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Guessing Subject to Distortion
Erdal Arikan, Senior Member, IEEE, and Neri Merhav,Senior Member, IEEE

Abstract—We investigate the problem of guessing a random
vector XXX within distortion level D. Our aim is to characterize
the best attainable performance in the sense of minimizing, in
some probabilistic sense, the number of required guessesG(XXX)
until the error falls below D. The underlying motivation is that
G(XXX) is the number of candidate codewords to be examined by
a rate-distortion block encoder until a satisfactory codeword is
found. In particular, for memoryless sources, we provide a single-
letter characterization of the least achievable exponential growth
rate of the �th moment of G(XXX) as the dimension of the random
vector XXX grows without bound. In this context, we propose an
asymptotically optimal guessing scheme that is universal both
with respect to the information source and the value of�. We
then study some properties of the exponent functionE(D; �)
along with its relation to the source-coding exponents. Finally,
we provide extensions of our main results to the Gaussian case,
guessing with side information, and sources with memory.

Index Terms—Fidelity criterion, guessing, rate-distortion the-
ory, side information, source coding, source coding error expo-
nent.

I. INTRODUCTION

CONSIDER the following game: Bob draws a sample
from a random variable . Then, Alice, who does not

see but wishes to learn it at least approximately, presents to
Bob a (fixed) sequence of guesses . Bob checks
the guesses successively until a guess is found such that

for some distortion measure and distortion
level . Bob informs Alice of and in return Alice pays
Bob an amount equal to the number of guesses
examined by Bob. What is the best Alice can do in designing
a clever guessing list so as to minimize the
typical number of guesses in some probabilistic sense?
For the discrete distortionless case , it is easy to
see [2] that if the probability distribution of is known
to Alice, the best she can do is simply to order her guesses
according to decreasing probabilities. The extension to ,
however, seems to be more involved.

This game may serve as a model for certain betting games in
which a player places a number of bets concerning the outcome
of a chance event , such as a horse race, and receives a
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payoff for each bet that is close enough to the actual outcome.
The expected number of guesses may serve as a
measure of the number of bets to be placed for a fair chance of
winning a payoff. This model may also be useful for studying
pattern-matching and database search algorithms. Another
motivation in studying this problem is its natural relevance to
rate-distortion coding. Suppose that the random variableto
be guessed is a random-vector , drawn by an information
source, and to be encoded by a rate-distortion codebook. The
number of guesses is then interpreted as the number
of candidate codebook vectors to be examined (and hence
also the number of metric computations) before a satisfactory
codeword is found. It should be emphasized, however, that

indeed measures the search complexity only for a simple
search algorithm that scans the codebook in a fixed order. In
reality, the difference between the guessing problem and the
search problem of lossy coding, is that in the latter, after each
“guess,” we know the exact distortion, and not only whether
or not it is below the desired threshold. Therefore, in this
context, the motivation of the guessing problem as a rate-
distortion search problem should be considered relevant only
with respect to (w.r.t.) this class of simple search schemes.
Nevertheless, it serves as a first step towards possible further
extensions that include classes of more sophisticated search
algorithms (see also Section VII below).

In an earlier related work, driven by a similar motivation,
among others, Merhav [14] has characterized the maximum
achievable expectation of the number of codewords that are
within distance from a randomly chosen source vector

. The larger this number, the easier it is, typically, to
find quickly a suitable codeword. In a more closely related
work, Arikan [2] studied the guessing problem for discrete
memoryless sources (DMS’s) in the lossless case .
In particular, Arikan developed a single-letter characterization
of the smallest attainable exponential growth rate of theth
moment of the number of guesses ( being an
arbitrary nonnegative real) as the vector dimensiontends
to infinity.

This work is primarily aimed at extending Arikan’s study
[2] to the lossy case , which is more difficult, as
mentioned above. In particular, our first result in Section
III is that for a finite-alphabet memoryless source, the
best attainable behavior of is of the exponential
order of , where is referred to as the th-
order guessing exponent at distortion level(or simply, the
guessing exponent), and given by

(1)
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where is the rate-distortion function of a memoryless
source on and is the relative entropy between

and . Thus for the special case becomes
the entropy and the maximization above givestimes
Rényi’s entropy [16] of order (see [2] for more
detail). In view of this, , for , can be thought
of as Ŕenyi’s analog to the rate-distortion function (see also
[5]). We also demonstrate the existence of an asymptotically
optimum guessing scheme that is universal both w.r.t. the
underlying memoryless source, and the moment order.
It is interesting to note that if , for example, then
the guessing exponent is in general larger than

, in spite of the well-known fact that a codebook
whose size is exponentially is sufficient to keep
the average distortion below . In particular, is in
general positive at a certain range of distortion levels for which

. The roots of these phenomena lie in the tail
behavior of the distribution of . We shall elaborate on
this point later on.

In this context, we also study the closely related large
deviations performance criterion, for a
given . Obviously, the exponential behavior
of this probability is given by the source-coding error ex-
ponent [12], [4] for memoryless sources. It turns
out, indeed, that there is an intimate relation between the
guessing exponent considered here and the well-known source-
coding error exponent. In particular, we show in Section IV
that for any fixed distortion level , the th-order guessing
exponent as a function of is given by the one-sided
Fenchel–Legendre transform (FLT) of the source-coding error
exponent as a function of . The inverse relation
is that the FLT of in gives the lower convex
hull of in . Moreover, since the above mentioned
universal guessing scheme minimizes all moments of
simultaneously it also gives the best attainable large deviations
performance, universally for every memoryless sourceand
every . We also establish relations to two other
exponents in lossy source coding.

In Section V, we study some basic properties of the function
, such as monotonicity, convexity in both arguments,

continuity, asymptotics, and others. Since no closed-form
expression for has been found in general, we also
provide upper and lower bounds to , and a double
maximum parametric representation, which might be suitable
for iterative computation.

In Section VI, we provide several extensions and related
results, including the memoryless Gaussian case, the case of
a source with memory, and the case of incorporating side
information.

Finally, in Section VII, we summarize our conclusions and
share with the reader related open problems, some of which
have resisted our best efforts so far.

II. DEFINITIONS AND NOTATION CONVENTIONS

Consider an information source emitting symbols in an
alphabet , and let denote a reproduction alphabet. When

is continuous, so will be , and both will be assumed
to be the entire real line. Let denote a

single-letter distortion measure. Let and denote the
th-order Cartesian powers of and , respectively. The

distortion between a source vector
and a reproduction vector is defined
as

Throughout the paper, scalar random variables will be
denoted by capital letters while their sample values will
be denoted by the respective lower case letters. A similar
convention will apply to random -dimensional vectors and
their sample values, which will be denoted by boldface let-
ters. Thus for example, will denote a random -vector

, and is a specific vector
value in . Sources and channels will be denoted generically
by capital letters, e.g., and . For memoryless sources
and channels, the respective lower case letters will denote
the one-dimensional marginal probability density functions
(pdf’s) if the alphabet is continuous, or the one-dimensional
probability mass functions (pmf’s) if it is discrete. Thus a
memoryless source can be thought of as a vector (or a
function) . For -vectors, the probability of
the event will be denoted by , which in the
memoryless case is given by . Throughout this
paper, will denote the information source that generates the
random variable and the random vector unless specified
explicitly otherwise.

Integration w.r.t. a probability measure (e.g., ,
, etc.) will be interpreted as expectation w.r.t.

this measure, which in the discrete case should be understood
as an appropriate summation. Similar conventions will apply to
conditional probability measures associated with channels. The
probability of an event will be denoted by ,
or by if there is no room for ambiguity regarding the
underlying probability measure. The operator will denote
expectation w.r.t. the underlying source unless otherwise
specified.

For a memoryless source, let

(2)

For two given memoryless sourcesand on , let

(3)

denote the relative entropy between and . For a given
memoryless source and a memoryless channel

let denote the mutual information

(4)
The rate-distortion function for a memoryless source

w.r.t. distortion measure is defined as

(5)
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where the infimum is taken over all channels such that

(6)

Comment: Throughout this paper we will assume that for
every there exists with , that is,

for all

For distortion measures that do not satisfy this condition, the
parameter should be henceforth thought of as the excess
distortion beyond .

Definition 1:A -admissible guessing strategy w.r.t. a
source is a (possibly infinite) ordered list

of vectors in , henceforth referred to as guessing code-
words, such that

for some (7)

Definition 2: The guessing function induced by a -
admissible guessing strategy for-vectors , is the function
that maps each into a positive integer, which is the
index of the first guessing codeword such that

. If no such guessing codeword exists in
for a given , then .

Thus for a -admissible guessing strategy, the induced
guessing function takes on finite values with probability one.

Definition 3: The optimum th-order guessing exponent
theoretically attainable at distortion level is defined, when-
ever the limit exists, as

(8)

where the infimum is taken over all -admissible guessing
strategies.

The subscript will be omitted whenever the source, and
hence also the random variableassociated with , are clear
from the context. Throughout the sequel, will serve as a
generic notation for a quantity that tends to zero as .
For a finite set , the cardinality will be denoted by .

Another set of definitions and notations is associated with
the method of types, which will be needed in some of the
proofs for the finite alphabet case.

For a given source vector , the empirical probability
mass function (EPMF) is the vector
where being the number of occur-
rences of the letter in the vector . The set of all EPMF’s of
vectors in , that is, rational PMF’s with denominator ,
will be denoted by . The type class of a vector is the
set of all vectors such that . When we need
to attribute a type class to a certain rational PMF
rather than to a sequence in , we shall use the notation .

In the same manner, for sequence pairs ,
the joint EPMF is the matrix

where being the number
of joint occurrences of and . The joint type
class of is the set of all pair sequences

for which .
Finally, a conditional type , for a given and , is the

set of all sequences in for which .

III. GUESSINGEXPONENTS FORMEMORYLESSSOURCES

The main result in this section is a single-letter characteri-
zation of a lower bound to for memoryless sources,
that is shown to be tight at least for the finite-alphabet case.
Specifically, for two given memoryless sourcesand , and
a given , let

(9)

and let

(10)

where the supremum is taken over all PDF’sof memoryless
sources for which and are well-defined
and finite. Again, the subscript of these two functions will
be omitted whenever there is no room for ambiguity regarding
the underlying source that generates .

We are now ready to state our main result in this section.

Theorem 1: Let be a memoryless source on.

a) (Converse part):Let be an arbitrary sequence
of -admissible guessing strategies, and letbe an
arbitrary nonnegative real. Then

(11)

where is the guessing function induced by .
b) (Direct part): If and are finite alphabets, then for

any , there exists a sequence of-admissible
guessing strategies such that for every mem-
oryless source on and every

(12)

where is the guessing function induced by .

Corollary 1: For a finite alphabet memoryless source,
exists and is given by

(13)

Discussion: A few comments are in order in the context
of this result.

First, observe that Theorem 1 is asymmetric in that part
a) is general while part b) applies to the finite-alphabet case
only. This does not mean that part b) is necessarily false when
it comes to a general memoryless source. Nevertheless, so
far we were unable to prove that it applies in general. The
reason is primarily the fact that the method of types, which is
used heavily in the proof below, does not lend itself easily to
deal with the continuous case except for certain exponential
families, like the Gaussian case, as will be discussed in Sec-
tion VI-A.

Clearly, as one expects, in the finite-alphabet lossless case
, the result of [2] is obtained as a special case
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since gives , where
is Rényi’s entropy [16] of order , defined as

(14)

As another point of view, Theorem 1 and its proof below re-
main valid if instead of the guessing problem, we consider the
exponential behavior of , that is, the characteristic
function of the length associated with variable-length
lossy coding subject to maximum distortion. In this context,
Theorem 1 serves as a tool to extend earlier results on the
buffer overflow problem in lossless source coding (see, e.g.,
[10], [11], [15], [19]), where optimum performance is again
characterized by Ŕenyi’s entropy.

It was mentioned briefly in Section I and should be empha-
sized again that is in general larger than .
The latter is the exponential behavior that could have been
expected at a first glance on the problem, because exponen-
tially codewords are known to suffice in order to
keep the average distortion less than. The intuition behind
the larger exponential order that we obtain is that, while in
the classical rate-distortion problem performance is judged
on the basis of thecoding rate, which is roughly speaking,
equivalent to , here the criterion is
or equivalently, , which assigns much more
weight to large values of the random variable . To
put this even more in focus, observe that while in the ordinary
source coding setting, the contribution of nontypical sequences
can be ignored by using the asymptotic equipartition property
(AEP), here the major contribution is provided bynontypical
sequences, in particular, sequences whose empirical PMF is
close to , the maximizer of , which in general
may differ from . Furthermore, while the above explanation
is valid even in the lossless case , the fact that we are
dealing here with the lossy case gives another aspect to
the difference between the classical source-coding problem and
the guessing problem: In source coding, essentially
codewords suffice in order to guaranteeaveragedistortion
within , namely, if the rate is fixed, the distortion is a random
variable whose expectation can be made arbitrarily close to.
This is achieved essentially by covering only the set of typical
sequences by spheres of radius. However, if we insist on
fixed(or maximum) distortion less than for everyrealization
of the source, like in the guessing problem discussed here, then
we must cover theentirespace by a number of spheres that ex-
ponentially exceeds in general. (For example, when
the source has unbounded support, it takes infinitely many
spheres to cover the space.) Even then, if the rate-distortion
codewords are encoded by a suitable variable-length code
(entropy coding), then an average rate (approximately given
by ) that asymptotically attains the rate-
distortion bound, can be achieved. In summary, the important
point here is the following: While the source-coding problem
is “insensitive” to whether we are dealing with fixed distortion
or average distortion (because this difference can be traded for
average rate as opposed to fixed rate), the guessing problem
is sensitive to the difference between the two cases. This is

because the performance criterion (moments of ) is
different than the one in source coding.

Note that part b) of Theorem 1 actually states that there
exists auniversal guessing scheme, because it tells us that
there exists a single scheme that is asymptotically optimum
for every and every . Specifically, the proposed guessing
scheme is composed from ordering codebooks that correspond
to type classes in an increasing order of (see proof
of part b) below). This can be viewed as an extension of [18]
from the lossless to the lossy case, as universal ordering of
sequences in decreasing probabilities was carried out therein
according to increasing empirical entropy .

As an alternative proof to part b), one can show the
existence of an optimalsource-specificguessing scheme using
the classical random coding technique. Of course, once we
have a universal scheme, there is no reason to bother about a
source-specific scheme for the purpose of proving Theorem 1.
The interesting point here, however, is that the optimal random
coding distribution for guessing is, in general, different than
that of the ordinary rate-distortion coding problem. While in
the latter, we use the output distribution corresponding to the
test channel of , here it is best to use the one that
corresponds to , where maximizes .
Since optimum guessing codebooks have different statistics
than optimum ordinary rate-distortion codebooks in general,
it seems, at first glance, that guessing and source coding
are conflicting goals. Nevertheless, it is possible to enjoy
the benefits of both by interlacing the codewords of a good
rate-distortion code and a good guessing list. Since the index
of each codeword is at most doubled by this interlacing, it
essentially neither affects the behavior of , nor
that of . Thus the main message to be conveyed
at this point is that if one wishes not only to attain the rate-
distortion function, but also to minimize the expected number
of candidate codewords to be examined by the encoder, then
good guessing codewords must be included in the codebook
in addition to the usual rate-distortion codewords. In this con-
text, it should be mentioned that the asymptotically optimum
universal guessing scheme proposed in the proof of part b)
below attains also the rate-distortion function when used as a
codebook followed by appropriate entropy coding.

The remaining part of this section is devoted to the proof
of Theorem 1.

Proof of Theorem 1:We begin with part a). Let be
an arbitrary -admissible guessing strategy with guessing
function . Then, for any memoryless source

(15)

where we have used Jensen’s inequality in the last step.
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The underlying idea behind the remaining part of the proof
is that is essentially a length function associated
with a certain entropy encoder that operates on the guessing
list, and therefore the combination of the guessing list and
the entropy coder can be thought of as a rate-distortion code.
Thus by the converse to the rate-distortion coding theorem, the
expectation of w.r.t. a source essentially cannot
be smaller than . Specifically, if we define

(16)

then we have

(17)

For a given , consider the following probability assign-
ment on the positive integers:

(18)

where is a normalizing constant such that .
Consider a lossless code for the positive integers with
length function bits, which when applied to the
index of the guessing codeword for, gives a
variable-length rate-distortion code with maximum per-letter
distortion . Thus by the converse to the rate-distortion coding
theorem

(19)

which then gives

(20)

Combining this inequality with (15) and (17) yields

(21)

Dividing by and taking the limit infimum of both sides as
, we get

(22)

Since the left-hand side does not depend on, we may now
take the limit of the right-hand side as , and obtain

(23)

Finally, since the left-hand side does not depend on, we can
take the supremum over all allowable PDF’s, and thereby
obtain as a lower bound. This completes the proof
of part a).

To prove part b), we shall invoke thetype covering lemma
due to Csisźar and K̈orner [6, p. 181] (see also [20] for

a refined version), stating that every type class can be
entirely covered by exponentially spheres of radius

in the sense of the distortion measure. More precisely,
the type covering lemma is the following.

Lemma 1 ([6], [20]): For any and distortion level
, there exists a codebook such that for every

(24)

and at the same time

(25)

For every , let denote a certain codebook in
that satisfies the type covering lemma. Let us now order the
rational PMF’s in as according to increas-
ing value of , that is, for
all . Our guessing list is composed of the ordered
concatenation of the corresponding codebooks
where the order of guessing codewords within each is
immaterial. We now have

(26)

where we have used the facts [6] that

and that grows polynomially in . Taking the logarithms
of both sides, dividing by , and passing to the limit as

, give the assertion of part b), and thus completes
the proof of Theorem 1.

IV. RELATIONS TO OTHER EXPONENTS

IN LOSSY SOURCE CODING

In this section, we demonstrate that the guessing exponent
function is intimately related to optimum exponents
associated with certain other problems in lossy source coding.
These relations will help us to investigate the properties of

in Section V. Here and throughout the sequel, we
confine our attention to finite-alphabet memoryless sources
unless specified otherwise.

Intuitively, the moments of are closely related to the
cumulative distribution function of this random variable, and
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hence to the tail behavior, or equivalently, the large deviations
performance , for . Obvi-
ously, the best attainable exponential rate of this probability is
given by thesource-coding error exponent[12], [4, Theorem
6.6.4], which is the best attainable exponential rate of the
probability that a codebook of size would fail to encode
a randomly drawn source vector with distortion less than or
equal to . The source-coding error exponent at rateand
distortion level is given by

(27)

Using the same technique as in the proof of Theorem 1 b), it is
easy to see that the universal guessing scheme proposed therein

attains the best attainable large deviations performance in
Marton’s sense [12], that is,

(28)

where and are limits of
as , along positive values of and negative values of,
respectively.1 This follows from the simple fact that by con-
struction of , the event is essentially
equivalent to the event , where is
the empirical PMF associated with. This result is not very
surprising if we recall that asymptotically minimizes all
nonnegative moments of simultaneously. The natural
question that arises at this point is: what is the relation between
the guessing exponent and the source-coding error
exponent ?

The following theorem tells that for a fixed distortion level
, the guessing exponent , as a function of , is the

one-sided Fenchel–Legendre transform (FLT) of as a
function of . (See also [5, Theorem 1] for the lossless case.)
As for the inverse relation, the FLT of as a function
of is the lower convex hull of as a function of .
Thus if is itself convex in , the inverse FLT relation
holds as well. It is easy to show that is convex in
whenever meets the Shannon lower bound for every

(e.g., binary source and Hamming distortion measure). This
follows from the fact that is always convex, and that
in this case, for some function .

Theorem 2: For a given finite-alphabet memoryless source
and distortion level

for all (29)

and

for all (30)

where is the lower convex hull of in .
1The functionF (R; D) may not be continuous in general (see Ahlswede

[1]). However, monotonicity guarantees continuity everywhere except for
countably many points. Sufficient conditions for everywhere continuity are
discussed in [1] and [12].

Proof: Equation (29) is obtained as follows:

(31)

Equation (30) is a version of the duality lemma of the FLT
[7, p. 135, Theorem 4.5.10], [17, p. 104, Theorem 12.2 and
the preceding discussion]. Although the duality lemma therein
refers to thetwo-sidedFLT (i.e., with suprema taken over the
entire real line) as opposed to the one-sided FLT considered
here, (30) can be obtained as a special case sinceis
monotone in . Nevertheless, for the sake of convenience and
completeness, we prove in the Appendix the following duality
lemma specifically for the one-sided FLT.

Lemma 2: Let be an arbitrary nondecreasing function
defined for , and let

(32)

be the one-sided FLT of . Let be the one-sided FLT of
, i.e.,

Then, equals the lower convex-hull of.
This competes the proof of Theorem 2.

Another related problem in lossy source coding is the
following: For a given -vector and a codebook of

codewords in , let denote the minimum of
, over . Suppose we would like to characterize

the smallest attainable asymptotic exponential rate of the
characteristic function of , i.e.,

(33)

provided that the limit exists. By using the same techniques
as above, it is easy to show that for memoryless sources with
finite and , exists and is given by

(34)

where is again a memoryless source on, and is
its distortion-rate function. Thus this problem can be thought
of as being dual to the guessing problem in the sense that

has the same form as except that the rate-
distortion function is replaced by the distortion-rate function.
Moreover, while and are a one-sided FLT
pair provided that is convex, it is easy to see that
and are also a one-sided FLT pair under a similar
condition on as a function of . Thus in this case,

and can be thought of as a two-dimensional
FLT pair.

Finally, to complete the picture, let us consider now another
related problem which corresponds to minimizing a linear
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combination of the rate and the distortion. Let denote a
codebook as before, and for a given source vector, let

where is the coding length after entropy coding, and
and are given nonnegative reals. It can be easily shown by
using the same techniques that the best attainable exponential
behavior of among all codebooks , is given by

(35)

Now, is given in terms of as follows:

if
elsewhere

(36)

which means that can be thought of as the verti-
cal axis intercept of the supporting line of slope to the
curve versus for fixed . The significance and the
implications of this representation of will be further
discussed in the next section. Also in this context, an important
property of is that it is monotonically increasing and
concave in each argument, as will be restated and proved in
the next section. Similarly as in the proof of (30) in Theorem
2, monotonicity and concavity of in for fixed
leads to the inverse relation

(37)

which means that can be also interpreted as the
vertical axis intercept of the supporting line of slope to the
curve versus for fixed . Similar relations hold
between and for fixed , by replacing and

with and , respectively. All the relations among the four
bivariate functions , , , and
are summarized in Fig. 1. Again, it should be kept in mind
that the transform relations in the directions from
to and from to hold subject to
convexity conditions.

V. PROPERTIES OF THEGUESSINGEXPONENT FUNCTION

In this section, we study some more basic properties of
the guessing exponent function for finite-alphabet
memoryless sources and finite reproduction alphabets. We

Fig. 1. Transform relations amongE(D; �), F (R; D), J(R; s), and
K(s; �).

begin by listing a few simple facts about , some
of which follow directly from known properties of the rate-
distortion function.

Proposition 1: The guessing exponent has the
following properties:

a) is nonnegative; ;
; the smallest distortion level beyond

which is given by

(38)

where

b) is a strictly decreasing, convex function of
in , for any fixed .

c) For fixed , is a strictly increasing, convex
function of in the range of where .

d) is continuous in and in .
e) ; .
f) , where

The proof appears in the Appendix.

We are not aware of the existence of a closed-form expres-
sion for in general. Parts e) and f) of Proposition
1 suggest a lower and an upper bound, respectively. Another
simple and useful lower bound, which is sometimes tight and
then gives a closed-form expression to , is induced
from the Shannon lower bound to [3, Sec. 4.3.1].
The Shannon lower bound applies to difference distortion
measures, i.e., distortion measures that depend only
on the difference (for a suitable definition of subtraction
of elements in from elements in ).

Theorem 3: For a difference distortion measure

(39)

where is the maximum entropy of the random variable
subject to the constraint . Equality
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Fig. 2. Curves ofE(D; �) versusD for a binary source with letter probabilitiesp(0) = 1 � p(1) = 0:4, and the Hamming distortion measure. The
solid line corresponds to� = 0:5, the dashed line to� = 1, and the dotted line to� = 2.

is attained if the distortion measure is such that the Shannon
lower bound is met with
equality for every .

Proof:

(40)

Note, that if the distortion measure is such that the
Shannon lower bound is tight for all , e.g., binary sources
and the Hamming distortion measure (see also the Gaussian
case, Section VI-A), we have a closed-form expression for

, and hence also for as

(41)

Moreover, the PMF that attains does not depend
on . Fig. 2 illustrates curves of versus for
a binary source with letter probabilities and and
the Hamming distortion measure. As can be seen,
becomes zero at different distortion levels depending on
. Since , then is never smaller

than , the smallest distortion at which .
As mentioned earlier, does not always have a

known closed-form expression. To obtain an alternative char-

acterization of , which may be more suitable than
the saddle-point form (35) for determining , we cite
without proof the following result from Gallager [9, Theorem
9.4.1, p. 459].

Lemma 3: For any and

(42)

where is the set of all vectors with
nonnegative components such that

for all . Any feasible and achieve, respectively, the
minimum and the maximum in (42) iff they satisfy for all

(43)

where

Substituting (42) in (35) with , we obtain a
characterization of as a double-maximum

(44)
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which appears amenable to iterative numerical computation. (It
is noteworthy for computational purposes that the maximum
here is achieved by a unique pair , as will be discussed
later in this section.) Once is determined,
can be found by line search over using the rightmost
side of (36).

A straightforward calculation shows that, for fixed, the
maximum over in (44) is achieved by

(45)

where is a normalizing constant so that

Substituting this into (44) and using (36), we obtain the
following expression for .

Theorem 4: For all and , the guessing
exponent is given by

(46)

Necessary and sufficient conditions for to achieve
the maximum are that there exists asatisfying the condition
(43) with and given by (45).

Theorem 4 can be used also to obtain lower bounds to
by selecting an arbitrary feasible. In certain simple

cases, as explored in the following examples, the optimal
can be guessed.

Example 1. The Lossless Case:Let ,
for , and for . Here, the only
interesting distortion level for guessing is . It is easy
to verify that is achieved by for all .
For , we obtain from (46) that

(47)

which agrees with the result in [2].
Comment: In the above example, if the distortion measure

is modified so that it is finite but nontrivial in the sense that
for , then is still given by

the above form.
Example 2. The Hamming Distortion Measure:Let

be finite alphabets with size , if , and
if . For fixed and arbitrary, the

with uniform components given by

all (48)

is feasible, and for this choice (46) is maximized over by

(49)

for in the range . (At , we
interpret to be .) Using and in (46), we
have for any , and

(50)

where

It is easy to see that the condition for equality in (50) will be
satisfied if and only if

all (51)

where is as defined in (45). Thus equality holds in
(50) for all sufficiently small. In particular, for ,
the uniform distribution, equality holds for all

. Note also that (50) coincides with the Shannon
lower bound, as for the Hamming distortion measure,

As already pointed out in the previous section, can
be given a geometric interpretation, in view of (37), as the
vertical axis intercept of supporting line of slope to the
curve versus for fixed . The proof of the
inverse relation (37) as well as the one between and

rely on the following properties of .

Lemma 4: The function is monotonically increas-
ing and concave in each argument.

The proof appears in the Appendix.

The next result establishes the uniqueness of the PMF
that achieves in its various possible representations.
This signifies, e.g., that the maximum in
is achieved by a unique type class, with clear coding impli-
cations.

Proposition 2: For any fixed distortion level in the range
, there exists a unique that achieves the

maximum in . The PMF also
achieves uniquely the maximum in (35) and in (44) for each

Furthermore, the maximum in (44) is achieved by a unique
pair for each .

The proof is given in the Appendix.

By using the uniqueness of , it can be shown also that
for bounded distortion measures, is differentiable
w.r.t. both arguments. The derivative w.r.t. is given by

, and the derivative w.r.t. is given by
. In view of parts c), e), and f) of Proposition 1,

this means that the slope of the curve versus for
fixed grows monotonically and continuously from
to as grows from zero to infinity.

The following example shows that, similarly as the rate-
distortion function, may not be differentiable w.r.t.

if the distortion measure is unbounded. Strictly speaking,
in Example 1 above the distortion measure is unbounded as
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well. The difference, however, is that in Example 1 we have
examined only the point as there was no other point
of finite distortion level.

Example 3. Unbounded Distortion Measure:(cf. [9, Prob-
lem 9.4, p. 567]). Let

, and let the distortion matrix be given by

(52)

It is easy to verify that is achieved by an with equal
components, , where

if
if
if

(53)

Substituting the resulting in (36), we obtain

if
if
if

(54)

VI. RELATED RESULTS AND EXTENSIONS

In this section we provide several extensions and variations
on our previous results for other situations of theoretical and
practical interest.

A. Memoryless Gaussian Sources

We mentioned in the Discussion after Theorem 1 that we do
not have an extension of the direct part to general continuous
alphabet memoryless sources. However, for the special case
of a Gaussian memoryless source and the mean-squared error
distortion measure, this can still be done relatively easily by
applying a continuous-alphabet analog to the method of types.

Theorem 5: If , is a memoryless, zero-mean
Gaussian source, and , then exists
and is given by

(55)

where the supremum in the definition of is now taken
over all memoryless, zero-mean Gaussian sources.

Comment: For two zero-mean, Gaussian memoryless
sources and with variances and , respectively,

is given by

(56)

Since

(57)

agrees with the Shannon lower bound, then by Theorem 3, we
obtain the closed-form expression

(58)

Note that the slope of as a function of for fixed
, grows without bound as . This happens because

in this case (see Proposition 1 f)).
The remaining part of this subsection is devoted to the proof

of Theorem 5.

Proof of Theorem 5:Since the converse part of Theorem
1 applies to memoryless sources in general, it suffices to prove
the direct part. This in turn will be obtained as a simple
extension of the proof of Theorem 1 b), provided that we have
a suitable version of the type covering lemma for Gaussian
sources. Another slight complication is that, unlike in the
finite-alphabet case, here we have infinitely many (rather than
polynomially many) such type classes to take into account.

Let us first define the notion of a Gaussian-type class. For
a given value of and , a Gaussian-type
class is defined as the set of all -vectors with
the property , where is understood
as a column vector and the superscriptdenotes vector
transposition. It is easy to show (see Appendix) that the volume
of is upper-bounded by

(59)

Consider next, the forward test channel of ,
defined by

if

if
(60)

where , , and .
For and , we next define the conditional
type of an -vector given an -vector w.r.t. as

(61)

It is shown in the Appendix that

(62)
We now want to prove that can be covered by

exponentially code vectors within
Euclidean distance essentially as small as . For ,
this is trivial as the vector represents any
within distortion . Assume next, that and
let . Let us construct a grid of all vectors
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in the Euclidean space whose components are integer
multiples of for some small . Consider the

-dimenional cubes of size, centered at the grid points. For a
given code , let denote the subset
of cubes in for which the cube center satisfies

for all

where is a small positive real which will be specified later.
This means that is the set of cubes in whose
centers are not covered bywithin distortion .

Consider the following random coding argument. Let
denote i.i.d. vectors drawn uniformly in

, where

If we show that , then there must exist a code
for which is empty, which means that all cube centers
are covered within distortion , and, therefore, by the
triangle inequality, is entirely covered by spheres
within distortion . Now

(63)

It is easy to verify that is a subset of for
the above defined value ofand for . In a similar
manner, it is easy to check that for a given, the set
has only -vectors with , where

Since the codewords are selected randomly w.r.t. a uniform
distribution within , then

(64)

where , and where we have used the above
bounds on the volumes. Thus

(65)

where we have used the facts that and that the
number of cubes in cannot exceed the ratio between
the volume of and the volume of a cube .
It is readily seen that for as , it
is sufficient that would be of the exponential order of

.
Thus we have proved that, given the fact that ,

, there exists a -admissible guessing
strategy such that if and

for

Equivalently, for there is a -admissible
guessing stategy with

Thus by letting and (and hence also and ) be arbitrary
small, we can make the exponential order of arbitrarily
close to , where is a zero-mean memoryless
Gaussian source with variance.

For a given , consider now the grid

Clearly, the sphere together with the sets

entirely cover the space . With this choice, we have
and , and so, and are uniformly

upper-bounded by and , respectively,
independently of. Therefore, similarly as in the proof of (59),
it is easy to see that the probability of decays exponentially
at the rate of (within a term that tends to zero
as independently of ), where is a zero-mean
Gaussian source with variance (see (56)). Consider now
a guessing list whose first guess is , followed by code
vectors of a code that covers within distortion , then
a code that covers , and so on. Since the codes are in
the order of increasing exponential size, we have
for , and

for

Therefore,

(66)

From the above considerations, it follows that the product
is upper-bounded by

where as , and so

(67)
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Note that the exponential rate of each term of the last expres-
sion, as a function of, is of the form

, where , , and are positive reals and is immaterial
since it represents multiplication by a constant factor. It is
shown in the Appendix that

(68)

Finally, from the continuity of the function
as a function of in the Gaussian case, it follows

that in the limit , followed by the limit of dense grids
, the maximum of

over (which is tends to the maximum
of over the continuum.

B. Sources with Memory

A natural extension of Theorem 1 is to certain classes of
stationary sources with memory. It is easy to extend Theorem
1 to stationary finite-alphabet sources with the following
property: There exists a finite positive number such that
for all , , , and

(69)

where , for , denotes . This assumption
is clearly met, e.g., for Markov processes.

Theorem 6: Let be a finite-alphabet stationary source
with the above property for a given. Then, exists
and is given by

(70)

where

(71)

is a probability measure on is the unnor-
malized divergence between and the th-order marginal of

, the maximum is over all th-order marginal PMF’s, and
is the rate-distortion function associated with a-

block memoryless source w.r.t. the alphabet and the
distortion measure induced byadditively over a -block.

Proof: Assume, without essential loss of generality, that
divides , and parse into nonoverlapping blocks of

length , denoted , . Then, by the
above property of , we have

(72)

and so, by invoking the converse part of Theorem 1 to block
memoryless sources, we get

(73)

Since this is true for every positive integer, then

(74)

On the other hand, since

(75)

then if we apply the universal guessing strategy w.r.t. a
superalphabet of-blocks, then by invoking the direct part of
Theorem 1 w.r.t. , we get

(76)

which then leads to

(77)

Combining (74) and (77), we conclude that both
and converge, and

to the same limit. This completes the proof of Theorem 6.

Finally, it should be pointed out that a similar result can
be further extended to a broader class of mixing sources by
creating “gaps” between successive-blocks. The length of
each such gap should grow with in order to make the
successive blocks asymptotically independent, but at the same
time should be kept small relative toso that the distortion
incurred therein would be negligibly small.

C. Guessing with Side Information

Another direction of extending our basic results for DMS’s
is in exploring the most efficient way of using side information.
Consider a source that emits a sequence of independent and
identically distributed (i.i.d.) pairs of symbols in

w.r.t. some joint probability measure . The
guesser now has to guess within distortion level

upon observing the statistically related side information
.

Definition 4: A -admissible guessing strategy with side
information is a set , such that for every

with positive probability,

is a -admissible guessing strategy w.r.t. .

Definition 5: The guessing function induced by
a -admissible guessing strategy with side information
maps into a positive integer , which is
the index of the first guessing codeword such
that . If no such codeword exists in ,
then .

Similarly as in Section III, let us define

(78)

provided that the limit exists, and where the infimum is over
all -admissible guessing strategies with side information. By
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using the same techniques as before, it can be easily shown
that for a memoryless source, if and are all finite
alphabets, then exists and is given by

(79)
where is a joint PMF on ,

is defined as the relative entropy between the joint
PMF’s, and is the rate-distortion function of
given defined as

(80)

where the infimum is over all channels such that

(81)

It is straightforward to see that with
equality when and are independent under.

For the proof of the direct part, we need the following
version of the type covering lemma.

Lemma 5: Let be a conditional type where and
have a given empirical joint PMF . There exists a set

such that for any and

(82)

and at the same time

(83)

The proof is a straightforward extension of the proof of the
ordinary type covering lemma and hence omitted.

Analogously to Theorem 4, we also have the following
parametric form for the rate-distortion guessing exponent with
side information:

(84)

where are nonnegative numbers satisfying

for each . Necessary and sufficient conditions for a given
to achieve the maximum in (84) are that there exists a set

of nonnegative numbers satisfying

such that

(85)

for all , , where

and

with chosen so that

The large deviations exponent is given by ,
where both and are joint PMF’s on , and the
minimum is over all such that .

VII. CONCLUSION AND FUTURE WORK

We have provided a single-letter characterization to the
optimum th-order guessing exponent theoretically attainable
for memoryless sources at a given distortion level. We have
then studied the basic properties of this exponent as a function
of the distortion level and the moment order, along with
its relation to the source-coding error exponent. Finally, we
gave a few extensions of our basic results to other cases of
interest.

A few problems that remain open and require further work
are the following.

General continuous-alphabet memoryless sources:Our
first comment in the discussion that follows Theorem 1,
naturally suggests to extend part b) of this theorem to
the continuous-alphabet case. Obviously, if the source has
bounded support, then after a sufficiently fine quantization,
we are back in the situation of a finite-alphabet source, and
so every -admissible guessing strategy for the quantized
source is also -admissible for the original source,
where is controlled by the quantization. Thus the proof
of the direct part of Theorem 1 for the case of continuous
alphabet with bounded support may rely on the finite-alphabet
case provided that the sequence of guessing exponents,
corresponding to the sequence of quantized sources and their
induced distortion measures, tends, in the high-resolution
limit, to the corresponding function of the continuous
source. However, the interesting and difficult case is that of
unbounded support for which infinite guessing lists are always
required. Moreover, in this case, quantization cannot be made
uniformly fine unless the alphabet is countably infinite, but
then the method of types is not directly applicable.

Hierarchical structures of guessing strategies:We men-
tioned in Section I that the guessing exponent serves as a
measure of the search effort associated with lossy source
coding, for a simple class of search schemes that is based on a
fixed order of trials. A natural interesting extension would
include classes of more sophisticated search schemes that
take greater advantage of the distortion information obtained
at each step. For example, if we revisit the Bob-and-Alice
guessing game described in Section I, then what will happen
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if in order to achieve a target distortion level, Alice is
now allowed to first make guesses w.r.t. a larger distortion

, and then after her first success, to direct her guesses
to the desired distortion level ? Thus the next step is to
extend the scope to that of multistage guessing strategies. In
the limit of many stages corresponding to many distortion-
level thresholds, we are eventually taking full advantage of
the exact distortion-level information after each trial.

Joint source-channel guessing:It would be interesting to
extend the guessing problem to the more complete setting of a
communication system, that is, joint source-channel guessing.
Here the problem is to jointly design a source-channel encoder
at the transmitter side and a guessing scheme at the receiver
side, so as to minimize for a prescribed end-to-end
distortion level . Besides the natural question of character-
izing the guessing exponent for a given source and channel,
it would be interesting to determine whether the separation
principle of information theory applies in this context as well.

These issues among some others are currently under inves-
tigation.

APPENDIX

Proof of Lemma 2:First, we prove that .

(A.1)

(A.2)

(A.3)

if
if

(A.4)

(A.5)

By the saddle-point theorem, we have equality in (A.3) if
is convex. Equality (A.5) is due to the nondecreasing property
of .

Since is the FLT of , it is convex. So, to prove that
is equal to the lower convex hull of , denoted , it

suffices to prove the inequality . By rewriting the
above equations for the convex function, we have .
Next, note that implies , which in turn implies

. Thus we have

(A.6)

and the proof is complete.

Proof of Proposition 1:

a) Nonnegativity follows by the fact that for
every . The expression of is obtained from
standard maximization of w.r.t.
(see also [2]). since , -almost
everywhere for every -admissible strategy. As for the
expression of , we seek the supremum of such
that

This means that there is such ,
or equivalently, . But the existence of

such in turn means that , which is
defined as , must be less than.

b) Both monotonicity and convexity w.r.t. follow imme-
diately from the same properties of the rate-distortion
function. Convexity and monotonicity also imply strict
monotonicity in the indicated range.

c) Nondecreasing monotonicity w.r.t. follows from the
monotonicity of w.r.t. for every fixed
and . Convexity follows from the fact the
is the maximum over a family of affine functions

w.r.t. . Again, strict monotonicity
follows from monotonicity and convexity.

d) Continuity w.r.t. each one of the variables at strictly
positive values follows from convexity. Continuity w.r.t.

at follows from continuity of both
w.r.t. and and continuity of w.r.t. .
Continuity w.r.t. at is immediate (see also part
e) below).

e) By definition of , we have

which proves the first part, and the fact that

To complete the proof of the second part, it suffices to
establish the fact that

This, in turn, follows from the following consideration.
Let be an arbitrary positive sequence that tends
to zero, and let be a corresponding sequence
of maximizers of

Now, obviously, must tend to , otherwise
would have a subsequence that

tends to , contradicting the fact that
for all . Therefore,

(A.7)

f) The upper bound follows immediately by the fact that

and by taking the maximum w.r.t.. It then also implies
that

The converse inequality
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follows from the following consideration. Without loss
of generality,

as if this was not the case, the alphabetcould have
been reduced in the first place. Therefore,

and so

(A.8)

Dividing by and passing to the limit as , gives
the desired result.

Proof of Lemma 4:Monotonicity in each argument is ob-
vious from (35). Concavity in for fixed : We shall
use the geometric interpretation of as the vertical axis
intercept of the supporting line of slopeto the curve
versus . For a proof by contradiction, suppose is not
concave in . Then, there exists , ,
such that the supporting line of slope is tangential to

at and lies strictly above it at

i.e.,

for (A.9)

and

(A.10)

Observe that, from (A.9), is upper-bounded by
. It is easy to see that is a decreasing

function of and approaches as . So, we have
since by assumption . Now, let

achieve , i.e.,

Since , we must also have .
From (A.9), the pair is a saddle-point of (35) for

. Then, it is easy to see that must be a
saddle-point of (35) for as well, which implies

contradicting (A.10). Proof of concavity in for fixed
is similar, with playing the role of ,

and will be omitted.

Proof of Proposition 2: We first prove uniqueness of the
PMF that achieves the maximum in (35). Let be fixed.
Note that the function

is concave in and convex in . So, any achieving
in (35) is a saddle-point of , i.e.,

for all and . Assume there
exist two saddle-points and both achieving

with . Then

hence . By the strict concavity of in
, for any , we have

This contradicts the assumption that is a saddle-
point, and establishes the uniqueness of the PMF achieving
(35), denoted in the rest of the proof as.

Next, fix , and let be a PMF achieving

Since , , and there exists such
that

and

For any , we have

Thus solves the maximization problem (35) for , and
hence, is uniquely determined as . Since is an arbitrary
point in for all , as claimed.

Next, fix and consider the equality (42) with .
Multiply each side by , and subtract the term .
The resulting expression on the left side equals iff

. We deduce that is the unique PMF that achieves
the maximum in (44). It follows that achieves (44) for
every .

Finally, to see that the maximum in (44) is achieved by
a unique , substitute the unique that maximizes the
right side (which equals for any such that

) and note that the resulting function ofis strictly
concave in .

Proof of Equation (59):Consider an auxiliary zero-mean
Gaussian memoryless source with variance . Then

(A.11)

which completes the proof of (59).

Proof of Equation (62):First observe that (61) defines a set
of vectors , which for a given , are just shifted versions of
vectors . Therefore, the volume of is identical to the
volume of the set of vectors that satisfy the indicated
constraints on and . To lower-bound the volume of this
set, consider an auxiliary Gaussian random-vector with
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zero-mean uncorrelated components of variance .
The probability that would fall in is upper-bounded
by

(A.12)

On the other hand, this probability is lower-bounded by the
union bound and Chebychev’s inequality as follows:

(A.13)

Combining now (A.12) and (A.13) gives (62).

Proof of Equation (68):First observe that since the the
function is monotonically decreasing
beyond a certain value of, the maximum over real , and
hence also over the integers , must exist. Let then
be the maximum of , and let be the smallest integer
such that for all , we have . Also,
let be the smallest integer for which ,
and let . Clearly, must be achieved for

, and so

(A.14)

which is clearly of exponential order of . On the other
hand, the series in question is trivially lower-bounded by its
maximum term . This completes the proof of (68).
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