7 € Loy & Y, where
Q s )
(79) m(@ | y) =Y w(@|z,y)
whereQ = {¢(z,y), x € X, y € Y} isajoint PMF onX' x ), q ¥
D(Q|| P) is defined as the relative entropy between the joif"
PMF’s, andRx |y (D, Q) is the rate-distortion function ok gz | y) = cpla | )/ O fa | y)r/AF0)

givenY defined as with ¢ chosen so that

Rxjy(D, Q) =inf > > > alw, n)w(@ |z, y) S (e |y) =1,

zE€EX YEY pe X -

X

In w(/a: | 2, ‘7{) y (80) The large deviations exponent is given hyn D(Q || P),
> a(@yyw(@ | +,y) where both@ and P are joint PMF's ont” x Y, and the

z'eXx
o _ minimum is over allQ) such thatRxy (D, Q) > R.
where the infimum is over all channél§ such that

Z Z Z qlz, ) w(@ | z,y)d(z,2) < D. (81) VIl. CONCLUSION AND FUTURE WORK

TEX YEY e ¥ We have provided a single-letter characterization to the

optimum pth-order guessing exponent theoretically attainable

for memoryless sources at a given distortion level. We have

then studied the basic properties of this exponent as a function

%t the distortion levelD and the moment order, along with

its relation to the source-coding error exponent. Finally, we
Lemma 5: Let 17, be a conditional type where andy gave a few extensions of our basic results to other cases of

have a given empirical joint PME),,. There exists a set interest.

Cly) C XN such that for any’ € Tyy andD > 0 A few problems that remain open and require further work

are the following.

Itis straightforward to see thdtx |y (D, p) < Ex(D, p) with
equality whenX andY are independent undéft.

For the proof of the direct part, we need the followin
version of the type covering lemma.

mgg&) d(z',8) < ND (82) General continuous-alphabet memoryless sourd@sr
_ first comment in the discussion that follows Theorem 1,
and at the same time naturally suggests to extend part b) of this theorem to
1 the continuous-alphabet case. Obviously, if the source has
Nln|c(y)| < Bxy (D, Qay) +o(N). (83) bounded support, then after a sufficiently fine quantization,

The proof is a straightforward extension of the proof of the© are back in the situation of a finite-alphabet source, and

. . . so every D-admissible guessing strategy for the quantized
ordinary type covering lemma and hence omitted. source is also{D + ¢)-admissible for the original source
Analogously to Theorem 4, we also have the followin?ﬁ ¢ 9 '

arametric form for the rate-distortion guessing exponent wi here c is controlled by the quantization. Thus the proof
P g g exp of the direct part of Theorem 1 for the case of continuous

side information: alphabet with bounded support may rely on the finite-alphabet

" case provided that the sequence of guessing exponents,
Exy(D,p) =sup max In Z Z plw,y) /40 corresponding to the sequence of quantized sources and their
520 yeY Lwex induced distortion measures, tends, in the high-resolution

14p limit, to the corresponding functioB(D, p) of the continuous
X fx | y)p/(1+/>)] —sD source. However, the interesting and difficult case is that of
unbounded support for which infinite guessing lists are always
(84) required. Moreover, in this case, quantization cannot be made
uniformly fine unless the alphabet is countably infinite, but
where f = {f(z | ¥)} are nonnegative numbers satisfying then the method of types is not directly applicable.
. Hierarchical structures of guessing strategiegfe men-
. | ye iR < tioned in Section | that the guessing exponent serves as a
TEX measure of the search effort associated with lossy source
for eachz, y. Necessary and sufficient conditions for a givefioding, for a simple class of search schemes that is based on a
f to achieve the maximum in (84) are that there exists a dited order of trials. A natural interesting extension would

of nonnegative numbers(i | ) satisfying include classes of more sophisticated search schemes that
take greater advantage of the distortion information obtained
Zw(a? | z,y)=1 at each step. For example, if we revisit the Bob-and-Alice

& guessing game described in Section I, then what will happen
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if in order to achieve a target distortion levél), Alice is

now allowed to first make guesses w.r.t. a larger distortion
D’, and then after her first success, to direct her guesse®)

to the desired distortion leveD? Thus the next step is to

extend the scope to that of multistage guessing strategies. In
the limit of many stages corresponding to many distortion-
level thresholds, we are eventually taking full advantage of ¢)

the exact distortion-level information after each trial.
Joint source-channel guessingdt would be interesting to

extend the guessing problem to the more complete setting of a
communication system, that is, joint source-channel guessing.
Here the problem is to jointly design a source-channel encoder
at the transmitter side and a guessing scheme at the receivet)

side, so as to minimiz&G(X)# for a prescribed end-to-end
distortion level D. Besides the natural question of character-

izing the guessing exponent for a given source and channel,
it would be interesting to determine whether the separation

principle of information theory applies in this context as well.

These issues among some others are currently under inves)

tigation.
APPENDIX
Proof of Lemma 2:First, we prove thaff** < f.

[ () = Sgré[wy - /()] (A1)

Yz

= sup inf [y(z — 2) + f(2')] (A2)
y>02'20

< inf suply(z — 2') + f(2')] (A3)
20 y>0
. 00, if z>a

= { f), ifoe<a (A-4)

= f(z). (A.5)

By the saddle-point theorem, we have equality in (A.3j(if)

is convex. Equality (A.5) is due to the nondecreasing property

of f.

Since f** is the FLT of f*, it is convex. So, to prove that
f** is equal to the lower convex hull of, denotedf, it
suffices to prove the inequality** > f By rewriting the
above equations for the convex functignwe havef** = f.
Next, note thatf < f implies f* > f*, which in turn implies
f** < f**. Thus we have

f=fr<fr<f

and the proof is complete.

(A.6)

Proof of Proposition 1:

a) Nonnegativity follows by the fact tha®(z) > 1 for
every z. The expression ofZ(0, p) is obtained from
standard maximization dpH(Q}) — D(Q || P)] w.r.t. @
(see also [2])E(D, 0) = 0 sinceGy (x)° = 1, P-almost
everywhere for everyD-admissible strategy. As for the
expression ofDy(p), we seek the supremum @&# such
that

E(D,p) = fg())[pR - F(R,D)] > 0.

This means that there B > 0 suchpR— F(R, D) > 0,
or equivalently, F(R, D)/R < p. But the existence of
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suchR in turn means thaiufr>o £'(R, D)/R, which is
defined asi(D), must be less thap.

Both monotonicity and convexity w.r.D follow imme-
diately from the same properties of the rate-distortion
function. Convexity and monotonicity also imply strict
monotonicity in the indicated range.

Nondecreasing monotonicity w.rp. follows from the
monotonicity of E(D, p, Q) w.r.t. p for every fixedD
and ). Convexity follows from the fact the&Z(D, p)

is the maximum over a family of affine functions
{E(D, p, @)} w.rt. p. Again, strict monotonicity
follows from monotonicity and convexity.

Continuity w.r.t. each one of the variables at strictly
positive values follows from convexity. Continuity w.r.t.
D at D = 0 follows from continuity of R(D, @) both
w.r.t. D and @ and continuity of D(Q|| P) w.r.t. Q.
Continuity w.r.t. p at p = 0 is immediate (see also part
e) below).

By definition of E(D, p), we have

E(D, p) 2 E(D, p, P) = pR(D, P)
which proves the first part, and the fact that

limi(rJle(D,p)/p > R(D, P).
p—)

To complete the proof of the second part, it suffices to
establish the fact that

limsup E(D,p)/p < R(D, P).
p—>0
This, in turn, follows from the following consideration.
Let {p, }n>1 be an arbitrary positive sequence that tends
to zero, and le{Q* },,>1 be a corresponding sequence
of maximizers of

E(D,pn, Q)/pn = R(D,Q) — D(Q| P)/ pn.

Now, obviously, @ must tend to P, otherwise
E(D, pn,Q)/pr would have a subsequence that
tends to—oo, contradicting the fact thakl(D, p)/p >
R(D, P) for all p > 0. Therefore,

lim sup E(D,pn) = limsup |R(D, Q7)) — D@ P)
n—oo n n—oo Pn
< limsup R(D, Q)
= R(D, P). (A7)

f) The upper bound follows immediately by the fact that

E(D,p,Q) < pR(D,Q)
and by taking the maximum w.r@. It then also implies
that

lim sup E(D7 p)/p S Rmax(D)-

P00

The converse inequality

liminf E(D7 p)/p Z Rmax(D)

P00
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follows from the following consideration. Without lossK (s, p) with Qg # Q1. Then

of generality,
Pmin é ;réux}p(x) >0

as if this was not the case, the alphaBétcould have
been reduced in the first place. Therefore,

IHQELX D(Q || P) S ln(]-/pmin)

and so
E(D,p) = mgx[pR(D, Q) = D(Q|| P)]

> max {pR(D7 @) —In <pullin>}

1
= pRmax D - hl < )
( ) Pmin

Dividing by p and passing to the limit g8 — oo, gives
the desired result.

(A.8)

Proof of Lemma 4:Monotonicity in each argument is ob-

vious from (35). Concavity irs > 0 for fixed p > 0: We shall
use the geometric interpretation Bf D, p) as the vertical axis
intercept of the supporting line of slog2to the curvei (s, p)
versuss. For a proof by contradiction, supposgs, p) is not
concave ins. Then, there exist®, 0 < 51 < 50, 0 < A < 1
such that the supporting line of slop®; is tangential to
K{(s, p) at s1, s2, and lies strictly above it at
sy = Asp+ (1= N)s2

ie.,

K(Smp) = E(Dlvp) + SiDlv

fori=1,2 (A.9)

and

K(S)\vp) <E(D1,p)+3)\D1, (AlO)

g(Q07 WO) < g(Q07W1) < g(Qle)
henceg(Qo, W1) = K(s, p). By the strict concavity ofy in
Q, forany0 < A < 1, we have
g AQo+(1=A)Q1, W1) > Ag(Qo, W1)+(1 — N)g(Q1, W1)

:K(Sv p) = g(le Wl)'
This contradicts the assumption th@p,, W;) is a saddle-
point, and establishes the uniqueness of the PMF achieving
(35), denoted in the rest of the proof 5.
Next, fix 0 < D < Do(p), and let@* be a PMF achieving

mgx[pR(D7 Q) — D(Q|| P)].

Since E(D, p) > 0, R(D,Q*) > 0, and there exist§/* such
that

R(D,Q%) = I(Q", W)

and
A(Q*,W*) =D.
For any sy € S(D), we have
K(so,p) = E(D,p) + soD

= pl(Q",W") = D(Q" || P) + s0A(Q", W™).
ThusQ* solves the maximization problem (35) foe= sq, and
hence, is uniquely determined &5,. Sinces, is an arbitrary
point in S(D), Qs = Q* for all s € S(D), as claimed.

Next, fix s > 0 and consider the equality (42) with= s/p.
Multiply each side byp, and subtract the ternb(Q; || P).
The resulting expression on the left side equAlss, p) iff
Q = Q. We deduce thaf), is the uniqgue PMF that achieves
the maximum in (44). It follows that}* achieves (44) for
every s € S(D).

Finally, to see that the maximum in (44) is achieved by

Observe that, from (A.9),E(Dy,p) is upper-bounded by @ uniq_uefs, gubstitute the unique), that maximizes the
K(s2,p)/s2. It is easy to see thak (s, p)/s is a decreasing fight side (which equal)* = Q*(D) for any D such that

function of s and approache®,(p) ass — 0. So, we have
K{(sq,p)/s2 < Do(p) since by assumptior, > 0. Now, let
(Q1,W7) achieveE(Dyq, p), i.e.,

E(Dy,p) = pl(Q1,W1) = D(Q1 ]| P).
Since0 < Dy < Dy(p), we must also hava(Q, W) = D;.
From (A.9), the pair(Q1,W1) is a saddle-point of (35) for
s = s1,82. Then, it is easy to see thé€);, W;) must be a
saddle-point of (35) fos = s, as well, which implies
K(sx,p) = AK(s1,p)+(1=A)K(s2,p) = E(D1, p)—sapD1
contradicting (A.10). Proof of concavity ip > 0 for fixed
s > 0 is similar, with J(R, s) playing the role ofE(D, p),
and will be omitted.

Proof of Proposition 2: We first prove uniqueness of the

PMF that achieves the maximum in (35). Let- 0 be fixed.
Note that the function

9(Q, W) £ pI(Q, W) +sA(Q, W) = D(Q|| P)
is concave irt) and convex if¥. So, any(Qy, Wy) achieving
K{(s, p) in (35) is a saddle-point of;, i.e., g(Q, Wy) <
9(Qo, Wo) < g(Qo, W) for all @ and W. Assume there
exist two saddle-point&)o, Wo) and((1, W) both achieving

s € §(D)) and note that the resulting function ¢fis strictly
concave injf.

Proof of Equation (59):Consider an auxiliary zero-mean
Gaussian memoryless source with varianéél + ¢). Then

1> / 270 (1 + )] 7N/?
|wte— No2|<Neo?

__ gz de
| 20%2(1+¢)

/|a:ta:—]\’02|§1\’602

—_N02(1 + 6):| i
| 20%(1+¢)

= [2rea?(1 + &)Y 2Vol{T%(0?)}
which completes the proof of (59).

X exp

>

[270%(1 + ¢)]7N/?

X exp

(A.11)

Proof of Equation (62): First observe that (61) defines a set
of vectorsz, which for a givenz, are just shifted versions of
vectorsv. Therefore, the volume dfg (W) is identical to the
volume of the sefs (W) of vectorsw that satisfy the indicated
constraints on'*v andwv*z. To lower-bound the volume of this
set, consider an auxiliary Gaussian randdfwvector V' with
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zero-mean uncorrelated components of varigrge D? /o2).

The probability thal” would fall in 7:(W) is upper-bounded

by
Pr{TcW)}=|  [2r(D-D*/c))]
5 (W)
viv

2(D-02/07) | ™

X exp|—
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U e~ NKC/2
— KC max + 1 - 6_]\Tc/2
U e NUnax
S KC max + 1 — e_j\TC/Q
(A.14)

which is clearly of exponential order ef¥Y==x, On the other
hand, the series in question is trivially lower-bounded by its
maximum terme™Umax, This completes the proof of (68).

</ [QW(D—DQ/U(?)]_N/QG_N(I_E)/Qd'v
s (W)

= [2re = (D-D?/02)] Vol {T(W)}.
(A.12)

On the other hand, this probability is lower-bounded by the
union bound and Chebychev’s inequality as follows: (1]

1-Pr{Tg(W)} <Pr{|V'V - N(D - D?/5})| [2]
> Ne(D — D?*/o)} (3]
+Pr{|V'e| > e\/N(D - D2/o3)atz} W]
< E[V'V - N(D - D?/52)]? 5]
T N22(D-D%o2)? [6]
E(V'r)? (71
Ne2(D — D?/o?)z'x (8]
_ 2N(D-D?/0?)’
© N222(D - D?/2)?

(9]

N (D-D?*/ol)z'x [0l
3NeQ(D - D?/o?)xtx 1]

Combining now (A.12) and (A.13) gives (62).
[13]

Proof of Equation (68):First observe that since the the
functionU(z) = ln(Ax+B)—Cz is monotonically decreasing
beyond a certain value of, the maximum over reat, and
hence also over the integets= ¢, must exist. Let thed/,,»
be the maximum of/(i), and let! be the smallest integer
such that for alk > I, we haveln(Ai + B)/i < C/2. Also,
let J be the smallest integer for which —iC/2 < Upax,
and letK = max{I, J}. Clearly, Uy,.x must be achieved for

[15]

[16]

i < K, and so 7]
oo K [18]
Z Nn(Ai+B)—Ci] _ ZeN[ln(Ai-i—B)—Ci]
=1 =1
+ Z Nilln(Ai+B)/i—C] [19]
i>K
<K eNUmax Z e—NiC/2 [20]

i>K
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