330 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 1, JANUARY 1999

Hence,s = |J| = 1 and Hierarchical Guessing with a Fidelity Criterion
e Neri Merhav,Senior Member, IEEERon M. Roth,Senior Member, IEEE
my = (f1( )) {1H =1 and Erdal Arikan,Senior Member, IEEE
m, = (f5)7' (1) = 2
mp = (fél))_1 ((10)) =2 Abstract—In an earlier paper, we studied the problem of guessing
P a random vector X within distortion D, and characterized the best
m =4+(1-1)-2-24+2-1)-24+2-1)+1=38 attainable exponent E(D, p) of the pth moment of the number of
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One of the motivations of the guessing problem in its abowvhown that the guessing exponeht (D, p) as a function ofp,
described basic form, is that a good guessing strategy tells us hamd the source-coding error expondrit(R, D) as a function of
to order the codebook vectors of a rate-distortion block encoder, Bp are a Fenchel-Legendre transform (FLT) pair. We show that this
as to minimize the typical search effort until a satisfactory codewordsult extends to the two-stage case merely in a partial manner: The
is found. As explained in [1], however, the guessing performanteo-stage guessing exponent is lower-bounded by the FLT of the
is an indication to the search complexity only under a very simpt@o-stage error exponent anice versa
search model where the codewords are scanned in a fixed ordefFinally, a general comment is in order: although we confine our
without taking advantage of the full information available from earlieattention, in this correspondence, to strategies with two levels of
unsuccessful search trials or guesses. guessing lists, it should be understood that the results extend fairly

In this correspondence, we take one step towards the improeasily to any fixed and finite number of levels, while the concept
ment of this search model. This is done by examining familigemains the same. Our exposition is limited to the two-level case for
of guessing strategies that are induced by hierarchical, multistagasons of simplicity.
codebook structures, in particular, successive refinement codes (seéhe outline of this correspondence is as follows. In Section |,
e.g., [2]-7]). From the rate-distortion coding point of view, theswe define notation conventions and provide some background on
structures are motivated by progressive transmission applicatidhe problem of interest. Section Il is devoted to the lower bound
since they allow for simultaneous operation at more than one poitit the guessing exponent. In Section IV, we discuss the conditions
in the rate-distortion plane, sometimes without loss of rate-distortié@r the achievability of the lower bound. In Section V, we focus
optimality at either point. From the searching, or guessing aspe6s the successively refinable case. Section VI discusses the relation
considered here, these structures are attractive because they prd@dée two-step source-coding error exponent. Finally, Section VI
considerably more efficient and faster search for the first codewdtgncludes the correspondence.
that satisfies the distortion constraint w.r.t. a given source vector. In
the two-stage case of the successive refinement structure, in order to ||, NoTATION, PROBLEM DESCRIPTION AND PRELIMINARIES
encode a source vectd within a given target per-letter distortion c
level D-, one first seeks, in a first-layer codebook, the first codewogplO
y, within distanceN D, from z (which is a relatively fast search)
and then seeks the first codeward at the target distanc¥ D» from
2 along a second-layer codebook that correspongs.tés a simple
example, if the first-layer code operates at r&{ and each second-
layer code is at ratd?/2, then the total rate i but the number of
guesses, or search trials grows exponentiallg®a8/2, and no2™ *
which would be the case if the code had only one stage.

onsider a memoryless information sourEeemitting symbols
m a finite alphabetY, and let) and Z denote two finite
' reproduction alphabets. Let;: X x Y — [0, co) andds: X X

Z — [0, o0), denote two single-letter distortion measures. e,

YV, and 2" denote theNth-order Cartesian powers ot, ,

and Z, respectively. The distortion between a source veetor

(21, -+, zn) € XY and a reproduction vectgr= (y1, ---, yn) €

YV is defined as

Analogously to [1], our main result in this correspondence, is in _ N o
characterizing the best attainable two-stage guessing exponent for d(w, y) = Zdl(w“ yi)-
memoryless sources, additive distortion measures, and two given =t
distortion levels. We first derive a lower boufid(D,, D2, p) onthe Similarly, for z = (z, - -+, z,), we define
exponent of thepth-order moment of the guessing effort associated N
with the intermediate distortion leveD; and the target distortion da(2, 2) = Zdz(‘“’ zi).

=1

level D . Clearly, if only the target distortion leveD- is specified, it
would be natural to seled?; so as to minimize&z(D1, D2, p). We
are able to demonstrate the achievability Iof( D1, D2, p) under
the assumption that the guesser knows in advancetyihe class
or equivalently, the empirical probability mass function (PMF) o

Throughout the correspondence, scalar random variables will be
denoted by capital letters while their sample values will be denoted
Fy the respective lower case letters. A similar convention will apply

: I ."to random N -dimensional vectors and their sample values, which
the given source vectae. There are several justifications for this

: . . . o . \IHI” be denoted by boldface letters. Thus for examplE, will
assumption. First, in source-coding applications, which serve as the ; - -

. o . L . enote a randon¥-vector (X, ---, Xn), andz = (1, -+-, zn)

main motivation for the two-stage guessing problem, it is conceivahle e RN :

- . 2 . . IS_ a specific vector value Y. Sources and channels will be

that the empirical PMF information is easily accessible to the guessgr

(or the encoder). Secondly, similarly as in the single-stage cas noted generically by capital letters (sometimes indexed by the

o . n%*mes of the corresponding random variables), e.,.0xv 7,
the validity of E»(D:. D2, p) as a lower bound is unaffected by 1V, etc., where these entities denote the set of (conditional or
knowledge of the type class. For the same reason, this setting HI

! . . conditional) letter probabilities, e.gf, is understood as a vector

SErves as an extens_lon of [1]. Finally, and perhaps_r_nost Importantlyy o e probabilitie P(z), z € X'}. For auxiliary random variables
under this assumption, the guesser has the flexibility to choose EJ Y. Z) € X x Y x 2 that will be used throughout the sequel
first-layer distortion leveD; depending on the empirical PMF. This,the’. : t PME will be d ' ted b '
. . : . ) join will be denoted by
in general, gives better guessing performance thdn,ifivere fixed.
We also show that the successively refinable case gives the best Qxvz ={Qxvz(z, y,2),z€ X,y Y, 2 € Z}.
possible guessing exponent, which can be easily expressed in terms N ) )
of the single-stage guessing expondht D, -). The achievability Marginal and condmor_lal PMF's that_ are derlve_d frtim(yz_ will
of E»(Dy, Da, p) without knowing the empirical PMF, however, be dgnoted also b§) with an approprlatfe.subscrlpt, e.g)k\: is thfe
remains an open problem, and we shall elaborate on this later on™arginal PMF ofX, Q. is the conditional PMF of given X

Another aspect of the guessing exponent is its interesting relatigfid ¥» and so on. ForV-vectors, the probability ok € A will
to the source-coding exponent. In the single-stage setting, the souR@-denoted by
coding error exponenk’ (R, D), is defined as the best exponential N
decay rate of the probability of failing to encode a source vector PY (@) =[] (o).
X with a rate? codebook at distortionD. In [1], it has been i=1



332 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 1, JANUARY 1999

The probability of an eventt C X will be denoted byP™ {A}, We now turn to the two-stage guessing problem, which in its

or by Pr{A} whenever there is no room for ambiguity regarding thbasic form, is defined as follows. A memoryless soufteandomly

underlying probability measure. The cardinality of a finite dewill draws a realization: € X% of a random vectotX. For a given

be denoted byA4|. The operatoE{-} will denote expectation w.r.t. intermediate distortion leveD; w.r.t. distortion measurel;, and

the underlying sourcé”. Expectation w.r.t) xy » will be denoted a given target distortion leveD, w.r.t. distortion measurd-, the

by Eqg{-}. guesser first presents a sequence of guegseg,. ---, until the

For a given source vectae € X, the empirical probability first time thatd,(z, y,) < ND;, and then is temporarily scored by

mass function (EPMF) is the vectd?, = {Px(a), « € X'}, where the number of guesses thus f&f (z) = i. In the second stage

Py(a) = Nz(a)/N, Nz(a) being the number of occurrences of theof the guessing process, the guesser provides another sequence of

letter @ in the vectorz. The type clasg’» associated with a given guesses;i, 2,2, - - -, corresponding ta, until the firstj such that

PMF P, is the set of all vectors € XV such thatP?, = P. Fortwo da(, z;;) < N D-, and the score increases by the additional number

positive sequence§in }n>1 and {bx} 1, the notationay > by of guesses? (z) = j. The question is: What is the best one can do

means thatV =" In (an/bx) — 0 asN — oo, and in wordsgax is  in designing the guessing lists so as to minimize the exponential

said to beexponentially equato b . Similarly, any > by means that growth rate of thepth moment of the total nhumber of guesses
. -1 G (X) + G%(X)? Clearly, the approach of using an intermediate
liminf N7 In(an /bx) 2 0 search makes sense onlyAf (D, p) w.r.t. distortion measuréd,

and in words v is said to beexponentially at least as large @s;, IS smaller thank (D2, p) w.r.t. distortion measurey. If di = d>,

or, by is exponentially no largethana, and so on. this simply means thab, > D..
For two memoryless sourcd? and ', let We next provide definitions for the two-stage case which are
analogous to our earlier definitions for the single-stage case. In
D(P'||P) = Z P'(2) In P'(z) (2) addition to the above definition o1 (y. D), for a givenz € ZV,
by P(x) let Sz(z. D) = {2: da(2., z) < ND}.

denote the relative entropy betwe&h and P. For a given random  Definition 4: Given a sourceP, an intermediate distortion level
pair (X, Y’) governed byQxy, let I(X;Y) denote the mutual D, and a target distortion levé)., an admissible two-stage guessing
information betweenX and Y. Let R(D, P') denote the rate- strategyGy comprises aD;-admissible guessing strategjy =

distortion function of P, w.r.t. 4, i.e., {y,, i =1,2,---}, referred to as a first-layer guessing list, with a
; I .
R(D, P') = inf {I(X, Y): — P Eody(X.Y) < D). (3) 9uessing functior@ v (+), and a set of lists{Gn (i), 1 =1, 2, -- -},
( ) 11 { ( » ) QX ’ Q 1( ) ) = } ( ) gj\?(i) — {zi_,', J — 17 2’ }7 Z,] € Z\, i, ] — 1‘ 2’ . referred

In [1] we defined the following terminology for the basic, singleto as second-layer guessing lists, such that fos all
stage guessing problem. We provide here definitions that are slightly

simpler than in [1], but they are equivalent in the finite-alphabet case USz zi;. Do) D Si(y ﬂ [ﬂ S (y,. Dy }

considered here. Let >

A .
S1(y, D) = {=: di(z, y) < ND}. Comment: This set inequality takes into account the fact that
if Gh(z) = ¢, thenz is in Si(y,, D1), but not in any of the
Definition 1: A D-admissible guessing strategy is an ordered |I§pheres associated with earlier examined gueSség,, D), k =

Gy = {y,. 9., -} of vectors inY", henceforth referred to as 1, ---, i — 1. Hence, the second-layer guessing list corresponding to
guessing words, such that ¢ must cover only source vectors with these properties.
S, D) = &7, (4) Definition 5: The guessing function induced by a given admissible

two-layer guessing strategy is given by

Definition 2: The guessing functiorGx (-) induced by aD- Gn(z) = Gy (z) + Ga(2) (7)
admissible guessing strated@yy, is the function that maps each
2 € XV into a positive integer, which is the indexof the first
guessing codeworg; € G such thatd(z, y,) < ND

where G} (+) is the guessing function induced by the associated

first-layer guessing strategys,, and G (z) is the index;j of the

first codewordz;; € Gn (i), such thatdz(z, z,;) < ND-, where
Definition 3: The optimumpth-order single-stage guessing expos = Gk (z).

nent theoretically attainable at distortion levelis defined, whenever

- . Before we turn to characterize the best attainable two-stage guess-
the limit exists, as

ing exponent, we review some known results on the multistage
&(D, p) 2 im i min In E{Gx(X)"} (5) source coding problem [2], [6], [7] (see also [4] and [8]), which are
N—oo N Gy intimately related to the two-stage guessing problem considered here.
where the minimum is taken over all-admissible guessing strate-We first present some definitions associated with two-stage source
gies, and the subscriptl® indicates the fact that the class ofcodes.
single-stage guessing strategies is considered. A rate-R; block code of lengthV consists of an encoder

The main result of [1] is that for a memoryless source, and an N = {12, 2Ny
additive distortion measure;; (D, p) exists and has a single-letter
characterization given by

1, 5 ... oNR N
£.(D, p) = E.(D, p)é n}?@x[pR(D, Py —D(P|IP). (6) gni{1,2, -, 27 5 YO
A refined r. lock f lengthV nsi f
Note thatE: (D, p) depends on the source. However, since the efined ratef?; block code of lengt (B > Ii) consists 0
an encoder
underlying sourceP is fixed, and to avoid cumbersome notation, the ‘ , ,
dependency of; on P is not denoted explicitly. N S {1, 2, ..., VW ROy

and a decoder
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and a decoder Proof: For a given positive integeN, let Gn be an arbitrary

G (1,2, o 2VEI (1,9, . 9N(RemROY | N two-stage guessing scheme with distortion Ie\l_éhsa_nd D,. Simi-_
larly as in the proof of [1, Theorem 1], we begin with the following

A quadruple (R, R, Dy, D) is referred to as arachievable chain of inequalities for an arbitrary auxiliary memoryless sourte

quadruplew.r.t. a sourceP if for every e > 0, 6 > 0, and N

sufficiently large, there exists a lengifi-block code( £, gk ) of rate

not exceedingR, + 4, and a refined length? block code( %, g%) E{GNn(X)"}=Ep

of rate not exceedind?: + &, such that

Pr{d\ (X, gk (fN(X)) < NDy,
Ao (X, g (fN(X), FA(X)) S ND2} >1—e  (8)

N P(X,
Gy (X" [ P,((,(,))
=1 ot

N -
P(X))
pln GN(X) + ; In PIX,)
- i\ B — T /
To characterize the region of achievable quadruples > exp [pEpr In Gn(X) = ND(I'||P)]
(R1, R2, Dy, D2), consider an auxiliary random vectoX. Y, Z) > exp [p max {Ep/ ln G (X)),
_governe_d by a PMR)xy~, and letI(X; Y Z) denote the mutual Ep In G% (X)) - ND(P'||P)] (13)
information betweenX and (Y, Z).

=Ep exp

Theorem 1 ([2], [6], [7]): For a memoryless sourde, two addi- where for the first inequality, we have used Jensen’s inequality
tive distortion measure$; andd-, and two distortion level®); and together with the convexity of the exponential function, and for the
D-, respectively, a quadruple?:, R, D1, D2) is achievable w.r.t. second inequality, we have used the fact that
P if and only if there exists a PMKE) xy ~ such thatQx = P,

I(X;Y) < B, I(X;YZ) < Ry, Eqdi(X,Y) < Dy, and Grn(X) = GN(X) + GN(X) > max {Gy (X)), Gx(X)).
Eqdy(X, Z) < Do. ‘

An immediate corollary [7, Corollary 1] to this theorem states thadince P’ is an arbitrary memoryless source, the proof will be
given Dy, D2, and R;, the minimum achievablé?., denoted by complete if we show that
R(R:, Dy, D2, P), is given bymin I(X; YZ) over all {Qxy~}
such thatQx = P, I(X;Y) < Ry, Eqdi(X,Y) < Dy, and 1 ; 1 9
Eods(X, Z) < D». max {A—TEP/ In Gy (X), A—TEP/ In GN(X)}

> K(Dy, D2, P') —0o(N) (14)
Ill. A L ower BounD

We are now ready to present our main result, which is a single-letig every P’. Now, let us define
characterization of a lower bound on the best two-stage guessing ex-
ponent theoretically attainable. Lét andd, be two given distortion

1 1
measures as above, and 2t and D be two given distortion levels, By =+5Ep In Gy (X) (15)
respectively. For a given memoryless soufee let and
K(Dy, Dy, P') = minmax{I(X; Y), I(X; Z]Y)}  (9) An :A%Ep, In G%(X). (16)

whereI(X; Z|Y') is the conditional mutual information betwegh
and Z givenY, and Intuitively, the functionsL(X) = In GN(X) and Ly(X) =
A , i In G%(X) + In G%(X) are (within negligible terms for largéV)
S={Qxvz:Qx =P, Eqdy(X. Y) <Dy, Eqdz(X, Z)< D} Iegitim(ate) code length zunctions (in nats) for lossless entropy coding
(10) of the locations of the guessing codewords, and so, one would
expect(Rn, Rn + Awn, D1, D>) to be “essentially” an achievable
guadruple in the sense used in Theorem 1. However, this theorem
E2(D1. D2, p) = max[pK (D, D, P')=D(F||P)l.  (11) cannot be used as is to establish such an argument because it deals
with fixed-rate coding, without allowing for variable-length entropy
coding. Nevertheless, in the Appendix, we prove that there exists a
constante = ¢(|Y|, |Z|) such that for allN
Theorem_z_: Let P be_afinite-alphabet me_moryles; sour@ean_d (Rv 4 ¢ 1n(N +1)/N, Rx +Ax +¢In (N 4+ 1)/N, Dy, Do)
d» two additive distortion measure$); an intermediate distortion

Now, let

The following theorem tells us thak, (D, Ds, p) is a lower
bound on the best attainable two-stage guessing exponent.

level, andD a target distortion level. Then is an achievable quadruple w.r®’. This is done by constructing
1 a fixed-rate lengtfi-block code(! >> N) that satisfies (8) with less
liminf = min In E{GN(2)"} > E2(D1, D2, p). (12)  thane!(fin+0-3¢ In(NH1)/N) codewords at the first level, and less than

HANTO5e In (N+1)/N) gacond-level codewords for each first-level

Discussion: The intuitive interpretation of the expression o
K(Dy, Dy, P') is that at each level, the number of guesses IS jging the same sphere covering arguments as in [6, Lemma 1],

. . . \TT(,Y;V) . . A X g X
expor)\elrggl(g[é‘lyi?.t exponentially guesses in the first level o existence of such a code implies that there must exist a PMF
and e ; in the second. Thus the exponential order of th@xy7 € S such that

total number of guesses is dominated by the larger exponent. This

f_codeword .

cln(N+1)

is different from the two-step source-coding problem, where the Ry + N >I(X;Y) a7
codebook sizes of the two levels multiply, and so, their exponents ) !
(the rates) sum up td(X; Y) + I(X; Z|Y) = I(X; Y Z). and, at the same time,

The remaining part of this section is devoted to the proof of Ayt © In (N 41) > I(X; Z|Y) (18)

Theorem 2. N
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and so the optimum PMFQ@xy~ that minimizes the guessing exponent
] g o o o cIn(NV+1) max{I(X;Y), I(X; Z|Y)} might be different than the one that
max {By, An} 2 max{I(X; V), I(X; Z]V)} N minimizes the total coding ratg X; Y)+1(X: Z|Y) = I(X; Y Z).
> 1ng1 max{I(X;Y), I(X; Z|Y)} Thus guessing words may have, in general, different compositions

than optimal rate-distortion codewords.
Unfortunately, we were unable to construct a guessing strategy that
achievesE-» (D1, D2, p) without prior knowledge of the EPMF of
(19) X. The difficulty lies in the fact that the guessing codebooks (at both
levels) for different EPMF’s may partially intersect. Therefore, no
matter how the guessing lists for all EPMF’s are integrated, there is
no guarantee that the first-layer guessing wgrdor a givenz, will
) belong to the guessing codebook that corresponds to the EPMF of
The expression of: (D1, D>, p) strongly suggests that the key . 'consequentlyy may not be covered in the second-stage guessing
to the achievability Osz(Dl.’ D:g, p) Ileslln the two-stage covering jist or may require exponentially more thafi /(1Y) guesses.
lemma (see, e.g., [7]), which is a straightforward extension of the e ertheless, the assumption of prior knowledge of the EPMF of

ordinary single-stage covering lemma [9]. This two-stage COVering s tajrly reasonable as explained in Section I: first, in source-coding
lemma is the following. applications, which serve as the main motivation for the two-stage

Lemma 1 [7, Lemma 1]iIf (R., R2, Dy, D;) is an achievable guessing problem, it is conceivable that the empirical PMF informa-
quadruple w.r.t.P’, then there exist tion is easily accessible to the guesser (or the encoder). Secondly,
) Asetc, ¢ YV such that similarly as in the single-stage case, the validityfof( D1, D2, p)
1 as a lower bound is asymptotically unaffected by knowledge of the
v In |C1] < R1+ o(N) (20) EPMF. This is true because asymptotically, the EPMF information
‘ is of zero rate. For the same reason, this setting still serves as an

_c In(N+1)
N
=K(Di, D>, P') - M
completing the proof of Theorem 2. O

IV. ACHIEVABILITY

and extension of [1].
U Si(y, D1) D Tps. (21) More generally, consider a scenario where instead of one guesser
YEC we have Ly independep_t) parallel guessers (or search machines)
N , N , with guessing function&’y’ (), j = 1, ---, Ly, and the guessing
li) SetsCx(y) C 27,y € (1, such that process stops as soon \as one of the guessers succeeds. Thus the
i In Z [C2(y)| < Ra + o(N) (22) natural relevant performance criterion of interest is some moment of
N yec, the guessing timée {min; Gf{,) (X)?}. Again, it is easy to see that
and the validity of the lower boundE:> (D, D2, p) is asymptotically
unaffected as long aéy = 1, that is,Lx grows subexponentially
T ﬂ U 52(z, D2) 2 Tp- ﬂs‘ (y. D) Vyedl. with N. Thus an asymptotically optimal solution to this problem
2€C3(y) 23) would again suggest that each guesser will be responsible for one

EPMF as described above, and g0y < (N + 1)1~

The construction of’; and {C2(y)} in [7] is as follows: since  In summary, it will be safe to argue that the lower bound

(R1, Ry, D1, Dy) is an achievable quadruple by assumption, the s@h (D, D, p) is achievable provided that we slightly extend the
{Oxvz: Oxyvz €S, I(X;Y)< Ry, I(X:YZ) < Ry} scope of the problem. _ _

Furthermore, this assumption of knowing the EPMF has even
deeper consequences. It provides the guesser with the flexibility to
choose the first-layer distortion levé);, depending on the EPMF.

his in general gives better guessing performance than that can be
achieved ifD was fixed. Specifically, if only the target distortidm
] ’ i i | is specified andD; is a design parameter subjected to optimization,
class associated with),y; then Cx(y;) satisfies (23) with high 61 i the absence of prior information @t , the best performance

proba_lbility._ . ) L is bounded from below by
Using this lemma and its proof in [7], it is easy to see that

E5(D.1, D2, p) is achievable at least when the guesser is informed E3(Ds, p) = lLI)lf E>(Dy, D2, p)
of the EPMF of the input sequenae This is done in the following . , ,

manner. LetQ% . attain K (D,. D2, Px). By applying the proof - lrrjlf max[pK(D1, Dz, P) = D(P{IP)]. - (24)
of Lemma 1 withP' = Px, Qxvz = Q%y», R1 = I(X;Y), and
R, = I(X; YZ) (corresponding td)% ~), one can create a first-
layer guessing lisy,, y,., - -- of size <e™!X*Y) that coversTy, ,
and for eachy,, a second-layer guessing list of size:™ /(i 71") E3*(Dq, p) = max inf[pK (Dy, Do, P’y — D(P'||P)] (25)
consisting of second-layer guessing codewords that c@vern P

Si(y;, D1). Thus regardless of the order of the guessing wordmd clearly,E3* (D, p) < E3 (D2, p).

at both levels, the total number of guess@$ (z) + G () is

exponentially at most V. SUCCESSIVELY REFINABLE SOURCES
NICGY) | NI ZY) = NK(D1, Do, Pa)

is nonempty: first, it is shown that for an§ xyv~ in this set, a
random selection off = /XY vectorsy,, -+, y,,, € Ty,
forming C;, satisfies (21) with high probability. Secondly, for eac
y; € C1, letCx(y,) be a randomly selected set df’ > ¢V /(X:Z1Y)
vectors z;1, --- z; pr» Which, conditioned ony,, are in the type

On the other hand, if’; is known ahead of time, it is possible to
achieve

Obviously, from the viewpoint of rate-distortion source coding,
Averaging the pth power of this quantity w.r.t. the ensemblethe best possible situation is when the rate-distortion function can

of EPMF’s {Px}, we obtain by the method of types [9], theP€ attained at both distortion levels. A source for which this can

. NFEo(Dy, D, ; ) N .
exponential order ofe™">(P1: P20 - The difference between 1Furthermore, the first-level distortion measute may also be subjected

this and the construction of an optimal two-stage code is thatoptimization.
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be achieved is referred to assaccessively refinablsource in the and the second stage then makes guesses on the second half of the
literature (see, e.g., [5]). It turns out, as we show in this section, thadordinates. In this case, we get

the successively refinable case in this rate-distortion coding sense, .. . , e

is also the best we can hope for from the viewpoint of guessing.%‘[GN/'Z()“" o X)) + GN/Q(XN/“‘: e XY

Although this is fairly plausible, it is not quite obvious since the > exp[N(EW(D, p)/2] (29)
Sggisrzng performance criterion is somewhat different than that \%ich means exactly halving the exponent. Thus the earlier proposed

two-stage guessing mechanism has better guessing performance.
However, the difference between the two approaches vanishes as the
number of hierarchy levels grows.

To show this, we begin with a simple lower bound B&* (D2, p)
in terms of the single-stage guessing exponent funckiphD-, ).

Lemma 2: For every memoryless sourde
VI. RELATION TO THE TWO-STAGE

ES* (Do, > Ei(Dy, p/2).
2 (Dz. p) 2 Er (D2, p/2) SOURCE CODING ERROR EXPONENT

Proof: Consider now a situation where boff; and D, are specified
. . . . e .g. i i ified distortion
K(D,. D,. P') = A I(X: V). I(X: YZ) — I(X: Y (e.g., good guessing exponents are req_wred at two speci
(Dr, Dz, I7) gt (X3 ), I(X; ) (X5 Y} levels), and again, the guesser knows in advance the EPNMAE drf
> mqin max{I(X;Y), I(X; Z) - I[(X;Y)} this case, as we already proved, the best guessing exponent achievable
- e xr , . is E2(D1, D2, p). We will now relate this to the two-stage source-
2 et max{I(X; V), R(Dz, P') = I{X; ¥)} coding error exponent, characterized in [7].

> EB(D P (26) For an achievable quadrupleR:, R, D, D), the two-stage
= ’ source-coding error exponefit( R, R», D1, D) is defined as the
Since the rightmost side is independentff, then best attainable exponential decay rate of the probability of the event
[ 1 el r
inf K(Dy. D3, P') > LR(D2, P') @7) B ={a:di(x, on(fx(2)) > NDi,
! or dz(z, g% (fx(2), fX(2))) > NDa}.
and so .
p ) Kanlis and Narayan [7] have shown that
*% | N 4 — P
BS"(Ds, p) > max | S R(Dz, P') = D(P'||P)] = B1 (D2, ) F(R\, Ry, D1, D) = min D(P'||P) (30)
(28)

where the minimum is over the set

completing the proof of Lemma O K(Ri, Ra, Dy, Dy)
1s 2y 1 2

As we show next, in the successively refinable case, this lower ={P':R(Dy. P') > R, or R(Ry, Dy, D5, P') > Ry}

bound is met.
) ] where R(R,, Di, D>, P') is defined as in the last paragraph of
Lemma 3: If the distortion measures; andd- are such that every ggaction |I.

memoryless sourcE’ is successively refinable for evey; together | ¢ Ro(D:, Ds) be defined as the solution to the equation
with the given target distortion levdD,, then for every memoryless ,
sourceP, E3*(D2, p) = Ei(Do, p/2). R=R(R, Dy, D:, P)- R

Comment:If d, = d. is the Hamming distortion measure, thewith E being the unknown, provided that a solution exists. If a
condition of Lemma 3 is met. Another case is whéfeandd, are Solution does not exist, i.e., if

arbitrary distortion measures ardgh = 0. ' : / ’
. - R(D,, P 0.5R(R(D,, P'), D\, D>, '),

Proof of Lemma 3:Consider a guesser that is informed of the (D1, P) > 0.5 R(R(D: )» Di, Dz )

EPMF P, of 2, and choosed; = D:(F:) such that then Ro(Dy, Do) £ 0. It is easy to see that there is at most one
R(D1, P.) = R(Ds, P.)/2. solution to this equation. Now
E>(Dy, Do,

Since P, is assumed successively refinable, the quadruple 2(Dr, D p)_ .
(R(Ds, P:)/2, R(Da, Pr), Dy, D) is achievable w.r.tP,, and so = max min [p max{I(X;Y),
there exists a PMB) xy z forwhichQx = Pr, Eqdi(X,Y) < Dy, I(X:YZ) - I[(X: Y)} = D(P'||P)]

Eqdy(X.Z) < Dy, andI(X;Y) = I(X; Z|Y) = R(Ds. P)/2.

Thus for every sequencer, G (z)<e™"(P2P2)/2 and so, 2 max win(p R>}{‘;§;y) max {R, [(X: YZ) - R}
E3* (D2, p)=FE1(D2,p/2), completing the proof of Lemma 3.0 —D(P'||P)]

Discussion: Intuitively, the successively refinable case reflects a ; ,
situation where for eactPx, the guessing complexity is divided z H}%X[p R>H1(Ibfl)y,) max{R, R(R, D1, D2, P') — R}
evenly between the two levels. More generally, ih-atage guessing — D(P'||P)]

system this would suggest that for a target distortion ldve| the

!
best guessing exponent B (Dy,, p/k), which by the convexity of = max{p max {R(D1, P'), Ro(D1, D2)}

E, in p [1], cannot be larger thaB' ( Dy, p)/k (with strict inequality — D(P'||P)]
unlessR(Dy, P) = maxp R(Dy, P)). Returning to the case = 2, . ' B D(PIP
this means that the effect of two-stage guessing, in the successively e R<W{H(Dfﬂ¥jHO(DLDZ)}[” - DEIP)
refinable case, is even better than halving the exponent. - s [oR — D(P'||P)]
For the sake of comparison, consider another form of a two-stage - }}>p0 PIEK(R.2E, Dy, Ds) p
guessing list, where the first stage makes guesses on théeViiest = sup[pR — F(R, 2R, D1, Dy)]. (31)

coordinates ofX’ (until distortion D is achieved on these coordinates) R>0
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Thus for fixedD andD-, the guessing expondiit(D, D-, p) asa EPMF. iii) Characterize the optimum performance for classes of more
function of p, is lower-bounded by the one-sided Fenchel—Legendsmphisticated guessing/searching mechanisms (e.g., take advantage of
transform (FLT) of (R, 2R, D;, D-) as a function ofR. In [1], we the full information carried by unsuccessful guesses thus far). These
established an analogoesjuality relation between the single-stageissues are currently under investigation.

guessing exponent and the FLT of the single-stage source-coding

exponent. Here, we cannot claim that the inequality is met with
equality, in general. As for the inverse relation, note that (31) is
equivalent to the statement

APPENDIX

In this Appendix, we prove that for some constanthat depends
only on the reproduction alphabet sizes, the quadruple

Es (D4, Do, F(R, 2R, Dy, D) > pR, , i}
2( 1, Do, p) + F(R, 2R, D4 2)_[’3 Yp>0 RZ;Z)) (RN—l—cln(N-i-l)/N./ RN‘FAN+0111(17\’T+1)/A'7Disz)
) is achievable w.r.tP’. We begin with the following simple auxiliary
which also means that result.
F(R. 2R, D1, D2) > sup[pR — E2(D1., D2, p)]. Lemma 4: Let 7 = {1, ---, J} (J a positive integer), and for a

>0
. . ’ ) . given positive integen, let
It should be pointed out that in [1] equality for &t is not guaranteed

either. While the right-hand side is clearly a convex function of
R, the function F'(R, 2R, Dy, D>) is not necessarily so. This is
demonstrated in the following example.

T ={(ur, -+, un) € T": Z In u; < nR}
i1

for some positive reaRR. Then
Example: Let P be a binary memoryless source with letter proba- 1 )
bilities p and1 — p, and letd, = d» be the Hamming distortion 7] < (n+1) exp {n[R + In (2 In J +2)]}.
measure. Leti(p) = —plnp — (1 — p)In(l — p) denote the Proof of Lemma 4:First, observe that by the method of types
binary entropy function. Since?(D, P') = h(p') — h(D) and [9], we have
binary sources with the Hamming distortion measure are successivel]y
refinable [5], then in this case

K(R, 2R, Dy, D>)
= {P': h(p') > min{R+ h(D1), 2R+ h(Ds)}}. (33)

(A1)

|T,] < (n+ 1) 71" (A.2)

where B = max{H(V): ElnV < R}, H(V) and E being,
respectively, the entropy and the expectation w.r.t. a random variable
V. Thus it remains to show th@ < R+ In (2 In J + 2). Consider

Now, let R* = h(D1) — h(Dz), assume thak(p) < R* + h(D1), the following PMF on7:

and define 1
, . _. F(v) = —, v=1---,J (A.3)
U(t) 2 min |z In Ly (1—=2)In 1= (34) Cv
z: h(z)>t P 1- P where

which forp < 1/2, ¢t > h(p), can be also written as AL
. . h(t) 4 1—h7 () C= > 1v<l+lnl

Ut)=h " (t)ln ——=+4+ (1=~ (t))In B (35) v=1

P _

Now, let us examine the codeword length function (in nats)
whereh ! (-) is the inverse of.(-) in the range where the argument

of h(-) is less tharl /2. Clearly,U(¢) is a monotonically increasing, L(v) = [_1(1)&7“”)1 <lnv+lnC+lIn 2. (A.4)
differentiable function in the above range, and 1&(t) denote the 082 €
derivative. Now, it is easy to see that Then, we have
F(R, 2R, Dy, D) =U(min{R + h(D1), 2R + h(D3)}) H(V)<EL(V)
:{U(QR—I—h(DQ)) R< R~ (36) <ElhV+IhC+In2
U(R+MDy) R>R. <R+ (2l J+2) (A5)

This means that the derivative 6% R, 2R, D1, D>) w.r.t. R, which completing the proof of Lemma 4.

is positive, jumps atR = R* from 2U'(R* + h(D1)) down to
U'(R* + h(D1)), which, in turn, means thaf'(R, 2R, D:, D-)
cannot be convex in this case.

Consider now sequenceés:, ---, x,) € X', wherel = nN (2 a
positive integer)x; € XN, i=1,---, n. Now, for a givens > 0,

let

VILI.

We have derived a lower bound on the two-level guessing expo-
nent, and discussed the conditions for its achievability. It has been
also shown that the successively refinable case is the ideal case
from the viewpoint of guessing as well as coding. Finally, we have
shown that the two-level guessing exponent can be lower-boundest us consider a two-stage, fixed-rate block code faectors
in terms of the two-level source-coding error exponent function witthat operates as follows: ifz1, ---, #.) € A7, then the all-zero
R> = 2R,. However, this bound is not always tight. codeword is assigned at both levels. Elss,, - - -, ) is encoded by

Some open problems for future research are the following: ¢pdewords that are formed by concatenating the respective guessing
Devise a two-level guessing strategy that is not informed of thweords at both levels. Sincd; is fully covered by codewords within
EPMF but still attainsF> (D1, D2, p). ii) Alternatively, find a tighter distortion levelsD; and D-, at both levels, respectively, and since,
lower bound that can be achieved in the absence of knowledge of thethe weak law of large numbers, the probability 4f under P’

CONCLUSION A = {Z In Gh(z:) < Nn(By +6),

=1

> In GR(@) < Nn(An + 5)}. (A.6)
i=1
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tends to unity as — oo (while NV is kept fixed), we have constructed Almost-Sure Variable-Length Source

a sequence of fixed-rate block codes that satisfies (8). Coding Theorems for General Sources
To estimate the number of codewords (and hence the rate) at the

first level code, we apply Lemma 4 by settidy= N(Rx + 6), Jun Muramatsu and Fumio Kanaya

u; = Gy (x:), andJ = | V|, where the latter assignment expresses
the fact that in the finite reproduction alphabet case, the guessing )
list size need not exceed the total number of possible reproducti bstract—Source coding theorems for general sources are presented.

t Th b d th b f cod ds i or a source g, which is assumed to be a probability measure on all
vectors. us we can upper-boun € number Of codewords In r?ngs of infinite-length sequence with a finite alphabet, the notion of

first level by almost-sure sup entropy rate is defined; it is an extension of the Shannon
N entropy rate. When both an encoder and a decoder know that a sequence
My <(n4+DPT exp{n[N(By +8) + In 2 1In Y] +2)]} is generated by, the following two theorems can be proved: 1) in the

almost-sure sense, there is no variable-rate source coding scheme whose
} coding rate is less than the almost-sure sup entropy rate gi. and 2) in

)/7

)/7

+2)

Nln(n 4+ 1) n In(2N In

)
Ry 4o+ Nn N

the almost-sure sense, there exists a variable-rate source coding scheme
whose coding rate achieves the almost-sure sup entropy rate pf

(A7)

= exp{Nn
Index Terms—AIlmost-sure sup entropy rate, general sources, source
coding theorems.

Letting n — oo for fixed NV, we see that the exponent of this
expression tends t®x + § + In(2N In |Y| + 2)/N. In the same
manner, one can verify that the total number of codewords at the |. INTRODUCTION

second level satisfies Throughout this correspondence, Jétbe a finite set andL A, F)

a measurable space, whe#s® is the set of all strings of infinite
length that can be formed from the symbolsdn and.F is as-field
1 ; ) of subsets ofA>.

+ o ln N I [V[+2)+ (2N In | 2]+2)]. Let 1 be a probability measure defined oA, 7). Then, we call

(A, F, ) a probability space. We call a general sourceor simply

Clearly, there exists a constan{that depends solely d3’| and|Z|) a source It should be noted that satisfies consistency restrictions.
such thate In (N + 1)/N upper-bounds thé€ (log N/N) terms in  Traditionally, a source is defined as a sequence of random variables
the exponents of botldf; and Mx, for all N. Finally, sinces is X = {f(n};“:l, but if X satisfies consistency restrictions
arbitrarily small, this implies that

lim sup% In Mo<Rnv+An+26

n—oc NI

> Prob (X" =3"") = Prob (X" =4"),
(Rv+cln(N+1)/N, Rn + Ay + ¢ In(N + 1)/N, Dy, D5) antlcA
vit e A", VYneN
is an achievable quadruple w.ri®’ by definition.
we can construct the probability measyre satisfying
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