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An Efficient Method for Electromagnetic
Characterization of 2-D Geometries

in Stratified Media
M. I. Aksun, Senior Member, IEEE, F. Çalışkan, Student Member, IEEE, and Levent Gürel, Senior Member, IEEE

Abstract—A numerically efficient technique, based on the spec-
tral-domain method of moments (MoM) in conjunction with the
generalized pencil-of-functions (GPOF) method, is developed for
the characterization of two-dimensional geometries in multilayer
planar media. This approach provides an analytic expression for all
the entries of the MoM matrix, explicitly including the indexes of
the basis and testing functions provided that the Galerkin’s MoM
is employed. This feature facilitates an efficient modification of the
geometry without the necessity of recalculating the additional ele-
ments in the MoM matrix. To assess the efficiency of the approach,
the results and the matrix fill times are compared to those obtained
with two other efficient methods, namely, the spatial-domain MoM
in conjunction with the closed-form Green’s functions, and a fast
Fourier transform algorithm to evaluate the MoM matrix entries.
Among these, the spectral-domain MoM using the GPOF algo-
rithm is the most efficient approach for printed multilayer geome-
tries.

I. INTRODUCTION

A DVANCES in high-speed digital computers have led to
the development of more sophisticated numerical methods

to solve large electromagnetic problems of practical interest,
which, by classical techniques, would be virtually impossible.
Common numerical techniques that are used in electromagnetic
problems are the method of moments (MoM) [1], [2], finite-el-
ement methods (FEMs) [3], and the finite-difference time-do-
main (FDTD) methods [4], all of which basically transform
integral, differential, or integro-differential equations into al-
gebraic equations. Therefore, the computational efficiency of
these techniques is dependent on the efficiency of forming a set
of linear equations and on the number of unknowns. Among
these techniques, the MoM plays an important role for the solu-
tion of open field problems, particularly for printed geometries
in planar stratified media.

Recently, for two-dimensional (2-D) geometries, there has
been several interesting studies to characterize scattering and
propagation nature of printed strip and slot structures in layered
environment [5]–[10]. In this paper, two new MoM-based
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approaches are developed for 2-D planar geometries, and
compared to the most efficient approach available in the
literature, namely, the MoM using a fast Fourier transform
(FFT) algorithm. These new approaches are based on the
MoM; one employs the closed-form Green’s functions of
2-D planar geometries in the spatial domain and the other
uses the generalized pencil-of-functions (GPOF) method in
conjunction with the spectral-domain MoM. It is observed that
the spectral-domain MoM with the GPOF method performs the
best as far as the efficiencies of the methods are concerned, of
course, with the same level of accuracy in all approaches.

The first step of the MoM formulation is to write an inte-
gral equation describing the electromagnetic problem, which
could be the mixed potential integral equation (MPIE) or the
electric-field integral equation (EFIE) for the printed geometries
[11]. These integral equations require related Green’s functions,
either of the vector and scalar potentials (for MPIE formulation)
or of the electric fields (for EFIE formulation). Since the spec-
tral-domain Green’s functions for planar geometries are avail-
able in closed form, their spatial-domain counterparts are ob-
tained via an efficient inverse Fourier transform algorithm. Once
the spatial-domain Green’s functions are obtained, the solution
due to a general source in 2-D can be obtained by the principle of
linear superposition. The next step in the MoM formulation is to
expand the unknown function in terms of known basis functions
with unknown coefficients. The boundary conditions are then
implemented in an integral sense through the testing procedure.
Following these steps, the integral equation is transformed to a
matrix equation, whose entries are double integrals for general
2-D geometries; one for the convolution integral to find the elec-
tric field, and one for the testing procedure to apply the boundary
condition. However, for planar 2-D geometries, the MoM matrix
entries can be reduced to single integrals by transforming the
convolution integrals onto the basis and testing functions and by
evaluating the resulting integrals analytically [12]. In the spec-
tral-domain application of the MoM, since the Green’s functions
are known in closed form, the matrix entries become single in-
tegrals over an infinite domain. Consequently, in either domain,
the computational efficiency of the MoM lies in the evaluation
of the MoM matrix entries, of course, for moderate-size geome-
tries. For a geometry requiring a large number of unknowns, the
matrix solution time dominates the overall performance of the
technique, therefore, the efficiency of the method is defined by
the efficiency of the linear system solver [13].

Recently, for the characterization of two-and-one-half-di-
mensional (2.5-D) microstrip structures, the spatial-domain
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MoM has become the most efficient tool because of the
availability of an efficient algorithm for the derivation of
the closed-form spatial-domain Green’s functions [14]–[20].
With this in mind, we have first derived the closed-form
approximations of the Green’s functions for 2-D geometries
as a finite sum of the Hankel functions. The MoM matrix
entries, which are single integrals over finite domains, are then
evaluated numerically, thinking that the spatial-domain MoM
in conjunction with the closed-form Green’s functions would
be more efficient than the spectral-domain MoM in conjunction
with the FFT algorithm. However, this approach has become
computationally more expensive than the MoM using the
FFT algorithm for the evaluation of the matrix entries. This is
mainly due to the fact that the latter approach calculates all the
entries of the MoM matrix at once, while the former calculates
the entries one by one. While formulating the spectral-domain
MoM, we have recognized that the computational efficiency of
the evaluation of the MoM matrix entries can be significantly
improved by using the GPOF method instead of the FFT algo-
rithm [21]. This new approach not only improves the efficiency
of obtaining the MoM matrix, but also provides only one
closed-form expression for all the entries of the MoM matrix,
explicitly including the indexes of the basis and testing func-
tions. Hence, one can easily extend the geometry, for which the
same analytical expression is valid for the MoM matrix entries,
without calculating the MoM matrix entries corresponding to
the modified portion of the original geometry. Therefore, the
contribution of this paper is to introduce the following two
new approaches for the calculation of the MoM matrix in 2-D
geometries: 1) the spatial-domain MoM in conjunction with
the closed-form Green’s functions and 2) the spectral-domain
MoM with the GPOF method. In addition, these approaches
are compared to a well-known efficient approach for 2-D
geometries, namely, the spectral-domain MoM with an FFT
algorithm. It is observed that the most efficient one is the
proposed spectral-domain MoM using the GPOF algorithm.

The derivation of the closed-form Green’s functions in 2-D
planar geometries is briefly introduced and a typical set of
Green’s functions are demonstrated in Section II. The use
of these closed-form Green’s functions in the spatial-domain
MoM is then discussed for computational efficiency, and
the new spectral-domain MoM using the GPOF method is
developed in Section III. Also included in Section III, for the
sake of comparison, is a brief description of the well-known
spectral-domain MoM using an FFT algorithm. In Section IV,
numerical examples and comparisons for the computational
efficiency of the aforementioned three methods are included,
which is followed by a conclusion in Section V.

II. CLOSED-FORM GREEN’S FUNCTIONS FOR2-D
PLANAR GEOMETRIES

For the sake of illustration, consider a planar multilayer
medium shown in Fig. 1, where it is assumed that the layers
extend to infinity in the transverse directions. A line source,
extended to infinity in the -direction and polarized either
in the - or -directions, is embedded in region-and the
observation point can be in any arbitrary layer. Each layer can

Fig. 1. Line source embedded in a multilayer medium.

have different electric and magnetic properties ( ) and
thickness ( ) and, moreover, perfect electric conducting planes
and half-spaces are also regarded as layers in this formulation.

The first step in the derivation of the spatial-domain Green’s
functions is to obtain the closed-form representations of the
spectral-domain Green’s functions. The derivation of the
spectral-domain Green’s functions for a dipole source in planar
media has been given in [22] and [23], and the closed-form
expressions for the Green’s functions have been provided in
[17]. For the case of a line source extending to infinity in the
-direction, the closed-form expressions obtained for the dipole

cases are still valid with a difference in the definition of the
dispersion relation, i.e., of a dipole should
be replaced by for a line source. This is because
the fields are invariant in the -direction for a line source
extending to infinity in the -direction in a planar multilayer
medium. In other words, we can use the same spectral-domain
Green’s functions for a line source as those for dipoles, pro-
vided is used. For the sake of completeness,
the components of the Green’s functions that are to be used in
the following sections are given in the following source layer:

(1)

for a line source

(2)

(3)

for a line source , where the coefficients , , ,
and are functions of the generalized reflection coefficients

given in [17], and over the Green’s functions and the
field components denotes the spectral-domain representation.
The other components of the spectral-domain Green’s functions
in the source layer and the coefficients used in these expressions
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can be found in [17], and the field expressions in any other layer
can be obtained iteratively, as described in [17] and [22].

Once the spectral-domain Green’s functions are obtained as
in (1)–(3), their spatial-domain counterparts are calculated by
taking the inverse Fourier transform, which is defined as

(4)

where and are the Green’s functions in the spatial and spec-
tral domains, respectively. Note that this transformation cannot
be evaluated analytically, except for a few special cases. There-
fore, it requires a numerical integration algorithm, resulting in
a very time-consuming process for the calculation of the spa-
tial-domain Green’s functions. However, if the spectral-domain
Green’s functions (apart from terms) can be approximated
in terms of complex exponentials, the analytical evaluation of
the Fourier transform integral (4) becomes possible via the fol-
lowing integral identity [22]:

(5)

Therefore, the crucial step in the derivation of the closed-form
spatial-domain Green’s functions is the exponential approxima-
tion of the spectral-domain Green’s functions. Since the expo-
nential approximation technique (i.e., GPOF) together with the
two-level approach (to sample the function to be approximated
along the integration path) is detailed and applied to the Hankel
transformation of the spectral-domain Green’s functions for a
dipole source in a stratified medium in [24], it is not given
here for the sake of brevity. Instead, the procedure to obtain
the closed-form Green’s functions starting from the spectral-do-
main representations is given here for a typical Green’s function

. Note that the spectral-domain Green’s functions are ob-
tained as referenced to Fig. 1, where the origin of the coordinate
system is at the source location. However, for the application of
the MoM, the origin is set to the bottom of the source layer, then

and are replaced in all spectral-domain Green’s functions by
and , respectively. Hence, the Green’s functions would

be the explicit functions of and . The steps of getting the spa-
tial-domain Green’s functions, with explicitand variables,
are given as follows.

• Write the spectral-domain representation of in terms
of exponentials of and as

(6)

• Approximate the coefficients in (6) by the complex expo-
nentials of via the GPOF method and two-level sam-
pling approach [24]

(7)

where and are the complex co-
efficients and exponents of the complex exponentials, re-
spectively, approximating the three terms in (6).

• Take the inverse Fourier transform of the spectral-domain
Green’s function analytically using the integral iden-
tity given in (5)

(8)

where

which are mostly complex numbers and, therefore, their
branches must be chosen such that the zeroth-order Hankel
function of the second kind should be a decaying function
for large values of arguments. Note that is equal to

, and the other components of the Green’s functions
can be obtained in closed forms following the same pro-
cedure.
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Fig. 2. Magnitude of the Green’s function for the vector potentialG . A
two-layer medium:� = 4:0, � = 1:0, z = z = 0.

Fig. 3. Magnitude of the Green’s function for the scalar potentialG . A
two-layer medium:� = 4:0, � = 1:0, z = z = 0.

To give an idea as to how these closed-form Green’s functions
behave, an example is provided for a two-layer medium: the first
layer has a relative permittivity of four and the second layer
is free space, the source is placed at the interface and, hence,

. The plots of the Green’s functions and
are given in Figs. 2 and 3.

III. FORMULATIONS OF 2-D PROBLEMS VIA MOM

The first step in the application of any form of the MoM is
to derive an operator equation, i.e., integral equation for this
study, that would describe the problem mathematically. There-
fore, before giving the details of the application of the MoM,

Fig. 4. Typical strip geometry in two semiinfinite half-spaces with a
plane-wave illumination.

the scattered electric fields from a typical 2-D planar geometry
( ), as given in Fig. 4, are written as

(9)

(10)

(11)

where the superscriptdenotes the scattered fields, and the cur-
rent densities , , and are the unknowns to be determined.
Hence, the integral equation can be obtained by requiring that
the tangential components of the total electric field ( ) on
conducting surfaces are to be zero. The incident electric fields
for TE and TM to polarizations are given, respectively, as fol-
lows:

(12)

(13)

where , , and . Note
that we have used and in the expressions of the
incident fields for TE to and TM to , respectively. This is be-
cause, in the derivation of the spectral-domain Green’s functions
where we have defined these generalized reflection coefficients,
TE and TM are defined with respect to the-direction.

Note that, for the discussion in this section, 2-D geometries
are considered to be printed on the– -plane and, hence, no
-directed current exists, as given in Fig. 4. In other words, the

only unknown is for TM to excitation and for TE to
excitation. In the application of the MoM, after having obtained
the governing integral equation, the unknown functions are ex-
pended in terms of known basis functions with unknown coef-
ficients. Throughout this study, triangular functions and pulse
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functions are chosen as the basis functions forand , re-
spectively,

if

otherwise

(14)

if

otherwise.
(15)

Since, in this study, both the spectral- and spatial-domain
MoMs are employed, the spectral-domain representations of
both basis functions and the incident field expressions are given
here for the sake of completeness. The spectral-domain repre-
sentations of the basis functions are as follows:

(16)

(17)

and the incident field expressions (tangential components only)
are as follows:

(18)

(19)

A. MoM Formulation in the Spatial Domain

Writing the total electric field as the sum of the scattered and
incident electric fields, and implementing the boundary condi-
tions for the tangential components on the conducting body re-
sult in the following electric-field integral equations:

for TE excitation (20)

for TM excitation (21)

With the application of the testing procedure of the MoM to
these integral equations, the following algebraic equations are
obtained:

for TE excitation

(22)

for TM excitation

(23)

where to ( the number of basis functions) and the
unknown current densities in the expressions of the scattered
electric fields [see (9)–(11)] have already been written in terms
of known basis functions with unknown coefficients

. Since the right-hand sides of (22) and (23) are simple
to evaluate, the left-hand sides are written for eachas

(24)

(25)

for TE and TM excitations, respectively, where integration by
parts is used for TE excitation to transfer the derivative onto the
testing function [25]. The convolution integrals over the Green’s
functions and basis functions can be easily transformed onto the
basis and testing functions and can then be evaluated analyti-
cally. As a result, a typical MoM matrix entry becomes a single
integral of the Green’s function multiplied with the analytical
expression for the correlation of the basis and testing functions
[12]. Since the Green’s functions in the spatial domain are ap-
proximated as the sum of Hankel functions of the second kind,
as in (8), they grow indefinitely for small arguments, and subse-
quently the integrals cannot be calculated efficiently. To perform
a fair comparison among the MoM in the spatial and spectral
domains, one needs to apply all the available tools to make the
methods as efficient as possible. Therefore, to circumvent this
inefficiency in the spatial-domain MoM, a singularity extraction
method is employed for small arguments.

With the use of the closed-form Green’s functions, and the
singularity extraction method for the evaluation of the integrals
[see (24) and (25)], the efficiency of the evaluation of these in-
tegrals is significantly improved. However, although this im-
provement is significant for each entry of the MoM matrix, it
is not sufficient when it is compared to the efficiency of a tech-
nique calculating the entire MoM matrix in one step, like the
FFT-based MoM.

B. MoM Formulation in the Spectral Domain

The scattered electric fields for TE and TM excitations can be
rewritten in the spectral domain from (9) and (10) for a planar
geometry (printed on the– -plane) as

(26)

(27)

where

and represents the spectral-domain Green’s function for
the component of the electric field due to thecomponent
of the electric current density. Expanding the unknown current
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densities in terms of known basis functions and implementing
the boundary conditions on the total electric field through the
testing procedure of the MoM, the following set of linear equa-
tions are obtained:

for

(28)

for TE excitation and

for

(29)

for TM excitation. Note that all quantities, such as the basis
and testing functions, Green’s functions, and incident electric
fields, are in the spectral domain. Contrary to the spatial-domain
MoM, the Green’s functions employed here are in closed forms
already [see (1)–(3)]. Due to the definition of the inner product,
the matrix entries are single integrals over an infinite domain,
and are given with the basis and testing functions substituted as

(30)

(31)

for TE excitation and

(32)

(33)

for TM excitation. If these terms were to be evaluated numer-
ically for each and , the spectral-domain approach would
have been very expensive computationally when compared to
the spatial-domain MoM using the closed-form Green’s func-
tions. This is because the domain of integration is infinite, and
the integrands are oscillatory functions. Instead of employing a
quadrature algorithm for evaluating these integrals, one may try

to get an analytic expression for the value of each integral or to
employ a numerical technique that would yield the whole set of
the MoM matrix entries.

1) Evaluation of MoM Matrix Entries With the FFT
Method: As was stated in the previous section, the ultimate
goal is to get the unknown coefficients and of the
current densities efficiently from the solution of the matrix
equations given in (28) and (29). This goal translates into the
efficient evaluation of the matrix entries given explicitly in
(30) and (32) due to the fact that the most time-consuming
step in the spectral-domain MoM algorithm is the evaluation
of these entries, at least for a moderate number of unknowns.
This is mainly because each entry of the matrix equation is a
single integral of complex oscillatory functions over an infinite
domain, and because there is no analytical expression for the
results of these integrals. However, using the fact that these in-
tegrals look like the Fourier transform integrals, an FFT-based
algorithm can be employed to evaluate these integrals very
efficiently. In this section, this approach is briefly outlined for
the sake of assessing the efficiency of this algorithm and getting
some intuition for the comparison with other two approaches;
namely, the spatial-domain MoM using the closed-form Greens
functions and the spectral-domain MoM using the GPOF
method. The application of this FFT-based algorithm for the
evaluation of the integrals [see (30) and (32)] is explained for a
strip with a longitudinal direction in the-axis and located on
the – -plane, requiring only the incident field in the-direc-
tion for TE excitation and in the-direction for TM excitation.
For the sake of brevity, only the case for TE excitation is given
here in detail, as it is similar for TM excitation.

If the matrix entries in (30) are examined, it is seen that the
exponential term acts as the kernel of the transformation, and
the rest is the function to be transformed; hence, the function to
be transformed is

(34)

where is limited between and . Therefore, the matrix
entries can be rewritten as

(35)

where is used to denote the distance between
the basis and testing functions. With a simple transformation of
variable, this integral can be cast into the form of

(36)

where and . Following this rep-
resentation, an FFT routine (DFFTCF) from the International
Mathematical and Statistical Libraries (IMSL) is used to com-
pute the discrete complex Fourier transform of a complex vector
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of size . Specifically, given an -vector , DFFTCF returns
in an -vector

for (37)

Using this transformation for the terms under the summation
operator in (37), can be written as

(38)

where is the set of spatial-domain representation of.
Note that is given for the distances of
for , and this set of distances at which is
calculated is fixed by the sampling frequency of the FFT al-
gorithm . However, these distances, in general, may not
correspond to the distances between the basis and testing func-
tions, which are given by and, consequently,

at the discrete points of are not the MoM matrix en-
tries. Since is a function of the distance
between basis and testing functions, it would be enough to find

for . Hence,

for

(39)

is the MoM matrix entries. It is obvious that one application of
an FFT algorithm yields all of the MoM matrix entries, resulting
in a very efficient approach. Although, this is seemingly the best
approach to analyze 2-D problems, the method that is proposed
in the following section results in a far more efficient approach
and yet is a very suitable one for the optimization problems.

2) Evaluation of MoM Matrix Entries via the GPOF
Method: In this section, a novel approach based on the spec-
tral-domain MoM for EFIE for the characterization of 2-D
geometries in multilayer media is proposed, and its formulation
is given in detail. As for the evaluation of the MoM matrix
entries via an FFT algorithm, this approach starts with the
EFIE in the spectral domain and then implements the MoM
procedure to transform the integral equation into the matrix
equation. Therefore, the matrix entries used for this approach
are the same as those used for the FFT approach [see (30) and
(32)]. The MoM matrix entries, which are single integrals over
an infinite domain, can be cast into close forms with the help of
the GPOF method. It is not that each entry can be represented
by a different closed-form expression, but that there is one
closed-form expression valid for all entries. This is achieved by
approximating the whole integrand of the MoM matrix entry
[see (30) and (32)], except for the exponential term, in terms
of complex exponentials, and by getting the inverse Fourier
transform of the resulting terms analytically. Remember that
the GPOF method is a technique to approximate a function, or
a data, by a set of complex exponentials, and it was used for the
derivation of the closed-form spatial-domain Green’s functions
in Section II. Therefore, there is no need for further discussion
on the GPOF method, instead, the procedure for the evaluation
of the MoM matrix entries is demonstrated for the case of TE

excitation, for which a general matrix entry is repeated here,
from (30), as follows:

where

(40)

(41)

Defining a set of new coefficients like

for (42)

Equation (31) can be written as

(43)

where ’s are approximated in terms of complex exponentials.
Hence, the matrix entries are evaluated analytically, by using the
integral identity (5), as

(44)
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where

It is worth mentioning that, since the terms’s are indepen-
dent of and , they are approximated only once and all the
elements of the impedance matrix are obtained from the same
closed-form representation (44). In addition, since (44) has,

, ,and explicitly, adding new strips or extending the sizes
of the strips do not require any further manipulations, one just
needs to evaluate (44) for different, , , and values.

IV. RESULTS AND DISCUSSIONS

In this section, some results obtained using the three
approaches described in the previous section, namely, the
spatial-domain MoM with the closed-form Green’s functions
(spatial), spectral-domain MoM with FFT algorithm (FFT),
and spectral-domain MoM with the GPOF method (spectral),
are given and discussed. The terms in the parenthesis are used
to denote these approaches in the legends of the figures. Note
that, for the sake of consistency and brevity, examples of the
current densities provided in this paper are selected for the
incidence angle of 0.

Since the numerical efficiency of the spectral-domain MoM
in conjunction with the GPOF method is the major issue of
this paper, the method of assessment of the efficiency needs
to be defined explicitly to show that no bias has been given
in favor of this approach. The assessment of the computational
efficiency is performed by comparing the CPU times of these
three approaches for the same problem as follows: first, the
current densities are obtained from the spatial and spectral ap-
proaches using the same number of basis functions, and then,
the current density for the same geometry is obtained via the
FFT-based algorithm with an increasing number of samples for
the FFT application until the relative error between the result of
the FFT-based approach and those from the other approaches
becomes less than some predefined value. For the definition of
the relative error, norm of the difference vector, defined be-
tween the vectors consisting of the amplitudes of the basis func-
tions of the current densities obtained by any two of these ap-
proaches, has been employed. It is obvious that such comparison
favors the FFT-based algorithm because the number of samples
is kept at minimum that would satisfy the relative error crite-
rion. Furthermore, this tuning of the number of samples for the
FFT-based algorithm to achieve the best performance has been
the revelation of another disadvantage of the algorithm.

These techniques are first applied to a single horizontal strip
located near the interface of two semiinfinite half-spaces (Fig. 4)
for which the presented formulations of these methods in the
previous section were based upon. The following parameters are
chosen for this example, just to be able to compare the results

Fig. 5. Real and imaginary parts of the normalized current densities for TE
excitation.� = 4:0, � = 1:0, 2w = 4� , h = 0, � = 0 .

Fig. 6. Real and imaginary parts of the normalized current densities for TM
excitation.� = 4:0, � = 1:0, 2w = 4� , h = 0, � = 0 .

to those found in the literature [26]–[28] as and
for the dielectric constants, for the width of the

strip, and for the distance of the strip from the interface.
The current densities on the strip for TE and TM excitations
are obtained by using the three approaches, and are presented in
Figs. 5 and 6.

The results are compared to those provided in [26] and found
to be in excellent agreement. The number of basis functions is
chosen to be 107 for TE and 109 for TM excitations for both
spatial and spectral approaches. Table I shows the CPU times of
the three approaches for both TE and TM excitations, and for
different angles of incidence. As a result, the spectral-domain
MoM with the GPOF method for all the cases has been the most
efficient approach.
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TABLE I
CPU TIMES OF THESPECTRAL-DOMAIN, SPATIAL-DOMAIN, AND FFT

APPROACHES FORTE AND TM EXCITATIONS

TABLE II
CPU TIMES OF THESPECTRAL-DOMAIN, SPATIAL-DOMAIN, AND FFT

APPROACHES FOR: (a) TE EXCITATION AND (b) TM EXCITATION

(a)

(b)

For the second example, the same geometry as in Fig. 4 (with
the strip in the dielectric layer ) is considered to show that
the approaches are general, as well as the conclusions. The pa-
rameters of the geometry are as follows: and ,

, , , and , meaning
that the strip is in the lower layer, and . For this example,
the current densities are obtained for both TE and TM excita-
tions for three different values of, and compared to the results
of [27] and [28]. Excellent agreement is again observed between
the current distributions obtained by this study and found in the
literature, except for a slight deviation near the edges for TM
excitations, which might be due to the difference in number and
form of the basis functions used in this study and in the study
of the references. The number of basis functions is 55 for the
TE case and 57 for the TM case. Table II shows the CPU times
of the spectral- and spatial-domain approaches and the FFT ap-
proach for the TE and TM excitations. Again, the spectral-do-
main approach uses less computation time as compared to the
other approaches.

The geometry of the next example is given in Fig. 7, where
Medium 0 is the perfect electric conductor (PEC), and

, the width of the strips , and .
The number of basis functions is chosen to be 110 for the TE
case and 114 for the TM case, and the angle of incidence .

Fig. 7. Two-strip three-layer geometry.

TABLE III
CPU TIMES OF THE SPECTRAL-DOMAIN, SPATIAL-DOMAIN, AND FFT

APPROACHES FORTE AND TM EXCITATIONS

Fig. 8. Three-strip three-layer geometry.

Table III shows the CPU times of all methods for the TE and
TM excitations and, again, the CPU time of the spectral-domain
approach is the lowest.

After having established the superiority of the GPOF-based
technique over the other two techniques for planar geometries
in multilayer media, the next example, which is a three-strip ge-
ometry in a three-layer medium, is investigated by this approach
only. The geometry of the example is given in Fig. 8, where
the angle of incidence , Medium 0, and Medium 2 are
free space, , the width of the strips, , and

. The number of basis functions is
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Fig. 9. Magnitudes of the current densities on the three strips for TE excitation.
� = � = 1:0, � = 4, 2w = 0:2� , h = h = 0:1� , � = 0 .

Fig. 10. Magnitudes of the current densities on the three strips for TM
excitation.� = � = 1:0, � = 4, 2w = 0:2� , h = h = 0:1� ,
� = 0 .

chosen to be 105 for the TE case and 111 for the TM case. The
CPU time to fill the impedance matrix and the source vector is
106.4 s for the TE case and 71.9 s for the TM case. The mag-
nitudes of the current densities on the strips are given in Figs. 9
and 10 for the TE and TM excitations, respectively.

V. CONCLUSION

As it is well known, the application of the MoM to 2-D planar
multilayer geometries transforms integral equations into ma-
trix equations whose entries are double integrals over finite do-
mains in the spatial-domain MoM, and single integrals over in-
finite domain in the spectral-domain MoM. In this paper, three
different algorithms to efficiently evaluate those integrals have
been studied, which are: 1) the use of closed-form Green’s func-

tions for the spatial-domain MoM formulation; 2) the use of the
GPOF; and 3) the use of the FFT algorithm, both in the spec-
tral-domain MoM formulation. The first two approaches have
been developed in this paper and the results obtained for dif-
ferent applications are compared with each other and with the
third approach. It is observed that there is no accuracy problem
in any of these approaches, but as far as the numerical efficiency
of these algorithms are concerned, the one using the GPOF for-
mulation is the best, which has been verified for several exam-
ples by giving the CPU times for filling the MoM matrices.
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