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Numerically Efficient Analysis of 
Planar Microstrip Configurations 

Using Closed-Form Green’s Functions 
Ikmo Park, Raj Mittra, Fellow, IEEE, and M. I. Aksun 

Abstract-An efficient technique for the analysis of a general 
class of microstrip structures with a substrate and a superstrate 
is investigated in this paper using newly-derived closed-form 
spatial domain Green’s functions employed in conjunction with 
the Method of Moments (MOM). The computed current distri- 
butions on the microstrip structure are used to determine the 
scattering parameters of microstrip discontinuities and the input 
impedances of microstrip patch antennas. It is shown that the 
use of the closed-form Green’s functions in the context of the 
MOM provides a computational advantage in terms of the CPU 
time by almost two orders of magnitude over the conventional 
spectral domain approach employing the transformed version of 
the Green’s functions. 

I. INTRODUCTION 

ECENT advances in packaging technology of microwave R and millimeter wave integrated circuits (MMICs) have 
engendered a considerable amount of interest in the devel- 
opment of computer-aided design tools for these packages. 
A variety of approximate techniques, e.g., the quasi-static 
methods [ 11431, equivalent waveguide models [4], [5], and 
segmentation approaches [6], [7 ] ,  have been employed for the 
purpose of analyzing MMIC circuits. Although numerically 
efficient, these techniques do not always provide results that 
are sufficiently accurate. An alternative is to use a more 
sophisticated technique, such as the full-wave Method of 
Moments (MOM), which is versatile and accurate, though 
highly computer-intensive. 

In analyzing planar microstrip structures, the method of 
moments (MOM) can be applied either in the spectral domain 
[8]-[12], or in the spatial domain [13]-[17]. The spatial 
domain approach has the advantage that, in this method, 
the integrands for the MOM matrix elements need to be 
evaluated only over the finite support associated with the basis 
and testing functions, as opposed to over an infinite range 
required in its spectral domain counterpart [ 181. However, in 
the conventional form of the spatial domain approach, the 
Green’s functions for the microstrip structures involve the 
evaluation of the Sommerfeld integrals, whose integrands are 
highly oscillatory and slowly decaying functions; hence their 
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computation is very time consuming. However, it has recently 
been demonstrated in [19]-[21] that this problem can be obvi- 
ated by using the newly-developed closed-form spatial domain 
Green’s functions. The closed-form Green’s function can be 
obtained by using a technique detailed in [22]. In this technique 
we extract the quasi-static images and the surface wave poles 
from the integrand of the Sommerfeld integral, and then handle 
their contributions analytically using the Sommerfeld identity 
and the residue theorem, respectively. Next, we approximate 
the remaining integrand in terms of a finite number of complex 
exponentials using the Generalized Pencil of Function (GPOF) 
[23] method. The objective of this paper is to employ these 
closed-form Green’s functions to analyze general microstrip 
structures using the MOM approach. 

The organization of the paper is as follows. Section I1 begins 
with the formulation of the problem in the context of MOM, 
and then goes on to present the scattering parameter analysis 
based upon the Generalized Eigenvalue Method. A number of 
microstrip discontinuities and patch antenna configurations, in- 
cluding patches with tuning stubs, are numerically analyzed in 
Section 111, and the results are compared with those published 
previously in the literature. 

11. FORMULATION OF THE PROBLEM 

The geometry of a general microstrip structure with a 
substrate and a superstrate is shown in Fig. 1. The substrate 
has a thickness of d,-l and a relative permittivity of E ~ , - I ,  The 
superstrate thickness is d, and its relative permittivity is eTz .  
The substrate, superstrate, and the ground plane are assumed 
to be infinitely wide in the horizontal plane, and the conductors 
are assumed to be lossless and infinitesimally thin. The time 
convention is e J d t .  

The tangential components of the electric field on the plane 
of the patch can be written in terms of the surface current 
density, J, and the Green’s functions for the vector and scalar 
potentials, G.4 and G,, respectively, as follows 

where * denotes convolution. G”,” represents the z-directed 
vector potential at r due to an 2-directed electric dipole of unit 
strength located at r’, while G, represents the scalar potential 
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Fig. I .  A general microstrip structure with a substrate and a superstrate. 

Fig. 2. 
patch. 

Basis functions representing the current density on the microstrip 

produced by a unit point charge associated with a horizontal 
electric dipole (HED). The Green’s functions appearing in 
(1 )  have algebraic singularities of the first order, i.e., G - 
O(l/(r  - r’l). Hence, they are better suited for numerical 
computation than the Green’s functions for the electric field 
integral equation which have algebraic singularities of the third 
order, viz., O(l/ lr  - r’I3). 

A. Application of the Method ?f Moments 

To solve for the surface current density on the patch using 
the MOM, the first step is to express the surface current density 
as a linear combination of the basis functions, which are 
chosen in this work to be rooftops (see Fig. 2). The .r- and 
!/-components of the current density are expressed as: 

11 r n  

where cJF’r‘ and JC”‘ are the rooftop functiono, .I, is the basir 
function for the current source, I:’” and IC”’ are the unknown 
coefficients of the basis functions at the ( n .  7n)th position on 
the subdivided microstrip patch. 

Substituting (2) into (1) and testing by applying the 
Galerkin’s procedure, the matrix equations for the unknown 

coefficients of the basis functions can be obtained as 

where 

where z;n7‘,nni denotes the mutual impedance between the 
(71,’ .  rn’)th testing function and the ( 7 1 ,  m)th basis function, 
and v;‘rn‘ represents the excitation voltage at the (TI>’. nr’)th 
position of the element due to the current source. 

Since the Green’s functions appearing inside the inner 
product in (4) are available in  closed-forms (See 1181 for 
complete expressions), it is useful to transfer the convolution 
integrals involving the Green’s functions and basis functions to 
the testing and basis functions instead, which can be chosen 
such that the integrals can be carried out analytically. This 
manipulation helps reduce the original fivefold integral to only 
a double integral, and results in a substantial savings in the 
computation time as a consequence. 

The current densities at the load and source terminals, 
whenever they are used, are modeled by the half-rooftop basis 
functions. Although these basis functions have singularities 
in their derivatives, they do not present a problem and are 
handled according to the procedure given in [ 191. The matrix 
equation in (4) can not be solved uniquely for the coefficients 
of the basis functions unless additional equations, obtained by 
imposing the boundary conditions at the load terminals, are 
added. They relate the coefficients of the load basis functions 
to the remainder of the basis functions in terms of the complex 
load impedances. For example, the additional equation at the 
left end of the load terminal can be written as (see [ 191-[21]) 

where [j,. and ZOl are the propagation constant and the char- 
acteristic impedance of the line containing the load terminal, 
respectively. 

By using these additional equations in the matrix (4), 
one can solve for the current distribution on the microstrip 
structure. 
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B. Scattering Parameter Analysis 

Once the current distributions on the microstrip structure 
have been found, the scattering parameters for general two 
port network can be computed by the following method. First, 
the line segments -1 and - 2 ,  containing port-1 and port-2, 
respectively, are modeled as transmission lines with charac- 
teristic impedances of Zol and 202. Next, Port-I is excited 
and the current distributions on segment-1 and segment-2 are 
computed. The transmission line is assumed to support only 
one propagating mode, since the reference plane is chosen to 
be sufficiently far away from the junction such that none of 
the higher-order modes are significant at the reference planes. 
For this model, the current distribution on segment-] can be 
expressed as 

I l l( t)  = + IL(t)  
(6) 

where Al l  and B11 are the coefficients for the incident and 
reflected waves, respectively, and [?I is propagation constant 
for the line segment- 1 .  To determine the unknown coefficients, 
A l l ,  B11, and 01 in (6), we employ the Generalized Eigen- 
value Method [23], and impose the constraint that the number 
of exponential terms representing the current distribution on 
the transmission line is only two, and that the two exponents 
are identical except for their sign difference. This procedure, 
outlined above, allows us to compute the propagation constant 
as well as the complex coefficients of the incident and reflected 
currents in the line segment- 1 .  

Moving next to segment-2, we write the current distribution 
on it as 

- - ~ ~ ~ ~ - ~ 3 i t  + ~ ~ ~ ~ 1 i 3 1 t  

1 2 1  (t) = IL (t) + 1; (t) 
= AZle-JPJt + BZ1,JJ3Jt (7)  

where A21 and B21 are the coefficients for the incident and 
reflected wave, respectively, and p2 is propagation constant 
on segment-2. At the reference planes, (Al l ,  B11) and (A21, 

Bzl) are equal to (1;. I i ) ,  and ( I & ,  I;), respectively. 
The four S-parameters, characterizing the two-port network, 

can be expressed as 

which is the desired form we were seeking. 

111. RESULTS AND DISCUSSION 

In this section, we present some illustrative numerical results 
for three microstrip configurations: (i) an open-ended mi- 
crostrip; (ii) microstrip line with a right-angle bend; and, (iii) 
microstrip line-fed patch antennas. The closed-form Green's 
functions used in this study are for general microstrip geome- 
tries with a substrate and a superstrate of arbitrary thicknesses. 
However, the dielectric constant of the superstrate is set to one 
so that our results can be compared with published results for 
the single layer cases. 
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Fig. 4. Phase of the reflection coefficient of an open microstrip line 
( E ~ , - I  = 9 9, d , - ~  = 0.635 mm, I C  = 0.6033 inm). 

A.  Microstrip Open-End 

As a first example that illustrates the accuracy of the 
method described in the last section, we consider the problem 
of modeling the discontinuity presented by the open end 
of a microstrip line. The following parameters are used for 
the computation: the dielectric constant and thickness of the 
substrate are ~ ~ ~ - 1  = 9.7 and d,-l = 1.27 mm, respectively, 
and the width of the microstrip line is w = 1.219 mm. The 
effective dielectric constants are computed and compared in 
Fig. 4 to the results given in [ 171 and with the measurement 
results from [24] (with graph reading errors of less than 0.2%). 
In this computation, the half-wavelength long microstrip line 
was divided into 21 longitudinal segments. The computed 
results agree with those published in [I71 to within I%, and 
with the measured data published in [24] to within 2% when 
the microstrip line is modeled with three transverse segments. 
Unlike in the procedure described in [17], the difference be- 
tween the effective dielectric constants obtained by using one 
and three transverse segments is very small (less than 0.7%) in 
the present method. This indicates that reasonably good results 
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can be obtained by using the procedure followed here without 
explicitly incorporating the edge condition, which, according 
to [25], requires approximately ten transverse segments for 
accurate modeling. 

To complete the demonstration of the numerical accuracy 
of this method, the phase term of the reflection coefficient 
is computed for a microstrip line of 0.6033 mm width. The 
dielectric constant and thickness of the substrate are ~ ~ ~ - 1  = 
9.9 and d,-l = 0.635 mm, respectively. The numerical results 
obtained with the present method are compared in Fig. 5 to the 
computations presented in [ 171, and also to the measurements 
in [26], with graph reading errors of less than 0.2%. For 
numerical computations, the half-wavelength long microstrip 
line is again divided into 21 longitudinal segments. The results 
obtained by using only one transverse segment are seen to 
compare very favorably with the measurements in 1171, as 
well as with the computed results given in [26]. 

B. Microstrip Line With Right Angle Bend 

In the next example, we consider a microstrip discontinuity 
problem, viz., a right-angled bend. The dielectric constant of 

0.4 , I 

0 2 4 6 8 10 
Frequency (GHz) 

0 2 4 6 8 10 
Frequency (GHz) 

(b) 

Fig. 6. 
(b) phase ( ~ ~ ~ - 1  = 2.2,  d,-1 = 0.7874 mm, to = h.r = 2.4 mm). 

Scattering parameter Sz1 for the right-angled bend; (a) magnitude, 

the medium and the thickness of the substrate are chosen 
to be E ~ ~ - ~  = 2.2 and di-1 = 0.7874 mm, respectively. 
The lengths of the segments are L1 = L2 = 55.2 mm and 
their widths are w = hz = 2.4 mm. The location of the 
current source is 4.8 mm from the left edge of segment-1. 
The computed and measured scattering parameters for the 
right-angled bend in a microstrip line are plotted in Figs. 5 
and 6 as functions of frequency. The magnitude and phase 
of 5'11 are compared with the quasi-static values and the 
experimental results of Harms [27], and are shown in Fig. 5. 
The results obtained with our method agree with the quasi- 
static values, as well as with the experimental data (within the 
measurement uncertainty) throughout the frequency range of 
comparison. Fig. 6 shows that the magnitude of the computed 
,521 agrees with the measured data to within approximately 
0.08 dB, and its phase to within approximately 2 degrees 
of the measured values. The scattering parameters obtained 
by the present method have ripples since the characteristic 
impedances of the line are calculated using an empirical 
formula based on a quasi-static approach; these impedances, 
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Fig. 7. Input impedance of a square microstrip antenna 

used as matched terminations at both ends, differ slightly from 
the true characteristic impedance of the line. 

C. Microstrip Line-Fed Patch Antenna 

Next, to illustrate the versatility of our method we consider 
a radiation type problem involving a microstrip patch antenna. 
The input impedance of a square patch fed by a microstrip 
line at the center of one edge is computed and compared with 
published results. In this example, the dielectric constant and 
thickness of the substrate are E ~ ~ - ~  = 2.55 and di-1 = 1.59 
mm, respectively, the width w of the feed line is 4.47 mm 
its length L = 116 mm. The dimensions of the square patch 
are a = b = 40.2 mm. The location of the source is 8.9 
mm from the left edge of the feed line. The input impedance, 
computed using the present method, is compared in Fig. 7 with 
the experimental data given in Lo et al. [5] ,  and the computed 
results of Deshpande and Bailey (91. It is evident that the 
results obtained by using the present method are in excellent 

Fig. 8. 
stub, (b) top view of the geometry in (a). 

(a) Geometry of a microstrip-line-fed patch antenna with a tuning 

agreement with the experimental, as well as other computed 
results over the frequency range of interest. 

As a final example, we present the results of our inves- 
tigation of a microstrip-line-fed patch antenna with a tuning 
stub, shown in Fig. 8. Both the feed line and the tuning stub 
are assumed to have open-ended terminations. These types of 
configurations are particularly useful [28] for fine-tuning the 
resonant frequency of a microstrip patch antenna by changing 
the length of the tuning stub, andor its location along the 
radiating edges of the microstrip patch. In addition, patch 
antennas can be designed to radiate a circularly-polarized wave 
by making a judicious choice for the locations of the feed line 
and the tuning stub. The following parameters are used for the 
example given below, which illustrates the use of the tuning 
stub in microstrip patch antenna design. The dielectric constant 
of the medium and thickness of the substrate are ~ ~ i - ~  = 2.62 
and d,-l = 0.794 mm, respectively; the length La of the feed 
line is 35.2 mm and its width wfl is 2.2 mm. The width of the 
tuning stub is 2.2 mm and the dimensions of the square patch 
are a = b = 28.6 mm. The location of the current source is 
6.6 mm from the left edge of the feed line. 

In the first study , the feed location is chosen at the center 
of left edge of the patch and the location of the tuning 
stub is moved from the top to the center of its right edge 
(see Fig. 8(b)). The magnitudes of the current distribution on 
the microstrip line-fed patch antenna, without and with the 
tuning stub, are shown in Figs. 9 and 10, respectively. As 
seen in Figs. 9(a) and 10(a), the .c-components of the current 
distribution remain essentially unaffected by the presence of 
the tuning stub. However, Fig. 10(b) shows that the addition 
of the tuning stub induces a cross-polarization (y) component 
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(b) 

Fig. 9. Magnitudes of the current distribution on the microstrip line fed patch 
antenna (a) .Jz(.r. y ) ,  (b) .J,(.r. y ) .  Freq. = 3.16 GHz, (I = h = 28.6 mm, 
D.r = Dy = 2.2 mm, E , , ~ ~  = 2.62, d - 1  = 0.794 mm. 

Fig. 10. Input impedance of the microstrip line center fed square patch 
antenna witha tuning stub. fstart = 2.98 GHz. fq top  = 3.30 GHz, 
Df = 0.01 GHz, dts = 4.4 mm. (a) Lts = 2.2 mm, (b) Lts = 4.4 mm, 
(c) Lts = 6.6 cm. 

in the patch current and excites a new mode along y. This 
leads us to conclude that both the (1, 0) and (0, 1)  modes 
can be excited simultaneously using a tuning stub. It should 
now be evident that we can achieve circular polarization (CP) 
by adjusting the length and location of the tuning stub until 
the magnitudes of the a:- and y-components become equal and 
their relative phase shift becomes 90". As is well known, the 
impedance locus exhibits a cusp-like behavior on the Smith 
Chart, as seen in Fig. 11, when the CP condition is achieved. 

IV. CONCLUSION 

In this paper, spatial domain closed-form Green's functions 
have been employed for the analysis of a general class of 
microstrip structures. Numerical results for a uniform line, as 
well the scattering parameter analysis for a microstrip line 
with a right-angle bend have been found to agree well with 
experimental results as well as with those published elsewhere. 
The behavior of the input impedance of a microstrip-line- 
fed patch antenna has been shown to agree closely with 
that computed by using the MOM approach in the spectral 
domain, which requires the computation of infinite integrals 
and is computer intensive. The analysis of the above patch 
antenna shows that the addition of a tuning stub is not only 
provides a convenient way to achieve fine tuning of the 
resonant frequency of the antenna, but is useful for achieving 
circularly-polarized radiation from the antenna as well. 

Fig. 11. Magnitudes of the current distribution on the microstrip line fed 
patch antenna with a tuning stub (a) Jr( .r .  y) .  (b) .Jg(r. y).  Freq = 3.16 GHz, 
a b = 28.6 mm, D.r = Dy = 2 . 2  mm, : , , - I  = 2.62, d,- l  = 0.794 
mm, Lts = 8.8 mm. 

The use of the closed-form spatial domain Green's functions 
in the MOM formulation significantly reduces the computa- 
tion time in comparison to that needed in the conventional 
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formulation carried out in the spectral domain. For instance, 
in a numerical experiment with 40 roof-top basis functions, the 
CPU time for the solution of the current distribution was on the 
order of 1 min. on a DEC station 5100 when the closed-form 
Green’s functions were employed, whereas 100-150 mins. 
were required on the same workstation to solve the problem 
using the spectral domain moment method in conjunction with 
an acceleration technique. 

We conclude that the method presented in this paper can 
be used to accurately solve for the current distributions on a 
variety of microstrip line geometries in less computation time 
than many other MOM approaches. 
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