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Hence,s = jJ j = 1 and

mJ =(f
(1)
1 )�1(f1g) = 1

ma =(f
(1)
2 )�1((11)) = 2

mb =(f
(1)
3 )�1((10)) = 2

m0 =4 + (1� 1) � 2 � 2 + (2� 1) � 2 + (2� 1) + 1 = 8

where (14) and (15) were used.
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Hierarchical Guessing with a Fidelity Criterion
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Abstract—In an earlier paper, we studied the problem of guessing
a random vector XXX within distortion D, and characterized the best
attainable exponent E(D; �) of the �th moment of the number of
required guessesG(XXX) until the guessing error falls belowD. In this
correspondence, we extend these results to a multistage, hierarchical
guessing model, which allows for a faster search for a codeword vector
at the encoder of a rate-distortion codebook. In the two-stage case of this
model, if the target distortion level isD2, the guesser first makes guesses
with respect to (a higher) distortion levelD1, and then, upon his/her first
success, directs the subsequent guesses to distortionD2. As in the above-
mentioned earlier paper, we provide a single-letter characterization of
the best attainable guessing exponent, which relies heavily on well-known
results on the successive refinement problem. We also relate this guessing
exponent function to the source-coding error exponent function of the
two-step coding process.

Index Terms—Guessing, rate-distortion theory, source-coding error
exponent, successive refinement.

I. INTRODUCTION

In [1], we studied the basic problem of guessing a random vector
with respect to (w.r.t.) a fidelity criterion. In particular, for a given
information source, a distortion measured, and distortion levelD, this
problem is defined as follows. The source generates a sample vector
xxx = (x1; � � � ; xN) of a randomN -vectorXXX = (X1; � � � ; XN).
Then, the guesser, who does not have access toxxx, provides a sequence
of N -vectors (guesses)yyy1; yyy2; � � � until the first success of guessing
xxx within per-letter distortionD, namely,d(xxx; yyyi) � ND for some
positive integeri. Clearly, for a given list of guesses, this number
of guessesi is solely a function ofxxx, denoted byGN (xxx). The
objective of [1] was to characterize the best achievable asymptotic
performance and to devise good guessing strategies in the sense of
minimizing moments ofGN(XXX). It has been shown in [1], that for
a finite-alphabet, memoryless sourceP and an additive distortion
measured, the smallest attainable asymptotic exponential growth rate
of EEEfGN(XXX)�g (� > 0) with N , is given by

E(D; �) = max
P

[�R(D; P 0)�D(P 0jjP )] (1)

where the maximum w.r.t.P 0 is over the set of all memoryless
sources with the same alphabet asP , R(D; P 0) is the rate-distortion
function ofP 0 w.r.t. distortion measured at levelD, andD(P 0jjP )
is the relative entropy, or the Kullback–Leibler information diver-
gence, betweenP 0 andP , i.e., the expectation ofln [P 0(X)=P (X)]
w.r.t. P 0.
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One of the motivations of the guessing problem in its above
described basic form, is that a good guessing strategy tells us how
to order the codebook vectors of a rate-distortion block encoder, so
as to minimize the typical search effort until a satisfactory codeword
is found. As explained in [1], however, the guessing performance
is an indication to the search complexity only under a very simple
search model where the codewords are scanned in a fixed order,
without taking advantage of the full information available from earlier
unsuccessful search trials or guesses.

In this correspondence, we take one step towards the improve-
ment of this search model. This is done by examining families
of guessing strategies that are induced by hierarchical, multistage
codebook structures, in particular, successive refinement codes (see,
e.g., [2]–[7]). From the rate-distortion coding point of view, these
structures are motivated by progressive transmission applications
since they allow for simultaneous operation at more than one point
in the rate-distortion plane, sometimes without loss of rate-distortion
optimality at either point. From the searching, or guessing aspects
considered here, these structures are attractive because they provide
considerably more efficient and faster search for the first codeword
that satisfies the distortion constraint w.r.t. a given source vector. In
the two-stage case of the successive refinement structure, in order to
encode a source vectorXXX within a given target per-letter distortion
levelD2, one first seeks, in a first-layer codebook, the first codeword
yyyi within distanceND1 from xxx (which is a relatively fast search),
and then seeks the first codewordzzzij at the target distanceND2 from
xxx along a second-layer codebook that corresponds toyyyi. As a simple
example, if the first-layer code operates at rate-R=2 and each second-
layer code is at rate-R=2, then the total rate isR but the number of
guesses, or search trials grows exponentially as2

NR=2, and not2NR

which would be the case if the code had only one stage.
Analogously to [1], our main result in this correspondence, is in

characterizing the best attainable two-stage guessing exponent for
memoryless sources, additive distortion measures, and two given
distortion levels. We first derive a lower boundE2(D1; D2; �) on the
exponent of the�th-order moment of the guessing effort associated
with the intermediate distortion levelD1 and the target distortion
levelD2. Clearly, if only the target distortion levelD2 is specified, it
would be natural to selectD1 so as to minimizeE2(D1; D2; �). We
are able to demonstrate the achievability ofE2(D1; D2; �) under
the assumption that the guesser knows in advance thetype class,
or equivalently, the empirical probability mass function (PMF) of
the given source vectorxxx. There are several justifications for this
assumption. First, in source-coding applications, which serve as the
main motivation for the two-stage guessing problem, it is conceivable
that the empirical PMF information is easily accessible to the guesser
(or the encoder). Secondly, similarly as in the single-stage case,
the validity of E2(D1; D2; �) as a lower bound is unaffected by
knowledge of the type class. For the same reason, this setting still
serves as an extension of [1]. Finally, and perhaps most importantly,
under this assumption, the guesser has the flexibility to choose the
first-layer distortion levelD1 depending on the empirical PMF. This,
in general, gives better guessing performance than ifD1 were fixed.
We also show that the successively refinable case gives the best
possible guessing exponent, which can be easily expressed in terms
of the single-stage guessing exponentE1(D2; �). The achievability
of E2(D1; D2; �) without knowing the empirical PMF, however,
remains an open problem, and we shall elaborate on this later on.

Another aspect of the guessing exponent is its interesting relation
to the source-coding exponent. In the single-stage setting, the source-
coding error exponentF1(R; D), is defined as the best exponential
decay rate of the probability of failing to encode a source vector
XXX with a rate-R codebook at distortionD. In [1], it has been

shown that the guessing exponentE1(D; �) as a function of�,
and the source-coding error exponentF1(R; D) as a function of
R, are a Fenchel–Legendre transform (FLT) pair. We show that this
result extends to the two-stage case merely in a partial manner: The
two-stage guessing exponent is lower-bounded by the FLT of the
two-stage error exponent andvice versa.

Finally, a general comment is in order: although we confine our
attention, in this correspondence, to strategies with two levels of
guessing lists, it should be understood that the results extend fairly
easily to any fixed and finite number of levels, while the concept
remains the same. Our exposition is limited to the two-level case for
reasons of simplicity.

The outline of this correspondence is as follows. In Section II,
we define notation conventions and provide some background on
the problem of interest. Section III is devoted to the lower bound
on the guessing exponent. In Section IV, we discuss the conditions
for the achievability of the lower bound. In Section V, we focus
on the successively refinable case. Section VI discusses the relation
to the two-step source-coding error exponent. Finally, Section VII
concludes the correspondence.

II. NOTATION, PROBLEM DESCRIPTION, AND PRELIMINARIES

Consider a memoryless information sourceP emitting symbols
from a finite alphabetX , and let Y and Z denote two finite
reproduction alphabets. Letd1: X � Y ! [0; 1) and d2: X �
Z ! [0; 1), denote two single-letter distortion measures. LetXN ,
YN , and ZN denote theN th-order Cartesian powers ofX , Y,
and Z, respectively. The distortion between a source vectorxxx =
(x1; � � � ; xN ) 2 XN and a reproduction vectoryyy = (y1; � � � ; yN ) 2
YN is defined as

d1(xxx; yyy) =

N

i=1

d1(xi; yi):

Similarly, for zzz = (z1; � � � ; zn), we define

d2(xxx; zzz) =

N

i=1

d2(xi; zi):

Throughout the correspondence, scalar random variables will be
denoted by capital letters while their sample values will be denoted
by the respective lower case letters. A similar convention will apply
to randomN -dimensional vectors and their sample values, which
will be denoted by boldface letters. Thus for example,XXX will
denote a randomN -vector (X1; � � � ; XN), andxxx = (x1; � � � ; xN )
is a specific vector value inXN . Sources and channels will be
denoted generically by capital letters (sometimes indexed by the
names of the corresponding random variables), e.g.,P , QXY Z ,
W , V , etc., where these entities denote the set of (conditional or
unconditional) letter probabilities, e.g.,P is understood as a vector
of letter probabilitiesfP (x); x 2 Xg. For auxiliary random variables
(X; Y; Z) 2 X � Y � Z, that will be used throughout the sequel,
the joint PMF will be denoted by

QXYZ = fQXYZ(x; y; z); x 2 X ; y 2 Y; z 2 Zg:

Marginal and conditional PMF’s that are derived fromQXYZ will
be denoted also byQ with an appropriate subscript, e.g.,QX is the
marginal PMF ofX, QZjXY is the conditional PMF ofZ givenX
andY , and so on. ForN -vectors, the probability ofxxx 2 XN will
be denoted by

PN (xxx) =

N

i=1

P (xi):
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The probability of an eventA � XN will be denoted byPNfAg,
or by PrfAg whenever there is no room for ambiguity regarding the
underlying probability measure. The cardinality of a finite setA will
be denoted byjAj. The operatorEEEf�g will denote expectation w.r.t.
the underlying sourceP . Expectation w.r.t.QXY Z will be denoted
by EEEQf�g.

For a given source vectorxxx 2 XN , the empirical probability
mass function (EPMF) is the vectorPxxx = fPxxx(a); a 2 Xg, where
Pxxx(a) = Nxxx(a)=N , Nxxx(a) being the number of occurrences of the
letter a in the vectorxxx. The type classTP associated with a given
PMF P , is the set of all vectorsxxx 2 XN such thatPxxx = P . For two
positive sequencesfaNgN�1 andfbNgN�1, the notationaN � bN
means thatN�1 ln (aN=bN)! 0 asN !1, and in words,aN is
said to beexponentially equalto bN . Similarly, aN � bN means that

lim inf
N!1

N�1 ln(aN=bN) � 0

and in words,aN is said to beexponentially at least as large asbN ,
or, bN is exponentially no largerthanaN , and so on.

For two memoryless sourcesP andP 0, let

D(P 0jjP ) =
x2X

P 0(x) ln
P 0(x)

P (x)
(2)

denote the relative entropy betweenP 0 andP . For a given random
pair (X; Y ) governed byQXY , let I(X; Y ) denote the mutual
information betweenX and Y . Let R(D; P 0) denote the rate-
distortion function ofP 0, w.r.t. d1, i.e.,

R(D; P 0) = inf fI(X; Y ): QX = P 0; EEEQd1(X; Y ) � Dg: (3)

In [1] we defined the following terminology for the basic, single-
stage guessing problem. We provide here definitions that are slightly
simpler than in [1], but they are equivalent in the finite-alphabet case
considered here. Let

S1(yyy; D)
�
= fxxx: d1(xxx; yyy) � NDg:

Definition 1: A D-admissible guessing strategy is an ordered list
GN = fyyy1; yyy2; � � �g of vectors inYN , henceforth referred to as
guessing words, such that

i

S1(yyyi; D) = XN : (4)

Definition 2: The guessing functionGN (�) induced by aD-
admissible guessing strategyGN , is the function that maps each
xxx 2 XN into a positive integer, which is the indexj of the first
guessing codewordyyyj 2 GN such thatd(xxx; yyyj) � ND.

Definition 3: The optimum�th-order single-stage guessing expo-
nent theoretically attainable at distortion levelD is defined, whenever
the limit exists, as

E1(D; �)
�
= lim

N!1

1

N
min
G

ln EEEfGN(XXX)�g (5)

where the minimum is taken over allD-admissible guessing strate-
gies, and the subscript “1” indicates the fact that the class of
single-stage guessing strategies is considered.

The main result of [1] is that for a memoryless source, and an
additive distortion measure,E1(D; �) exists and has a single-letter
characterization given by

E1(D; �) = E1(D; �)
�
= max

P
[�R(D; P 0)�D(P 0jjP )]: (6)

Note thatE1(D; �) depends on the sourceP . However, since the
underlying sourceP is fixed, and to avoid cumbersome notation, the
dependency ofE1 on P is not denoted explicitly.

We now turn to the two-stage guessing problem, which in its
basic form, is defined as follows. A memoryless sourceP randomly
draws a realizationxxx 2 XN of a random vectorXXX. For a given
intermediate distortion levelD1 w.r.t. distortion measured1, and
a given target distortion levelD2 w.r.t. distortion measured2, the
guesser first presents a sequence of guessesyyy1, yyy2; � � � ; until the
first time thatd1(xxx; yyyi) � ND1, and then is temporarily scored by
the number of guesses thus farG1

N (xxx) = i. In the second stage
of the guessing process, the guesser provides another sequence of
guesseszzzi1; zzzi2; � � � ; corresponding toi, until the first j such that
d2(xxx; zzzij) � ND2; and the score increases by the additional number
of guessesG2

N (xxx) = j. The question is: What is the best one can do
in designing the guessing lists so as to minimize the exponential
growth rate of the�th moment of the total number of guesses
G1
N (XXX) + G2

N (XXX)? Clearly, the approach of using an intermediate
search makes sense only ifE1(D1; �) w.r.t. distortion measured1
is smaller thanE1(D2; �) w.r.t. distortion measured2. If d1 = d2,
this simply means thatD1 > D2.

We next provide definitions for the two-stage case which are
analogous to our earlier definitions for the single-stage case. In
addition to the above definition ofS1(yyy; D), for a givenzzz 2 ZN ,
let S2(zzz; D) = fxxx: d2(xxx; zzz) � NDg.

Definition 4: Given a sourceP , an intermediate distortion level
D1, and a target distortion levelD2, an admissible two-stage guessing
strategyGN comprises aD1-admissible guessing strategyG1N =
fyyyi; i = 1; 2; � � �g; referred to as a first-layer guessing list, with a
guessing functionG1

N (�), and a set of lists,fGN(i); i = 1; 2; � � �g;
GN(i) = fzzzij ; j = 1; 2; � � �g; zzzij 2 Z

N ; i; j = 1; 2; � � � ; referred
to as second-layer guessing lists, such that for alli

j

S2(zzzij ; D2) � S1(yyyi; D1)

i�1

k=1

S1(yyyk; D1)
c :

Comment:This set inequality takes into account the fact that
if G1

N (xxx) = i, then xxx is in S1(yyyi; D1), but not in any of the
spheres associated with earlier examined guessesS1(yyyk; D1), k =
1; � � � ; i� 1. Hence, the second-layer guessing list corresponding to
i must cover only source vectors with these properties.

Definition 5: The guessing function induced by a given admissible
two-layer guessing strategy is given by

GN(xxx) = G1
N (xxx) +G2

N(xxx) (7)

where G1
N(�) is the guessing function induced by the associated

first-layer guessing strategyG1N , andG2
N (xxx) is the indexj of the

first codewordzzzij 2 GN(i), such thatd2(xxx; zzzij) � ND2, where
i = G1

N (xxx).

Before we turn to characterize the best attainable two-stage guess-
ing exponent, we review some known results on the multistage
source coding problem [2], [6], [7] (see also [4] and [8]), which are
intimately related to the two-stage guessing problem considered here.
We first present some definitions associated with two-stage source
codes.

A rate-R1 block code of lengthN consists of an encoder

f1N : XN ! f1; 2; � � � ; 2NR g

and a decoder

g1N : f1; 2; � � � ; 2NR g ! YN :

A refined rate-R2 block code of lengthN (R2 > R1) consists of
an encoder

f2N : XN ! f1; 2; � � � ; 2N(R �R )g
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and a decoder

g2N : f1; 2; � � � ; 2NR g � f1; 2; � � � ; 2N(R �R )g ! ZN :

A quadruple (R1; R2; D1; D2) is referred to as anachievable
quadruple w.r.t. a sourceP if for every � > 0, � > 0, and N
sufficiently large, there exists a length-N block code(f1N ; g

1
N ) of rate

not exceedingR1 + �, and a refined length-N block code(f2N ; g
2
N )

of rate not exceedingR2 + �, such that

Pr d1(XXX; g1N (f1N(XXX)) � ND1;

d2(XXX; g2N(f1N(XXX); f2N(XXX))) � ND2 � 1� �: (8)

To characterize the region of achievable quadruples
(R1; R2; D1; D2), consider an auxiliary random vector(X; Y; Z)
governed by a PMFQXY Z , and letI(X; Y Z) denote the mutual
information betweenX and (Y; Z).

Theorem 1 ([2], [6], [7]): For a memoryless sourceP , two addi-
tive distortion measuresd1 andd2, and two distortion levelsD1 and
D2, respectively, a quadruple(R1; R2; D1; D2) is achievable w.r.t.
P if and only if there exists a PMFQXYZ such thatQX = P ,
I(X; Y ) � R1, I(X; Y Z) � R2, EEEQd1(X; Y ) � D1, and
EEEQd2(X; Z) � D2.

An immediate corollary [7, Corollary 1] to this theorem states that
given D1, D2, andR1, the minimum achievableR2, denoted by
RRR(R1; D1; D2; P ), is given bymin I(X; Y Z) over all fQXYZg
such thatQX = P , I(X; Y ) � R1, EEEQd1(X; Y ) � D1, and
EEEQd2(X; Z) � D2.

III. A L OWER BOUND

We are now ready to present our main result, which is a single-letter
characterization of a lower bound on the best two-stage guessing ex-
ponent theoretically attainable. Letd1 andd2 be two given distortion
measures as above, and letD1 andD2 be two given distortion levels,
respectively. For a given memoryless sourceP 0, let

K(D1; D2; P
0) = min

S
maxfI(X; Y ); I(X; Z jY )g (9)

whereI(X; ZjY ) is the conditional mutual information betweenX
and Z given Y , and

S
�
= QXYZ :QX=P 0; EEEQd1(X; Y )�D1; EEEQd2(X; Z)�D2 :

(10)

Now, let

E2(D1; D2; �) = max
P

[�K(D1; D2; P
0)�D(P 0jjP )]: (11)

The following theorem tells us thatE2(D1; D2; �) is a lower
bound on the best attainable two-stage guessing exponent.

Theorem 2: Let P be a finite-alphabet memoryless source,d1 and
d2 two additive distortion measures,D1 an intermediate distortion
level, andD2 a target distortion level. Then

lim inf
N!1

1

N
min
G

ln EEEfGN (xxx)�g � E2(D1; D2; �): (12)

Discussion: The intuitive interpretation of the expression of
K(D1; D2; P

0) is that at each level, the number of guesses is
exponential, i.e., exponentiallyeNI(X;Y ) guesses in the first level
and eNI(X;ZjY ) in the second. Thus the exponential order of the
total number of guesses is dominated by the larger exponent. This
is different from the two-step source-coding problem, where the
codebook sizes of the two levels multiply, and so, their exponents
(the rates) sum up toI(X; Y ) + I(X; ZjY ) = I(X; Y Z).

The remaining part of this section is devoted to the proof of
Theorem 2.

Proof: For a given positive integerN , let GN be an arbitrary
two-stage guessing scheme with distortion levelsD1 andD2. Simi-
larly as in the proof of [1, Theorem 1], we begin with the following
chain of inequalities for an arbitrary auxiliary memoryless sourceP 0:

EEEfGN(XXX)�g =EEEP GN (XXX)�
N

i=1

P (Xi)

P 0(Xi)

=EEEP exp � ln GN (XXX) +

N

i=1

ln
P (Xi)

P 0(Xi)

� exp �EEEP ln GN (XXX)�ND(P 0jjP )

� exp �max fEEEP ln G1
N (XXX);

EEEP ln G2
N(XXX)g �ND(P 0jjP ) (13)

where for the first inequality, we have used Jensen’s inequality
together with the convexity of the exponential function, and for the
second inequality, we have used the fact that

GN (XXX) = G1
N (XXX) +G2

N (XXX) � max fG1
N (XXX); G2

N (XXX)g:

Since P 0 is an arbitrary memoryless source, the proof will be
complete if we show that

max
1

N
EEEP ln G1

N(XXX);
1

N
EEEP ln G2

N (XXX)

� K(D1; D2; P
0)� o(N) (14)

for everyP 0. Now, let us define

RN =
1

N
EEEP ln G1

N (XXX) (15)

and

�N =
1

N
EEEP ln G2

N (XXX): (16)

Intuitively, the functionsL1(XXX) = ln G1
N(XXX) and L2(XXX) =

ln G2
N (XXX) + ln G2

N(XXX) are (within negligible terms for largeN )
legitimate code length functions (in nats) for lossless entropy coding
of the locations of the guessing codewords, and so, one would
expect(RN ; RN +�N ; D1; D2) to be “essentially” an achievable
quadruple in the sense used in Theorem 1. However, this theorem
cannot be used as is to establish such an argument because it deals
with fixed-rate coding, without allowing for variable-length entropy
coding. Nevertheless, in the Appendix, we prove that there exists a
constantc = c(jYj; jZj) such that for allN

(RN + c ln (N + 1)=N; RN +�N + c ln (N + 1)=N; D1; D2)

is an achievable quadruple w.r.t.P 0. This is done by constructing
a fixed-rate length-l block code(l � N) that satisfies (8) with less
thanel(R +0:5c ln (N+1)=N) codewords at the first level, and less than
el(� +0:5c ln (N+1)=N) second-level codewords for each first-level
codeword.

Using the same sphere covering arguments as in [6, Lemma 1],
the existence of such a code implies that there must exist a PMF
QXYZ 2 S such that

RN +
c ln (N + 1)

N
� I(X; Y ) (17)

and, at the same time,

�N +
c ln (N + 1)

N
� I(X; ZjY ) (18)
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and so

max fRN ; �Ng � maxfI(X; Y ); I(X; ZjY )g �
c ln (N + 1)

N
� min

S
maxfI(X; Y ); I(X; ZjY )g

�
c ln (N + 1)

N

=K(D1; D2; P
0)�

c ln (N + 1)

N
(19)

completing the proof of Theorem 2.

IV. A CHIEVABILITY

The expression ofE2(D1; D2; �) strongly suggests that the key
to the achievability ofE2(D1; D2; �) lies in the two-stage covering
lemma (see, e.g., [7]), which is a straightforward extension of the
ordinary single-stage covering lemma [9]. This two-stage covering
lemma is the following.

Lemma 1 [7, Lemma 1]:If (R1; R2; D1; D2) is an achievable
quadruple w.r.t.P 0, then there exist

i) A set C1 � YN such that
1

N
ln jC1j � R1 + o(N) (20)

and

yyy2C

S1(yyy; D1) � TP : (21)

ii) Sets C2(yyy) � ZN ; yyy 2 C1, such that
1

N
ln

yyy2C

jC2(yyy)j � R2 + o(N) (22)

and

TP
zzz2C (yyy)

S2(zzz; D2) � TP S1(yyy; D1) 8 yyy 2 C1:

(23)

The construction ofC1 and fC2(yyy)g in [7] is as follows: since
(R1; R2; D1; D2) is an achievable quadruple by assumption, the set

fQXY Z : QXYZ 2 S; I(X; Y ) � R1; I(X; Y Z) � R2g

is nonempty: first, it is shown that for anyQXYZ in this set, a
random selection ofM = eNI(X;Y ) vectorsyyy1; � � � ; yyyM 2 TQ ,
forming C1, satisfies (21) with high probability. Secondly, for each
yyyi 2 C1, let C2(yyyi) be a randomly selected set ofM 0 � eNI(X;ZjY )

vectors zzzi1; � � � zzzi;M which, conditioned onyyyi, are in the type
class associated withQZjY ; then C2(yyyi) satisfies (23) with high
probability.

Using this lemma and its proof in [7], it is easy to see that
E2(D1; D2; �) is achievable at least when the guesser is informed
of the EPMF of the input sequencexxx. This is done in the following
manner. LetQ�

XYZ attainK(D1; D2; PXXX). By applying the proof
of Lemma 1 withP 0 = PXXX , QXYZ = Q�

XY Z , R1 = I(X; Y ), and
R2 = I(X; Y Z) (corresponding toQ�

XY Z ), one can create a first-
layer guessing listyyy1; yyy2; � � � of size _�eNI(X;Y ) that coversTP ,
and for eachyyyi, a second-layer guessing list of size_�eNI(X;ZjY )

consisting of second-layer guessing codewords that coverTP \
S1(yyyi; D1). Thus regardless of the order of the guessing words
at both levels, the total number of guessesG1

N (xxx) + G2
N(xxx) is

exponentially at most

e
NI(X;Y ) + e

NI(X;ZjY ) :
= e

NK(D ;D ;P )
:

Averaging the �th power of this quantity w.r.t. the ensemble
of EPMF’s fPXXXg, we obtain by the method of types [9], the
exponential order ofeNE (D ;D ; �). The difference between
this and the construction of an optimal two-stage code is that

the optimum PMFQXYZ that minimizes the guessing exponent
max fI(X; Y ); I(X; ZjY )g might be different than the one that
minimizes the total coding rateI(X; Y )+I(X; ZjY ) = I(X; Y Z).
Thus guessing words may have, in general, different compositions
than optimal rate-distortion codewords.

Unfortunately, we were unable to construct a guessing strategy that
achievesE2(D1; D2; �) without prior knowledge of the EPMF of
XXX. The difficulty lies in the fact that the guessing codebooks (at both
levels) for different EPMF’s may partially intersect. Therefore, no
matter how the guessing lists for all EPMF’s are integrated, there is
no guarantee that the first-layer guessing wordyyyi for a givenxxx, will
belong to the guessing codebook that corresponds to the EPMF of
xxx. Consequently,xxx may not be covered in the second-stage guessing
list, or may require exponentially more thaneNI(X;ZjY ) guesses.

Nevertheless, the assumption of prior knowledge of the EPMF of
XXX is fairly reasonable as explained in Section I: first, in source-coding
applications, which serve as the main motivation for the two-stage
guessing problem, it is conceivable that the empirical PMF informa-
tion is easily accessible to the guesser (or the encoder). Secondly,
similarly as in the single-stage case, the validity ofE2(D1; D2; �)
as a lower bound is asymptotically unaffected by knowledge of the
EPMF. This is true because asymptotically, the EPMF information
is of zero rate. For the same reason, this setting still serves as an
extension of [1].

More generally, consider a scenario where instead of one guesser
we haveLN independent parallel guessers (or search machines)
with guessing functionsG(j)

N (xxx); j = 1; � � � ; LN ; and the guessing
process stops as soon as one of the guessers succeeds. Thus the
natural relevant performance criterion of interest is some moment of
the guessing timeEEEfminj G

(j)
N (XXX)�g. Again, it is easy to see that

the validity of the lower boundE2(D1; D2; �) is asymptotically
unaffected as long asLN

:
= 1, that is,LN grows subexponentially

with N . Thus an asymptotically optimal solution to this problem
would again suggest that each guesser will be responsible for one
EPMF as described above, and so,LN � (N + 1)jXj�1.

In summary, it will be safe to argue that the lower bound
E2(D1; D2; �) is achievable provided that we slightly extend the
scope of the problem.

Furthermore, this assumption of knowing the EPMF has even
deeper consequences. It provides the guesser with the flexibility to
choose the first-layer distortion levelD1 depending on the EPMF.1

This in general gives better guessing performance than that can be
achieved ifD1 was fixed. Specifically, if only the target distortionD2

is specified andD1 is a design parameter subjected to optimization,
then in the absence of prior information onPXXX , the best performance
is bounded from below by

E
�
2 (D2; �) = inf

D
E2(D1; D2; �)

= inf
D

max
P

[�K(D1; D2; P
0)�D(P 0jjP )]: (24)

On the other hand, ifPxxx is known ahead of time, it is possible to
achieve

E
��
2 (D2; �) = max

P
inf
D

[�K(D1; D2; P
0)�D(P 0jjP )] (25)

and clearly,E��
2 (D2; �) � E�

2 (D2; �).

V. SUCCESSIVELY REFINABLE SOURCES

Obviously, from the viewpoint of rate-distortion source coding,
the best possible situation is when the rate-distortion function can
be attained at both distortion levels. A source for which this can

1Furthermore, the first-level distortion measured1 may also be subjected
to optimization.
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be achieved is referred to as asuccessively refinablesource in the
literature (see, e.g., [5]). It turns out, as we show in this section, that
the successively refinable case in this rate-distortion coding sense
is also the best we can hope for from the viewpoint of guessing.
Although this is fairly plausible, it is not quite obvious since the
guessing performance criterion is somewhat different than that of
coding.

To show this, we begin with a simple lower bound onE��

2 (D2; �)
in terms of the single-stage guessing exponent functionE1(D2; �).

Lemma 2: For every memoryless sourceP

E��

2 (D2; �) � E1(D2; �=2):

Proof:

K(D1; D2; P
0) = min

S
maxfI(X; Y ); I(X; Y Z)� I(X; Y )g

� min
S

maxfI(X; Y ); I(X; Z)� I(X; Y )g

� min
S

maxfI(X; Y ); R(D2; P
0)� I(X; Y )g

�
1

2
R(D2; P

0): (26)

Since the rightmost side is independent ofD1, then

inf
D

K(D1; D2; P
0) � 1

2R(D2; P
0) (27)

and so

E��
2 (D2; �) � max

P

�

2
R(D2; P

0)�D(P 0jjP ) = E1 D2;
�

2
(28)

completing the proof of Lemma

As we show next, in the successively refinable case, this lower
bound is met.

Lemma 3: If the distortion measuresd1 andd2 are such that every
memoryless sourceP 0 is successively refinable for everyD1 together
with the given target distortion levelD2, then for every memoryless
sourceP , E��

2 (D2; �) = E1(D2; �=2).

Comment:If d1 = d2 is the Hamming distortion measure, the
condition of Lemma 3 is met. Another case is whered1 andd2 are
arbitrary distortion measures andD2 = 0.

Proof of Lemma 3:Consider a guesser that is informed of the
EPMF Pxxx of xxx, and choosesD1 = D1(Pxxx) such that

R(D1; Pxxx) = R(D2; Pxxx)=2:

Since Pxxx is assumed successively refinable, the quadruple
(R(D2; Pxxx)=2; R(D2; Pxxx); D1; D2) is achievable w.r.t.Pxxx, and so
there exists a PMFQXY Z for whichQX = Pxxx,EEEQd1(X; Y ) � D1,
EEEQd2(X; Z) � D2, andI(X; Y ) = I(X; ZjY ) = R(D2; Pxxx)=2.
Thus for every sequencexxx, GN (xxx) _�eNR(D ;P )=2, and so,
E��
2 (D2; �)=E1(D2; �=2), completing the proof of Lemma 3.
Discussion: Intuitively, the successively refinable case reflects a

situation where for eachPXXX , the guessing complexity is divided
evenly between the two levels. More generally, in ak-stage guessing
system this would suggest that for a target distortion levelDk, the
best guessing exponent isE1(Dk; �=k), which by the convexity of
E1 in � [1], cannot be larger thanE1(Dk; �)=k (with strict inequality
unlessR(Dk; P ) = maxP R(Dk; P )). Returning to the casek = 2,
this means that the effect of two-stage guessing, in the successively
refinable case, is even better than halving the exponent.

For the sake of comparison, consider another form of a two-stage
guessing list, where the first stage makes guesses on the firstN=2
coordinates ofXXX (until distortionD is achieved on these coordinates)

and the second stage then makes guesses on the second half of the
coordinates. In this case, we get

EEEf[GN=2(X1; � � � ; XN=2) +GN=2(XN=2+1; � � � ; XN)]�g

� exp[N(E1(D; �)=2] (29)

which means exactly halving the exponent. Thus the earlier proposed
two-stage guessing mechanism has better guessing performance.
However, the difference between the two approaches vanishes as the
number of hierarchy levelsk grows.

VI. RELATION TO THE TWO-STAGE

SOURCE CODING ERROR EXPONENT

Consider now a situation where bothD1 and D2 are specified
(e.g., good guessing exponents are required at two specified distortion
levels), and again, the guesser knows in advance the EPMF ofXXX. In
this case, as we already proved, the best guessing exponent achievable
is E2(D1; D2; �). We will now relate this to the two-stage source-
coding error exponent, characterized in [7].

For an achievable quadruple(R1; R2; D1; D2), the two-stage
source-coding error exponentF (R1; R2; D1; D2) is defined as the
best attainable exponential decay rate of the probability of the event

B = xxx: d1(xxx; g
1
N(f1N(xxx))) > ND1;

or d2(xxx; g
2
N (f1N(xxx); f2N(xxx))) > ND2 :

Kanlis and Narayan [7] have shown that

F (R1; R2; D1; D2) = minD(P 0jjP ) (30)

where the minimum is over the set

K(R1; R2; D1; D2)

= fP 0: R(D1; P
0) � R1 or RRR(R1; D1; D2; P

0) � R2g

whereRRR(R1; D1; D2; P
0) is defined as in the last paragraph of

Section II.
Let R0(D1; D2) be defined as the solution to the equation

R = RRR(R; D1; D2; P
0)�R

with R being the unknown, provided that a solution exists. If a
solution does not exist, i.e., if

R(D1; P
0) > 0:5RRR(R(D1; P

0); D1; D2; P
0);

thenR0(D1; D2)
�
= 0. It is easy to see that there is at most one

solution to this equation. Now

E2(D1; D2; �)

= max
P

min
S

[�maxfI(X; Y );

I(X; Y Z)� I(X; Y )g � D(P 0jjP )]

� max
P

min
S

[� inf
R>I(X;Y )

max fR; I(X; Y Z)�Rg

� D(P 0jjP )]

� max
P

[� inf
R>R(D ;P )

maxfR; RRR(R; D1; D2; P
0)�Rg

� D(P 0jjP )]

= max
P

[�max fR(D1; P
0); R0(D1; D2)g

� D(P 0jjP )]

= max
P

sup
R<maxfR(D ;P ); R (D ;D )g

[�R �D(P 0jjP )]

= sup
R> 0

max
P 2K(R; 2R;D ;D )

[�R �D(P 0jjP )]

= sup
R> 0

[�R � F (R; 2R; D1; D2)]: (31)
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Thus for fixedD1 andD2, the guessing exponentE2(D1; D2; �) as a
function of�, is lower-bounded by the one-sided Fenchel—Legendre
transform (FLT) ofF (R; 2R; D1; D2) as a function ofR. In [1], we
established an analogousequality relation between the single-stage
guessing exponent and the FLT of the single-stage source-coding
exponent. Here, we cannot claim that the inequality is met with
equality, in general. As for the inverse relation, note that (31) is
equivalent to the statement

E2(D1; D2; �) + F (R; 2R; D1; D2) � �R; 8 � > 0; R > 0

(32)

which also means that

F (R; 2R; D1; D2) � sup
�>0

[�R �E2(D1; D2; �)]:

It should be pointed out that in [1] equality for allR is not guaranteed
either. While the right-hand side is clearly a convex function of
R, the functionF (R; 2R; D1; D2) is not necessarily so. This is
demonstrated in the following example.

Example: Let P be a binary memoryless source with letter proba-
bilities p and 1 � p, and letd1 = d2 be the Hamming distortion
measure. Leth(p) = �p ln p � (1 � p) ln(1 � p) denote the
binary entropy function. SinceR(D; P 0) = h(p0) � h(D) and
binary sources with the Hamming distortion measure are successively
refinable [5], then in this case

K(R; 2R; D1; D2)

= P 0: h(p0) � minfR+ h(D1); 2R+ h(D2)g : (33)

Now, letR� = h(D1)� h(D2), assume thath(p) < R� + h(D1),
and define

U(t)
�
= min

x: h(x)�t
x ln

x

p
+ (1� x) ln

1� x

1� p
(34)

which for p < 1=2, t > h(p), can be also written as

U(t) = h�1(t) ln
h�1(t)

p
+ (1� h�1(t)) ln

1� h�1(t)

1� p
(35)

whereh�1(�) is the inverse ofh(�) in the range where the argument
of h(�) is less than1=2. Clearly,U(t) is a monotonically increasing,
differentiable function in the above range, and letU 0(t) denote the
derivative. Now, it is easy to see that

F (R; 2R; D1; D2) =U(minfR+ h(D1); 2R+ h(D2)g)

=
U(2R+ h(D2)) R � R�

U(R+ h(D1)) R > R�:
(36)

This means that the derivative ofF (R; 2R; D1; D2) w.r.t.R, which
is positive, jumps atR = R� from 2U 0(R� + h(D1)) down to
U 0(R� + h(D1)), which, in turn, means thatF (R; 2R; D1; D2)
cannot be convex in this case.

VII. CONCLUSION

We have derived a lower bound on the two-level guessing expo-
nent, and discussed the conditions for its achievability. It has been
also shown that the successively refinable case is the ideal case
from the viewpoint of guessing as well as coding. Finally, we have
shown that the two-level guessing exponent can be lower-bounded
in terms of the two-level source-coding error exponent function with
R2 = 2R1. However, this bound is not always tight.

Some open problems for future research are the following: i)
Devise a two-level guessing strategy that is not informed of the
EPMF but still attainsE2(D1; D2; �). ii) Alternatively, find a tighter
lower bound that can be achieved in the absence of knowledge of the

EPMF. iii) Characterize the optimum performance for classes of more
sophisticated guessing/searching mechanisms (e.g., take advantage of
the full information carried by unsuccessful guesses thus far). These
issues are currently under investigation.

APPENDIX

In this Appendix, we prove that for some constantc, that depends
only on the reproduction alphabet sizes, the quadruple

(RN + c ln (N + 1)=N; RN +�N + c ln (N + 1)=N; D1; D2)

is achievable w.r.t.P 0. We begin with the following simple auxiliary
result.

Lemma 4: Let J = f1; � � � ; Jg (J a positive integer), and for a
given positive integern, let

Tn = f(u1; � � � ; un) 2 J n:

n

i=1

ln ui � nRg

for some positive realR. Then

jTnj � (n+ 1)J�1 exp fn[R+ ln (2 ln J + 2)]g: (A.1)

Proof of Lemma 4:First, observe that by the method of types
[9], we have

jTnj � (n+ 1)J�1eBn (A.2)

where B = maxfH(V ): EEE ln V � Rg, H(V ) and EEE being,
respectively, the entropy and the expectation w.r.t. a random variable
V . Thus it remains to show thatB � R+ ln (2 ln J +2). Consider
the following PMF onJ :

F (v) =
1

Cv
; v = 1; � � � ; J (A.3)

where

C
�
=

J

v=1

1=v � 1 + ln J:

Now, let us examine the codeword length function (in nats)

L(v) =
d� log2 F (v)e

log2 e
� ln v + ln C + ln 2: (A.4)

Then, we have

H(V ) �EEEL(V )

�EEE ln V + ln C + ln 2

�R+ ln(2 ln J + 2) (A.5)

completing the proof of Lemma 4.
Consider now sequences(xxx1; � � � ; xxxn) 2 X l, wherel = nN (n a

positive integer),xxxi 2 XN , i = 1; � � � ; n. Now, for a given� > 0,
let

Al =

n

i=1

ln G1
N(xxxi) � Nn(RN + �);

n

i=1

ln G2
N(xxxi) � Nn(�N + �) : (A.6)

Let us consider a two-stage, fixed-rate block code forl-vectors
that operates as follows: if(xxx1; � � � ; xxxn) 2 Ac

l , then the all-zero
codeword is assigned at both levels. Else,(xxx1; � � � ; xxxn) is encoded by
codewords that are formed by concatenating the respective guessing
words at both levels. SinceAl is fully covered by codewords within
distortion levelsD1 andD2, at both levels, respectively, and since,
by the weak law of large numbers, the probability ofAl underP 0



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 1, JANUARY 1999 337

tends to unity asn!1 (whileN is kept fixed), we have constructed
a sequence of fixed-rate block codes that satisfies (8).

To estimate the number of codewords (and hence the rate) at the
first level code, we apply Lemma 4 by settingR = N(RN + �),
ui = G1

N (xxxi), andJ = jYjN , where the latter assignment expresses
the fact that in the finite reproduction alphabet case, the guessing
list size need not exceed the total number of possible reproduction
vectors. Thus we can upper-bound the number of codewords in the
first level by

M1 � (n+ 1)jYj expfn[N(RN + �) + ln (2 ln jYjN + 2)]g

= exp Nn RN + � +
jYjN ln(n+ 1)

Nn
+

ln(2N ln jYj + 2)

N
:

(A.7)

Letting n ! 1 for fixed N , we see that the exponent of this
expression tends toRN + � + ln(2N ln jYj + 2)=N . In the same
manner, one can verify that the total number of codewords at the
second level satisfies

lim sup
n!1

1

nN
ln M2�RN+�N+2�

+
1

N
[ln (2N ln jYj+2)+ln(2N ln jZj+2)]:

Clearly, there exists a constantc (that depends solely onjYj andjZj)
such thatc ln (N + 1)=N upper-bounds theO (log N=N) terms in
the exponents of bothM1 andM2, for all N . Finally, since� is
arbitrarily small, this implies that

(RN + c ln(N + 1)=N; RN +�N + c ln(N + 1)=N; D1; D2)

is an achievable quadruple w.r.t.P 0 by definition.
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Almost-Sure Variable-Length Source
Coding Theorems for General Sources

Jun Muramatsu and Fumio Kanaya

Abstract—Source coding theorems for general sources are presented.
For a source �, which is assumed to be a probability measure on all
strings of infinite-length sequence with a finite alphabet, the notion of
almost-sure sup entropy rate is defined; it is an extension of the Shannon
entropy rate. When both an encoder and a decoder know that a sequence
is generated by�, the following two theorems can be proved: 1) in the
almost-sure sense, there is no variable-rate source coding scheme whose
coding rate is less than the almost-sure sup entropy rate of�. and 2) in
the almost-sure sense, there exists a variable-rate source coding scheme
whose coding rate achieves the almost-sure sup entropy rate of�.

Index Terms—Almost-sure sup entropy rate, general sources, source
coding theorems.

I. INTRODUCTION

Throughout this correspondence, letÂ be a finite set and(Â1;F)
a measurable space, wherêA1 is the set of all strings of infinite
length that can be formed from the symbols in̂A, andF is a�-field
of subsets ofÂ1:

Let � be a probability measure defined on(Â;F): Then, we call
(Â;F ; �) a probability space. We call� a general sourceor simply
a source. It should be noted that� satisfies consistency restrictions.
Traditionally, a source is defined as a sequence of random variables
X̂ � fX̂ng1n=1, but if X̂ satisfies consistency restrictions

x̂ 2Â

Prob (X̂n+1 = x̂
n+1) = Prob(X̂n = x̂

n);

8x̂n 2 Â
n
; 8n 2

we can construct the probability measure�
X̂

satisfying

�
n

X̂
(x̂n) � Prob (X̂n = x̂

n)

where�n
X̂

is a probability distribution onÂn induced by�
X̂
: Then,

�
X̂

can be considered as a general source.
We will prove almost-sure source coding theorems for general

sources, placing no assumption on sources except consistency restric-
tions. To this end, we define the almost-sure sup entropy rate of a
general source�: Assuming that an encoder and a decoder know that
a string is produced by�, we can make the following two statements:

1) There is no variable-length code such that the coding rate of
this code is less than the almost-sure sup entropy rate of the
source with probability1.

2) There exists a variable-length code such that the coding rate
of this code is equal to the almost-sure sup entropy rate of the
source with probability1.
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