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Choices of Expansion and Testing Functions 
for the Method of Moments Applied to 

a Class of Electromagnetic Problems 
M. I. Aksun, Member, IEEE, and Raj Mittra, Fellow, IEEE 

Abstract-It is well known that the choice of expansion and test- 
ing functions plays an important role in determining the rate of 
convergence of the integrals associated with the moment method 
matrix, and that an improper choice can lead to erroneous results. 
The main objective of this paper is to critically examine this 
convergence issue and to provide criteria for the choice of these 
expansion and testing functions. The question of whether these 
functions need to satisfy the Holder condition is also investigated 
and the convergence behavior of the integrals involved in the 
spatial and spectral domain moment method is discussed for some 
representative expansion and testing functions. 

I. INTRODUCTION 
HE METHOD of moments (MOM) [I], which is one T of the most commonly used numerical techniques for 

solving electromagnetic problems, is based upon the transfor- 
mation of an operator equation into a matrix equation. While 
the computation of the matrix elements in the MOM can be 
carried out relatively efficiently when the medium involved is 
free-space, the introduction of a substrate material backed by 
a ground plane can render this task extremely time-consuming 
because of the need to compute the Sommerfeld’s integrals 
appearing in the Green’s functions. One approach to circum- 
venting this difficulty is to work in the spectral domain [2 ]  
where the closed-form expressions for the Green’s functions 
can be obtained in a relatively straightforward manner [3]. 
Another solution to this problem has been recently developed 
[4]-[6] in the spatial domain where the Green’s functions cor- 
responding vector and scalar potentials were cast into closed- 
forms. Both the spatial and spectral domain approaches have 
been successfully applied to many electromagnetic problems 
involving microstrip-type structures. However, the questions 
pertaining to the choice of the expansion and testing functions 
in formulating the MOM matrix have not been addressed 
in much detail except in the context of linear spaces and 
operators strictly from a mathematical point of view [7], 
[8], and briefly in connection with the spectral Galerkin’s 
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method [9]; consequently, there are still some open questions 
regarding the use of certain expansion and testing functions 
for the operator equations that are used in electromagnetic 
problems [lo]-[13]. The purpose of this paper is to show 
mathematically that there is an admissible class of functions 
for expansion (testing) functions depending upon the choice 
of testing (expansion) functions. If one choose these functions 
such that they fall outside of the admissible class, the integrals 
involved in the application of the MOM can be divergent and 
the results can be erroneous. Additionally, the issues involving 
the slow convergence of the integrals often encountered in the 
spectral domain, and the handling of discontinuous expansion 
functions at junctions or comers, and in the source excitation 
region, are also addressed. 

We begin by discussing briefly, in Section 11, the application 
of the moment method in the spatial and spectral domains and 
by deriving the expressions for the MOM matrix elements that 
tum out to be improper integrals. The convergence of these 
integrals is studied for different combinations of expansion and 
testing functions in both the spatial and spectral domains. This 
is followed in Section 111, with a discussion on the convergence 
behavior of the integrals involved for a representative choice 
of expansion and testing functions. 

11. CONVERGENCE CRITERIA FOR THE 
INTEGRALS OF THE METHOD OF MOMENTS 

Consider, for the sake of illustration, a general microstrip 
structure shown in Fig. 1 where it is assumed that the substrate 
layer extends to infinity in the transverse directions. Let the 
thickness and the permittivity of the substrate be denoted by d 
and e,, respectively. Although the Green’s functions discussed 
herein pertain to the geometry shown in Fig. 1, the comments 
appearing below apply to more general geometries as well. 

A .  Convergence Study in the Spatial Domain 

scalar and vector potentials, 4 and A, respectively, 
Let us begin by representing the electric fields in terms of 

E = -jwA- V4 

The vector and scalar potentials can, in turn, be represented in 
terms of convolution integrals, involving the surface current 
density J on the patch, as 
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Fig. 1. A general microstrip structure. 

where GA is the dyadic Green’s function of the vector 
potential and G, is the Green’s function of the scalar potential. 
From (2), the tangential electric fields on the plane of the patch 
( z  = 0) can be written as 

E, = - jwG;, * J, 
1 8  

JW ax + --[G, * V . J ]  ( 3 4  

E, = - jwGtY * Jy  
1 8  

.lw dY 
+ ---[G, * V .  J ]  

It may be noted that the spatial domain Green’s functions, 
appearing in (3), have algebraic singularities of the first order; 
that is, G - O(l/ lr  - r’l) as r + r’, where r and r’ are the 
observation and source coordinates, respectively. 

To solve for the surface current density on the patch by the 
MOM, the first step is to expand the surface current densities 
by a linear combination of the expansion functions as follows: 

Jx  = An Jxn(x ,  Y) + Jxs (x ,  Y) ( 4 4  

upon the geometry under consideration. Next we substitute 
(4) into (3) and test the resulting equations using the functions 
T,, and Tym and a suitable definition of inner product, e.g., 

(f,  9) = J J &E dY f*(x, Y) 9(x, Y) ( 5 )  

The process of testing could be interpreted as satisfying the 
boundary conditions on the tangential electric fields on the 
patch in the integral sense, provided that the domain of the 
testing functions covers the entire patch. Since the testing 
functions and the tangential electric fields are finite on the 
complementary regions, the left-hand sides of (3a) and (3b) 
become zero after the testing, and the following algebraic 
equations for the coefficients A, and B, are obtained for 
each m in (6a) and (6b) at the bottom of the page, where 
J, = Jxsz + Jysy.  

Note that some of the inner products in (6) contain dif- 
ferentiations that result in higher order singularities in the 
corresponding integrands than those that do not contain these 
derivatives. Thus, it will be sufficient to study only the terms 
with the derivatives in order to ensure the convergence of 
all the integrals. In general, each inner product term in the 
spatial domain is a five-dimensional integral: one of these 
is associated with the Green’s function itself; two of them 
are convolution integrals; and, the other two are the inner 
products defined in (5). Since the numerical integration of the 
five-dimensional integrals is very expensive, the convolution 
over the Green’s function and the expansion function is often 
transferred over to the expansion and testing functions and 
the convolution is performed analytically. This transfer of 
the convolution requires an interchange of the order of the 
integrals, which is possible if the original integral is uni- 
formly convergent. Here, we will use the following sufficiency 
criterion [14] for the uniform convergence of the integral: 

(7) 
A 

IF(x1, x2, .. . ,x,;x:,x;,. .. ,4)1 < 
n where F(x1,22, . . . , 2,; xi, xi, . . . , x;) is the integrand given 

in a bounded domain; A is a constant; a > 0; and T denotes 

The issue regarding the choice of the expansion and testing 
functions can now be discussed by investigating the elements 
of (6a) and (6b). Since the strongest conditions on the expan- 
sion and testing functions for the convergence of the integrals 

J y  = B n  Jyn(x7 Y) + Jys(x, Y) (4b) 

where A, and B, are the unknown coefficients of the ex- 
pansion functions J,, and J,,, and Jxs and Jys are the 
source representations. These expansion functions can be 
subsectional, traveling-wave, or entire-domain type depending 

n the distance between (21 , x2 , . . . , xn )  and ( x ~ , x ~ , - . . , x ~ ) .  
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would be set by the term containing the double derivatives 
with respect to the same variable, only the integral containing 
J,, and Txm will be studied in detail. This integral is: 

where D(T) and D ( B )  represent the domain of the testing and 
expansion functions, respectively, and the second term in the 
inner product is the tangential derivative of the scalar potential. 
If one were to calculate the derivative of the inner double 
integral in (8), which is a convolution integral, the derivative of 
the expansion function in this integral has to satisfy the Holder 
condition [15]. This condition is somewhat stronger than 
the continuity condition but weaker than the differentiability 
condition [16]. However, in the MOM, we are interested in 
calculating the inner product of the derivative of the scalar 
potential with a testing function. If the testing function is at 
least piecewise continuous, we can use integration by parts to 
transfer the differentiation of the scalar potential over to the 
testing function as follows: 

(9) 

where the expression in the braces is evaluated at the bound- 
aries of the testing functions, denoted here by f l (T) .  Once 
this is done, the restriction on the charge density to satisfy 
the Holder condition can be lifted. The step involving the 
integration by parts must be justified, because the piece- 
wise differentiable expansion functions cannot ensure the 
existence of the tangential derivative of the scalar potential. 
In accordance with the discussion presented in [17], the 
existence in Riemann sense of either one of the integrals 
in (9) also implies the existence of the other. The integral 
in the right hand side of (9) is guaranteed to satisfy the 
Riemann’s integrability condition if the testing functions are 
at least piecewise continuous functions in the direction of 
differentiation while the expansion functions are piecewise 
differentiable or smoother. 

Similar arguments can be applied to the second inner prod- 
uct term in (6b) where the differentiations are with respect to 
y. Note also that the other terms which have derivatives along 
x as well as y directions do not require as strong a condition 
on the expansion and testing functions as do the terms that 
contain both of these differentiations in the same direction. As 
a consequence, the expansion functions for the current density 
should be chosen at least from a class of piecewise continuous 
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functions and the testing functions should in turn be selected 
from piecewise differentiable functions, or vice versa. These 
conditions apply to these functions along the differentiation of 
the scalar potentials. This, in turn, implies that 

where F, (z) , G, (y) E class of piecewise differentiable func- 
tions and Pz(x),R,(y) E class of piecewise continuous 
functions, or vice versa. However, the functions can have 
square-root singularities in the direction orthogonal to that 
of the differentiation to model the singular behavior of the 
edge current, ie., Gx(y), Fy(x),Rx(y) and Py(x) E class of 
piecewise continuous functions with or without square-root 
singularities. The requirements on the testing and expansion 
functions can be relaxed by using higher order differentiable 
functions. For instance, if the chosen expansion (testing) 
functions are twice-differentiable, then piecewise continuous 
testing (expansion) functions or even impulse distributions are 
sufficient to ensure the convergence of the integral. Among 
the commonly used expansion and testing functions, piecewise 
sinusoids (PWS) and triangle functions are piecewise differ- 
entiable functions, pulse functions and any type of junction 
expansion functions, e.g., half triangle, half PWS, etc., are 
piecewise continuous functions. 

It is essential to use piecewise continuous expansion func- 
tions, with finite discontinuities in the direction of the differen- 
tiation, for the geometries that have junctions, load or source 
connections in the domain of interest [ 181-[20]. For these 
cases, the impulse functions generated by the differentiations 
of the expansion functions at the point of discontinuities should 
not be included in the calculations, because the divergence 
of the current in (3) must be finite at these junctions. This 
could be interpreted simply as requiring the continuity of the 
current at the junctions. This is tantamount to saying that the 
discontinuity of the current in one direction must equal to the 
negative of the discontinuity in the other direction such that 
their derivatives cancel each other at that point. 

B .  Convergence Study in the Spectral Domain 
The tangential electric field on the plane of the patch due 

to the patch currents Jx and JY can be written, in terms of the 
electric field Green’s functions, as convolution type coupled 
integral equations as follows: 

E,(z, y >  z = 0) 
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where the Green’s function Zij is the contribution of a unit 
j-directed electric current element at the microstrip to the 
electric field Ei at the microstrip plane. In the spectral domain 
formulation, these equations are Fourier transformed to yield 
the following algebraic equations 

The electric field Green’s functions in the spectral domain 
can be readily obtained by using the immittance approach 
described by Itoh [3]. The application of the moment method 
starts with the expansion of the current densities as in (4), 
substitution of the Fourier transforms of these expansion 
functions in (12) followed by the testing with the Fourier 
transforms of the testing functions. Following this procedure 
one arrives at the following algebraic equations: 

n 

n 

where the inner products are defined over an infinite domain. 
The convergence of the integrals is guaranteed provided that 

whereF(lcl,kz,...,Ic,) is theintegrand, k = & + k ; + . . . + k :  
and 6 > 0. 

A knowledge of the leading terms of the asymptotic ex- 
pansions of the Green’s functions, expansion functions and 
testing functions is needed for establishing the convergence of 
the inner products in (13). The leading terms of the Green’s 
functions are obtained from (A1)-(A6) in Appendix A and 
are given by 

As for the expansion and testing functions, it can be shown 
that they have the general behavior of the form; 

The convergence of the inner products in (13) can now be 
investigated with a view to defining the minimum of the orders 
of kx and Icy. Note that the leading terms of the expansion and 
testing functions for large spectral variables have been chosen 
for the worst case conditions because their numerators have 
been assumed to be constant. We observe, for instance, that 
the Fourier transform of a pulse function is sin ( I c ) / I c  whose 
integral over an infinite domain is convergent whereas that of 
l / k  is divergent. Retuming to the inner products in (13), the 
convergence of the integrals are investigated as follows: 

i) 
f m  

( T x m ,  Z x z j x n )  + j d k x  d k y  

-m 

’(&) J&’(&) 
The convergence of the above integral is guaranteed if one 
chooses a + y > 3 and p + q > 1. Some comments on 
the class of expansion and testing functions which satisfy the 
above criteria are given later in this section. 

ii) 

( p x m ,  z x y j y n )  + dkxdlcy 
-W 

’(&) JZo(&) 
For this integral, the conditions (Y + v > 2 and p + T > 2 must 
be satisfied in order for the integral to converge. 

Similarly, by considering the other two inner products in 
(13b), we can derive the conditions on the exponents of the 
spectral domain variables I C x  and Icy. These are: iii) L + y > 2 
and R + q > 2, iv) L + v > 1 and K. + T > 3. The conditions 
given above are sufficient for the convergence of the integrals. 

At this point it would be useful to list the asymptotic 
behaviors for large Ic of a number of representative expansion 
and testing functions frequently employed in the moment 
method solutions to electromagnetic problems of the type 
being considered in this paper: 

F{b(z)}  + ‘(1) 
F{functions with square-root singularities} 5 O( Jo(k)) as 

k + m  
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F{piecewise continuous functions} 5 O ( l / k )  as k + cc 
F{piecewise differentiable functions} 5 O(1/k2) as k + 

F{piecewise twice-differentiable functions} 5 O( l / k 3 )  as 
k - + m  

where F denotes the Fourier transform and k is the spectral 
domain variable. It should be emphasized that there exists 
the possibility that some of the functions in the same class 
might decay slightly faster than the others. As an example, 
we mention the triangular function, which is a piecewise 
differentiable function, and which has the Fourier transform in 
the form of sin2 ( k ) / l c 2 .  As mentioned before, the worst case 
behaviors in the spectral domain are considered here so that 
the convergence for every function in a given class is assured. 

For the specific geometry, one can refer to the convergence 
criteria and the classification of functions given above in order 
to facilitate the choice of the expansion and testing functions. 

co 

III. RESULTS AND DISCUSSIONS 

In this section we discuss several choices of the expansion 
and testing functions from the point of view of convergence. 
We draw from the pool of commonly used expansion and 
testing functions in electromagnetic problems, viz., the im- 
pulse, pulse, triangular, piecewise sinusoid, and entire domain 
functions. A number of different combination of expansion 
and testing functions are considered in the following: 

(i) Both J,  and J ,  represented by pulses in x as well as y 
directions: Since the pulse is a piecewise continuous function, 
it can not satisfy the Holder condition. The current expansion 
functions J,, and J,, are represented as [ P ( z )  .P(y)], where 
P( .) denotes the pulse function. Both of the differentiations in 
the second inner product term in (6a) should be transferred to 
the testing function, implying that the testing function should 
be selected at least from the group of piecewise differentiable 
functions with respect to x. While the transfer of the differ- 
entiation on the expansion function may not be strictly valid 
in the classical sense, it is nonetheless legitimate to cany it 
out in the sense of distributions. From the examination of 
the third inner product in (6a), the testing function should at 
least be a piecewice continuous function in y. In summary, the 
testing functions Txm and TYm could be triangular functions 
along their polarizations and pulse functions in the orthogonal 
directions of their polarizations. Although it might appear that 
this choice of the expansion and testing functions does no1 
yield convergent integrals in the spectral domain the integrals 
are actually convergent albeit slowly. This is because the 
Fourier transforms of the pulse and triangular functions are 
proportional to sinc(k) and sinc 2 ( k ) ,  respectively, and these 
are less than or equal to l / k  and l / k 2  for 0 5 k < M, 
(sinc ( k )  5 l / k ,  sinc2(k) 5 l / k2 ) .  The convergence of the 
integrals in the spectral domain can be improved by using the 
following expansion and testing functions. (ii) Both J ,  and Jy 
represented by roof-tops: A roof-top consists of a triangular 
function in the direction of polarization and pulse function 
in the orthogonal direction to the polarization of the current. 
With this choice, the convergence is sufficiently rapid in the 
spectral domain and it is not necessary to transfer the inner 
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Fig. 2. Convergence of a spectral domain integral for a roof-top expansion 
function and three different testing functions; (1) [Pulse(z) h l s e ( y ) ] ;  (2 )  
[Triangle (I) Pulse(y)]; (3) [(pulse(z)* Triangle(cc)) Pulse(y)]. Vertical 
axis is loglo l I ( k z ) / I ~ l  where I is defined in (17) and 10 = I ( k , )  with 
0 5 k ,  5 Ak,. 

differentiations to the testing functions in the spatial domain. 
There is, however, a disadvantage in using the higher order 
differentiable functions, namely their Fourier transforms are 
oscillatory. This could be seen by examining the pulse and 
triangular functions in the spectral domain. The use of the 
higher order differentiable functions as expansion or testing 
functions helps decrease the range of the integrations at the 
cost of increasing the complexity and computation time for 
the integrands. We will now illustrate the convergence of 
the following moment integral for three different choices for 
testing functions 

I = lw lw dk, dk, Tzm(k,,  k,) 

where 

j z n ( k x ,  k,) = F{Triangle(z) Pulse(y)) 
= s i x 2  ( k X / 2 )  sinc (k,)  

1. F{Pulse(z) Pulse(y)} 
= sinc2 (kz/2) sinc (Icy) 

2 .  
= sinc2 ( k X / 2 )  sinc (IC,) 

3. F{[Triangle(z)* Pulse(z)] Pulse(y)} 
= s i x 2  ( k ,  /4) sinc ( I C ,  /2) sinc( k,) 

3{ Triangle( z) Pulse( y ) } 

Fig. 2 shows the normalized contribution of integral I (17) on 
each sub-interval Ak, of k,, until it becomes less than lop5. 
We observe that the integration limit reduces significantly as 
one goes from the testing function 1 to 3, viz., from 6.6 CPU 
sec to 1.2 CPU sec on the Cray Y/MP. (iii) An entire do- 
main expansion function with a square-root singularity: Note 
that the square-root singularity appears not in the direction 
of the differentiations but in the orthogonal direction, (6). 
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Consequently, the convolution integrals are still integrable 
because the order of singularity is less than 2 which is the 
criterion for the uniform convergence of the two-dimensional 
integrals (7). For this case, the differentiations in front of 
the convolution integrals are transferred over to the testing 
functions which might also have square-root singularities. 
Since the convolution integral of a Green’s function and a 
function with a square-root singularity can yield a function 
which also has a square-root singularity, the total integrand can 
be a first-order singular function whose integral is convergent 
in a two-dimensional space. Hence, using a function which has 
a square-root singularity in the directions that are orthogonal 
of the direction of the differentiation as expansion and testing 
functions in (6) results in a convergent inner product. 

It should also be noted that the point matching (impulse test- 
ing functions) can not be used unless the expansion functions 
are twice-differentiable in the variable of the impulse. The 
variation of the expansion function in the orthogonal direction 
should be chosen according to the variation of impulse in that 
direction, which could be decided by examining (5) in the 
spatial domain or given criteria in the spectral domain. 

IV. CONCLUSIONS 
The choice of the expansion and testing functions is rather 

crucial in the MOM solution, because this choice plays an 
important role on the convergence of the integrals and, con- 
sequently, on the results. Through a thorough examination 
of the convergence question we conclude that the classes of 
functions from which the expansion and testing functions are 
chosen must satisfy the following criteria: (i) In the direction 
of the polarization of the current, the sum of the order of the 
differentiability of the expansion and testing functions must 
be equal to or greater than one; (ii) in the orthogonal direction 
of the polarization of the current, any piecewise continuous 
function or even functions with singularities of the order of 
less than one are admissible. 

APPENDIX A 

The Green’s functions in (12) were obtained by using the 
spectral domain immittance approach [3] as 

Z,, = Ze cos2 + Z h  sin2 /cg (All 
Zzy = (Ze - Z h )  sin /ce cos /ce 

Zyx = (Ze - Zh)sin /ce cos /ce 

Z,, = Ze sin2 ~ c g  + Z h  cos2 /cg 

(A2) 
(‘43) 
(A41 

where 

8 = tan-’ (k) 
1 i = TM for e 

& + Y i l c o t h y 1 d i  = T E f o r h  
2: = 

The TE and TM wave impedances are defined as 

and the complex wavenumbers are 

in the air and substrate, respectively. 
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