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Fig. 2. 
space by Patrick-Fisher’s algorithm (solid line) and E (dotted line). 

Bayes error estimates for SONAR data transformed to IO-dimensional 

high-dimensional data these results might be more in favor of E.) 
This is a result of the fact that each iteration of simplex requires 
that the samples be transformed to the low-dimensional space, and 
then the Bayes error estimated in that space, which in turn requires 
computation of distances, determination of optimal thresholds, and 
classification. The iterative process is repeated until the convergence 
is achieved. In contrast, FLD and KL are noniterative techniques, 
which merely compute eigenvalues and eigenvectors of certain ma- 
trices. For PF, which is also an iterative algorithm, the difference in 
CPU timing is about an order of magnitude for SONAR data. 

V. SUMMARY 
The aim of this correspondence was to investigate the possibility of 

constructing such linear transformation of labeled multidimensional 
vectors that would hopefully ensure the maximum attainable classifi- 
cation accuracy in the transformed space. In other words, the goal 
was to come as close as possible to computing a transformation 
matrix that would minimize the Bayes error in the low-dimensional 
space, and to devise a practical algorithm for such purpose. The 
proposed algorithm, called E, consists in finding such matrix that 
minimizes the estimate of the Bayes error, computed on the training 
data set projected to the low-dimensional space. The most reliable 
technique for Bayes error estimation available was used, and the 
simplex algorithm played the role of the optimization algorithm. 

In all examples, E demonstrated superior performance in compar- 
ison with standard algorithms, coming close to the theoretical limits 
on classification accuracy. This is payed through significant increase 
of the computational load. Still we managed to keep its complexity 
within realistic bounds, thus realizing designated goals. 
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On a Parameter Estimation Method 
For Gibbs-Markov Random Fields 

Mehmet I. Giirelli and Levent Onural 

Abstract-This correspondence is about a Gibbs-Markov random field 
(GMRF) parameter estimation technique proposed by Derin and Elliott. 
We will refer to this technique as the histogramming (H) method. First, 
the relation of the H method to the (conditional) maximum likelihood 
(ML) method is considered. Second, a bias-reduction based modification 
of the H method is proposed to improve its performance, especially in the 
case of small amounts of image data. 

Index Terms-Image modeling, texture, Gibbs-Markov random fields, 
parameter estimation, pattern recognition. 

I. INTRODUCTION 
Texture plays a very important role in image processing. In the lit- 

erature, there exist several techniques for the analysis and processing 
of textured images, such as classification and identification [l], and 
segmentation and restoration [2]-[9]. Among the most well-known 
texture models are the autoregressive models [ 2 ] ,  random mosaic 
models [lo], and stochastic models [3]-[9], [ l  I]-[14]. The Gibbs 
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and Markov random fields are among the most powerful stochastic 
models [ 1 I]-[ 141. In this correspondence, we will collectively refer 
to both models as the Gibbs-Markov random field (GMRF) model. 
Several segmentation and restoration algorithms based on the GMRF 
model can be found in [4]-[9]. 

In many applications of the GMRF texture model, it is usually 
necessary to estimate the model parameters (see, for example, [7]). 
The coding and pseudo-likelihood methods are among the most 
widely known parameter estimators [12], [13]. The pseudo-likelihood 
method is an extension of the coding method from a single coding 
to the whole image region, disregarding the lack of conditional 
independence among the pixel values. In this correspondence, the 
coding and pseudo-likelihood methods will be collectively referred 
to as the maximum likelihood (ML) method. Another method, which 
we will call as the histogramming (H) method, has been proposed 
by Derin and Elliott [7]. 

In this correspondence, we concentrated on the H method. Our aim 
is twofold. First, we want to clarify the properties of the H method 
and establish its relation to the well-known ML method. Second, we 
propose a modification to the H method to improve its performance 
for binary GMRF’s, especially in the case of small amounts of image 
data. In the case of small amounts of image data, the H method suffers 
from two facts. First, the bias in parameter estimates becomes more 
emphasized, and second, in the H method, some data is generally 
discarded, which usually results in an insufficient amount of data to 
obtain the GMRF parameter estimates uniquely. As will be clarified 
in the forthcoming sections, the modification we proposed in this 
paper addresses these two problems simultaneously. 

In Section I1 mathematical preliminaries are given. In Section 111, 
the H method is derived. Section IV is aimed at clarifying the link 
of the H method to the ML method. In Section V, the bias in the 
H method is described. In Section VI, a method to reduce the bias 
is proposed. In Section VII, we give some experimental results, and, 
finally, some conclusions are given in Section VIII. 

11. MATHEMATICAL PRELIMINARIES 

We model the image region as a set of rectangularly placed pixels 
denoted by ‘P. We will refer to the numerical realization of the random 
field at pixel i E 2, by the notation y ( i ) .  For the numerical realization 
over a subset R C D,  the notation y ( R )  will be used. Detailed 
descriptions of GMRF’s and related concepts such as neighborhood 
systems and codings can be found in [7] and [11]-[13]. The shape of 
the neighborhood of an interior point i of 27 will be assumed to be 
independent of its location in 2, and will be denoted by ?lt (or simply 
1 1 ) .  For a given coding C, GMRF’s have the following (conditional) 
independence property [ I  I]:  

P(Y(C)13.’(P\C)) = ~ P ( . ? / ( ~ ) I Y ( v , ) ) .  (1) 
,E<’ 

This property is very important in the formulation of the H and ML 
methods. To keep the discussions clear, we will refer to a binary 
GMRF described by the conditional probability distribution [ 111. 

J 7’ 

P ( y ( i )  = .sIy(i/,)) = ~ 1 + e T  ( 2 )  

and S .  ( 1 .  U ’ .  r .  (1’. t .  t ’ .  ir. w’ E (0.1) are the pixel values whose 
relative locations are as shown in Fig. I .  The vector of model 
parameters A = [ (I j j ,  .j,. j,,, ,j( 1’ will be called the GMRF 
parameter vector. Multilevel GMRF’s of the above parametric form 
may be found in [7] and [ 111.  

Fig. 1. Neighborhood pixel values 

111. DERIVATION OF THE HISTOGRAMMING (H) METHOD 
The GMRF parameter estimation method described in this section 

has been proposed by Derin and Elliott [7]. We will refer to this 
method as the histogramming (H) method. We start by partitioning 
the set of possible neighborhood realizations into I< groups such that 
within the kth group (k  = 1.. . . , I<) each neighborhood realization 
yields the same coefficient vector Q, given as 

(4) 
A possible grouping is to assume that each neighborhood realization 
is a distinct group. We will indicate the correspondence of any 
variable to the kth group by the subscript k .  For every neighborhood 
realization y k ( i l )  belonging to the kth group, we have a fixed 
(conditional) probability for the pixel value to be 0 or 1 for a given set 
o f p a r a m e t e r s . L e t p t = P ( s = l l ~ t ( ~ ~ ) ) a n d q t  = 1 - p t  = P ( s =  
O I Y k ( ? ) ) ) .  Then, using (2) and ( 3 ) ,  we have Tk = l n ( p k / q k ) ,  where 
TA = .rzg. Hence, we obtain a system of I< linear (and consistent) 
equations in terms of the GMRF parameters as 

st = [l ( U  + U,’) ( U  + ( 9 ‘ )  ( t  + t’) (U‘ + W ‘ f .  

n + ( U  + U ’ ) J , <  + ( 1 ’  + v’)*A.  + ( t  + f’)d,,, 
+ ( u > + u * ’ ) , j , . = d k  A - =  I , . . .  .S. (5  1 

where d l  = hl(PI,/(Ik). 

To estimate g, the d k ’ s  in (5) will be estimated first. This is done 
through histogramming, as follows. Suppose that there are a total of 
L k  pixels in a given coding C of 2, with neighborhood realizations 
from the kth group. From (l), the pixel values corresponding to these 
L t  locations become statistically independent when conditioned on 
the numerical realization of the set 27 \ C. Let Y j , k  be the number 
of 1 outcomes in these Lk observations. It is assumed that Y(73 \ C)  
is given; hence Lk is deterministic and -\-~.k is the outcome of a 
random quantity. Then, an estimate of d k  in (5) can be given as 

To justify this estimate, note that for large L k ,  we have the 
asympthotic behavior 

(7) 

Using (5) and (6), to estimate g we may try to solve the system of 
equations given as 

Pk 
L t  - -TI k (Ik 

+ -. ~h-1 , A  

which may be put into matrix form as 

s, g = n (9) 
with and c i k  being the corresponding rows of S, and i, re- 
spectively. In general, it is not necessary to include the equations 
corresponding to every possible neighborhood realization to the 
system of equations in (9). The system in (9) will usually contain 
less than I< equations. This is because for A = 0 or )VI 1 = L A ,  
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(6) and (8) will be undefined and the corresponding image data will 
be discarded. This is one of the main weaknesses of the H method, 
as will be discussed in forthcoming sections. Furthermore, for some 
group of neighborhood realizations, Lk may be zero. Using (9), an 
estimate ZH of the parameter vector may be obtained as &, = X;’i 
where X: is the pseudoinverse of the matrix Xr.. If Xr is a full 
(column) rank matrix, then X: = ( X ~ X , ) - ’ - X ~ .  If X,. is not full 
rank, the resulting parameter estimates are generally highly corrupted. 

For certain multilevel GMRF’s, the above formulation can be 
simply modified by considering every pair of pixel values with a 
given neighborhood realization [7]. Also, the histogramming may, in 
practice, be done over the whole image instead of a single coding. 

Iv. RELATION OF THE H METHOD TO THE ML METHOD 

The coding form of the ML estimate maximizes the probabil- 
ity P(Y(ClY(D \ C ) ) )  or, equaivalently, the log-likelihoodfunction 
(LLF) [Ill-[I31 

L ( C )  = C l n ( P ( y ( i ) I Y ( v z ) ) )  (10) 
1 E C  

as a function of g. The terms in (IO) can be grouped under Ii terms, 
each of which corresponds to one of the I< groups of neighborhood 
realizations as described in Section 111. So we have 

h’ 

L(C)  = . C k ( C ) ,  ( 1 1 )  
k = l  

where 

L k ( C )  = N 1 . k  I.(P(Y(i) = l l Y k ( 1 7 ) ) )  

+ ( L k  - N l , k ) l n ( P ( y ( i )  = O I Y k ( 1 7 ) ) ) .  (12) 
Although the discussion can be easily extended to multilevel GMRF’s 
described in [7], we will consider the binary model given by (2) and 
(3), for which we have 

where T k  = J - Z ~ .  The gradient of &(e)  denoted as v&(C) is 
given by 

and V C L k ( C ) ,  the second derivative matrix of L k ( C ) ,  is given by 

The value of -/k is strictly positive for any L k  > 0; hence VOCk(C) 
is negative semidefinite, with one negative eigenvalue --/k corre- 
sponding to the eigenvector sk, and the remaining eigenvalues are 
zero. So &(e)  is a convex cap function of the parameter vector 
- J. From (13), it is easy to see that ,&(e) has constant values on 
(n? - 1 )-dimensional hyperplanes in the parameter space where m is 
the dimension of the parameter vector, g (n? = 5 for the model ( 2 ) ,  
(3)). From (1 I), we also deduce that the LLF is a convex cap function. 
From (l4), it is clear that L k  ( C )  will have a maximum value only if 
lv1,h # 0 and :bTl,k # Lk.  In any case, &(C) is upper bounded. In 
Fig. 2, a typical &(C) is plotted as a function of ;?h and 

If there exists a set of ni groups of neighborhood realizations for 
which . k  # 0 and :y1 .k # L k ,  and if the corresponding coefficient 
vectors J - ~  are linearly independent, then the LLF will have a unique 
maximum (for which has a finite Euclidean norm). This fact 
is easily verified by noting from ( I I ) ,  (15) that, under the above 
conditions, the second derivative matrix of LLF will .be negative 
definite (hence LLF will be strictly convex cap), and also the value 
of LLF will be decreasing in any direction in the parameter space as 

Fig. 2. 
and assuming N 1 . k  # 0 and N 1 . k  # L k .  

A typical l k  (C) surface as a function of /318 and d,. (&,, = d, = 0)  

the norm of g goes to infinity. However, the LLF may have a unique 
maximum point under much weaker conditions. 

Using (5) and (14), it is easy to show that if the asymptotic behavior 
in (7) holds, then the hyperplanes over which &(C)’s achieve their 
maxima will intersect at the point corresponding to the parameter 
vector of the GMRF under consideration. At this point, the LLF 
will achieve its global maximum. This suggests that an interesting 
approach to estimating -J may be to search for an intersection for 
these hyperplanes. For a given & ( C )  for which N 1 , k  # 0, L k .  the 
hyperplane equation can be obtained by equating the gradient in (14) 
to zero, which yields the linear equation in g 

Note that the resulting system of linear equations is exactly the same 
as the system given by (8), and it may be solved by a least squares 
method. Hence we obtained the H method. In summary, ML method 
maximizes the LLF whereas H method tries to achieve this through 
maximizing individual terms Lk (C). This relationship of H and ML 
methods will still. hold if the quantities Avl . k  and Lk are determined 
from the whole image region instead of a single coding. 

Since the ML method requires optimization techniques, the H 
method seems computationally more feasible than the ML method, es- 
pecially for applications involving parameter estimation over several 
subregions of a given image. On the other hand, since the H method 
discards the data corresponding to the case . k  = 0,  and N1 , h  = Lk,  
the parameter estimates may be highly corrupted especially in the case 
of parameter estimation over small subregions of a given image. 

V. BIAS IN H METHOD 
Any bias in the vector in (9) is reflected in the GH vector through 

the transformation .& = S , f d .  In this section, we will formulate the 
bias for a given entry n^k of 2 vector for binary GMRF’s. Since the 
analysis in this and the next section is done for an arbitrary but fixed 
group of neighborhood realizations, we will drop the subscript k, 
which refers to the kth group of neighborhood realizations. For a 
given L and p ,  and employing the independence property ( l ) ,  .Vl 
can be shown to have binomial distribution 
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Fig. 3. 

However, in the H method, we omit the cases where N I  = 0 or L. 
So the distribution is 

Curves of bias B(L,p) in â  for various values of L.  

mIL(N1IL) = P(N1lLV1 # 0 and NI # L )  

Therefore, the expected value of d^ is given by 

(19) 
where E{.} is the statistical expectation operator and the notation 
d = fi( L,  NI ) is introduced to emphasize the dependence of d on L 
and N I .  For any given L and p ,  the bias, B( L ,  p ) ,  in d is given by 

B ( L , ~ )  = € ( L , p )  - d where d = In (1 - ",>. (20) 

In Fig. 3, bias curves are plotted as a function of p and for several 
values of L. From the curves, it is seen that for large L the bias is 
smaller. 

VI. REDUCTION OF BIAS IN THE H METHOD 
As emphasized by the notation (i = f i ( L ,  NI), (i is a function of 

L'and N I ,  which may be interpreted as a look-up table indexed by 
L and N I  = 1,. . . , ( L  - 1 ). In this section, we will consider another 
estimate d' of d as a function of L and J ~ I ,  i.e., 

d' = D * ( L , N I )  N1 =O;. . ,L . (21) 

The problem may be interpreted as the design of a new look-up table 
D*(L ,  N I ) .  The design criteria will be bias reduction, and we will 
include cases NI = 0 and N I  = L. The bias L?*(L,p) in d* is given 
by B*(L ,p )  = € * ( L , p )  - d, where 

L 

E * ( L . p )  = D'(L.NI)f , . , ,L(-~lIL)  
N 1 = O  

is the expected value of D*(L,LVI ). Note that for given L ,  € * ( L , p )  
is a polynomial in p of order L.  On the other hand, the variable d 
given in (20) can be represented only by an infinite order polynomial. 
Therefore, B * ( L , p )  can not be made identically zero for all p E 
(0.1) .  So, instead of removing bias, we may try to choose D* ( L ,  A'17~ ) 

TABLE I 
LOOK-UP TABLE EXAMPLES FOR L = 5 

so as to approximate d by E * ( L . p )  as a function of p for a given 
L.  Therefore the problem reduces to approximating the variable d 
with a finite order polynomial. To accomplish this, we may force the 
bias to be zero for a finite number of values for p ,  i.e., B*(L,p , )  = 
0 j = 0, ., J where p ,  E ( 0 , l )  are some chosen values for y .  Hence, 
we obtain linear equations in terms of the to be determined variables 
D * ( L . N 1 ) , N 1  = O , . . . , L  as 

(23) 
The above system of linear equations may be solved by a linear least 
squares method. After solving for the unknown D* ( L .  -VI ) variables, 
one may put the results as a look-up table, and for any given L and 
Ail one may use D* ( L ,  lV1 ) as an estimate of d.  For the estimation 
of g, the system of equations in (8) may be rewritten as 

- r f g  = d; where d;  = D * ( L L , X I , k ) .  (24) 

The choice of p, 's in (53) determines the bias and mean-squared- 
error properties of the estimator. Since it is desirable to have 
D * ( L , N 1 )  = - D * ( L , L  - XI)  n = O,. . . .L ,  the p, ' s  must be 
chosen symmetrically around p = 0.5. In Table I, a sample look-up 
table for L = 5 is given both for the H method (i.e., D( L ,  XI ) )  and 
for the modification proposed in this section (i.e., D* ( L ,  :VI )). To 
compute D* ( L ,  Arl ), we have used 

p ,  E { p  Ip=0.5+(0.05+0.01k)  k=0:..,15}. 

In Fig. 4, curves of d ,  & ( L , p ) ,  and € * ( L , p )  are plotted as a 
function of p for L = 5 (the look-up table in Table I is used). Note 
that the bias corresponds to the vertical difference between the d- 
curve and the E ( L . y )  or E * ( L , p )  curves. At this point, it must be 
emphasized that in general the matrix S, in (9) will be different in 
the H method and its modification proposed here (since we include 
the equations corresponding to SI = 0, Lk) .  Therefore, the effects of 
bias in d and d' on the estimate of -J will not be directly comparable, 
as in Fig. 4. 

The mean squared errors (mse's) in (f and d* are given by 

M ( L , p )  = E ( ( 2 - d ) ' }  , W * ( L , y )  = E { ( d *  - d ) ' } ,  (25 )  

respectively. Both expectations are with respect to NI. Note that in 
M ( L , p ) ,  the distribution is given by (18), and for M * ( L , p !  the 
distribution is given by (17). In Fig. 5, mse curves of d* and d are 
plotted as a function of p for L = 5 (the look-up table in Table I 
is used). Again, it must be noted that the effects of the mse in d 
and d* on the estimation of -.' will not be directly comparable from 
Fig. 5, because the S, matrixes for the H method and its modification 
proposed here will be in general different. 

In this section, we basically proposed a modification to the H 
method by using the bias reduction criterion. In this alternative 
method, we included the case of SI = 0 and *VI = L to the 
estimation process. Therefore, we have attacked two disadvantages 
of the H method simultaneously, namely the bias and the case of 
SI = 0 and :VI = L. 



428 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 4, APRIL 1994 

Fig. 4. Curves of d .  & ( L . p ) ,  and & * ( L , p )  for L = 5 .  
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Fig. 5.  Mse curves of d* and (i for L = 5.  

Estimation of parameters over small subregions of a given image is 
usually required in many problems such as texture segmentation. In 
such circumstances, due to the limited amount of image data, it is very 
likely that the case of N I  = 0 or N I  = L will be met. Since in the H 
method the corresponding data is discarded and no linear equation is 
obtained for the corresponding classes of neighborhood realizations, 
the system of linear equations in (9) usually contains a highly limited 
number of equations to give good parameter estimates. It is even 
very likely that the matrix S, may not have full column rank, in 
which case the linear least-squares solution will not be unique (the 
transformation GH = -Y:d will give the minimum norm solution). 
This may result in highly corrupted parameter estimates. The number 
of rows of S, may significantly increase by the inclusion of A71 = 0 
and N I  = L into the parameter estimation. For the above reasons, 
we included the case of ~ Y I  = 0 and IVI = L in our look-up table 
design. Hence, it is more likely to have a full column rank S, 
matrix. 

Although this new estimator for d may introduce a larger mse for 
a range of y values, the combined effect of the increased number 
of rows in S, and the averaging effect of the transformation Sti 
can be expected to reduce the extra mse on the parameter estimates. 
Therefore, the bias reduction approach proposed here seems to be a 
very reasonable criterion for the look-up table design. Also note that 
once the look-up tables are prepared, the computational complexities 
of the H-method and its modification will be almost the same. 

Fig. 6. 

a = 0, 

Sample GMRF textures with parameters: (a) a = -4, ;3& = fit, 

= beta,  = 1 ,  &,, = d, = -1. (d) a = 0, d h  = d, = -1, 
= P v r L  = d,. = 1. (b) a = -1.5. j?h =dtr = 0, dm = 1.5, /?r = 0. (c) 

= = 1. 

TABLE I1 
PARAMETER FSTIMATION RESULTS 

VII. EXPERIMENTAL RESULTS 
In this section, we will present experimental results corresponding 

to four different sets of specified parameters and various image region 
sizes. The test images have been synthetically generated by the Gibbs 
sampler algorithm using the model in (2) and (3) [ 5 ] .  Typical sample 
textures are shown in Fig. 6 for each parameter set. 

Experimental results are summarized in Tables 11-V. The first col- 
umn of each table indicates the method of parameter estimation and 
size of the image region (only one of the four codings corresponding 
to a second-order neighborhood structure has been used [ 1 11). Tables 
11-V include the results for both the H method described in Section 
I11 and its modification (referred to as modified-H on the tables) 
based on the bias reduction criterion described in Section VI. The 
columns labeled as T indicate the number of times the corresponding 
experiment has been performed and T, is the number of successful 
trials. By a successful trial we mean a performance of the experiment 
in which the matrix S,. comes out to be full rank (so that the least- 
squares solution of the resulting linear equations will be unique). 
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TABLE III 
PARAMETER ESTIMATION RESULTS 

TABLE IV 
PARAMETER ESTIMATION RESULTS 

TABLE V 
PARAMETER ESTIMATION RESULTS 

I 8.1 A1 a1 

Note that in the modified-H method, the success rate is always at 
least as large as the success rate of the H method. This is because the 
modified-H method uses the data for which SI = 0 or L for a set of 
L values, as will be described in this section. The sample means 6 
and variances 5’ of each parameter is computed over the successful 
trials only. More specifically, 

where <, denotes the value of a parameter < E {rt. j),. ,j, . , I , ! , .  ( I ,  } 
for the ith successful trial. 

For both the H and modified-H methods, we have discarded the 
data corresponding to L < 5. In the modified-H method, look-up 
tables based on the bias reduction criterion have been generated 
only for L = .j.G:.. . 11. For L > 11, the estimator of d given 
in (6) is used for both methods. This is because an important 
portion of the discarded data in the H method usually corresponds to 

L = 5 , 6 ,  . . . , 11 for small image region sizes. Furthermore, the bias 
is not very significant for L > 11. 

For generating the look-up tables, the p, values in (23) have been 
taken as 

pJ E { p  I p = 0.5+(0.05 + 0.01k) k = 0.. . . .15] 

for L = 5,6; . . ,10 ,  

a d  pJ E { p  I p = 0.5+0.01k k = 0.. . . , 2 5 }  

for L = 11. 

Although no specific strategy has been followed in choosing the 
pJ values as given above, we have obtained good results in many 
experiments for small image region sizes. 

The results summarized in Tables 11-V indicate that the modified- 
H method usually yields a lower bias and also that the success rate 
is higher than the H method. The sample variances indicate that, for 
many applications, the H and modified-H methods have a reasonable 
variance. It must be noted at this point that once the look-up tables 
are prepared, the computational complexity of the method proposed 
in this correspondence and the H method are almost the same. 

VIII. CONCLUSION 
An advantage of the H method over the ML method is in its 

computational simplicity. The ML method requires the maximization 
of a log-likelihood function, whereas the H method involves simple 
histogramming, a look-up table operation, and computation of the 
pseudoinverse of a matrix with generally reasonable dimensions. 
For its computational simplicity, the H method is well suited to 
problems involving parameter estimation over several subregions 
of a given image. On the other hand, the omission of data (for 
XI ,L = 0. Ln-) in the H method may result in very poor performance 
over small image regions. Even more, the S,. matrix may not have 
full columirank. However, in problems such as image segmentation 
it is usually required to estimate the GMRF parameters over several 
small subregions of the given image. Therefore it is very important 
to have an estimator that is both computationally simple and capable 
of yielding sufficiently good parameter estimates even in the case of 
a small amount of image data. 

In this correspondence, we proposed a modification to the H 
method to improve its performance, especially in the case of a small 
number of observations while preserving its computational advantage 
over the ML method. This modification is computationally almost as 
easy as the H method. Furthermore, it does not suffer from the data 
omission and hence it is more likely that S,. matrix will have full 
column rank. The extension of the method to multilevel GMRF’s 
and the methodology for choosing pJ values in (23) may be topics 
of future research. 
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Contribution to the Determination of Vanishing Points 
Using Hough Transform 

Evelyne Lutton, Henri Mahe,  and Jaime Lopez-Krahe 

Abstract-We propose a method to locate three vanishing points on 
an image, corresponding to three orthogonal directions of the scene. This 
method is based on two cascaded Hough transforms. We show that, even 
in the case of synthetic images of high quality, a naive approach may 
fail, essentially because of the errors due to the limitation of the image 
size. We take into account these errors as well as errors due to detection 
inaccuracy of the image segments, and provide a method efficient, even 
in the case of real complex scenes. 

Index Tenns-Bias and errors of the Hough transform, Hough trans- 
form, orthogonal directions detection, vanishing points detection. 

I. INTRODUCTION 
In many tasks of artificial vision, an accurate location of vanishing 

points is a first step toward three-dimensional (3D) interpretation. 
Vanishing points are defined in the,image plane as those points where 
the images of all 3D scene lines, parallel to some space direction, 
converge. To one 3D space direction is attached one vanishing point 
on the image plane and conversely. 

Detection of vanishing points, which is of little help in natural 
outdoor scenes, becomes of prime importance in the man-made 
environment where regular block looking structures or parallel align- 
ments (streets, pavements, railroad) abound. We have the Italian 
Quattrocento to thank for the deep comprehension of the formation 
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q g .  1. A I ,  1 2 ,  and 1 3  are lines of the 3D space parallel to the direction 
I T .  61. h:,. and 6s their images on the-image plane. E 1  % E:, , and 63 converge 
to the vanishing point associated to I ; .  

of perspective images,’ a comprehension that has been a constant 
preoccupation of the theoricians in aesthetics up to the 20th century.’ 
Traces of rigorous mathematical bases are found mainly at the comer 
of the 18th-19th centuries.” Although the geometrical construction 
of vanishing points may become very complex when no hypothesis is 
made on the vision system, in the case of a perfect conic projection 
(pinhole cameras) it may be solved easily, since the image of a 
straight line remains a straight line. We will stay in the assumption 
of conic projection throughout this paper. 

Most of the existing methods to detect automatically these vanish- 
ing points stand on the use of the Hough transform, explicitly or not 
[16], [20], [21]. Hough transform is a global technique for detecting 
parametrical structures in images [5] ,  [7], [17]. Some primitives are 
detected in the image, and then mapped into a parameter space; 
underlying structures are detected by searching for clusters in this 
parameter space. Two methods can be distinguished to fill the 
accumulators of Hough space [ 171. 

The “one-to-many’’ (I-to-ru ) transform, used most of the time, 
where for each feature point in the picture plane, several 
accumulator cells are incremented. 
The “many-to-one’’ (rn-to-I), where we make use of several 
feature points in the image plane to increment exactly one 
accumulator cell. 

For the application of vanishing points detection, the primitives are 
line segments. The vanishing points are thus characterized as those 
points where most of the supporting lines of these segments intersect 
(Fig. 1). Most of the time, these points are located far away from the 
image limits and even can be at infinity (for frontal lines). 

So, the most important problem of the detection of vanishing points 
with the help of the Hough transform’is the choice of the Hough 
space parameterization. Two main orientations have appeared in the 
literature, following the I-to- m or the nt-to-1 transforms; they are 
chronologically: 

The I-to-nr approach with: 
Kender [9] in 1979 who uses, directly on the image plane, circles 
passing through the origin, and proposes either a search in a 
tridimensional space or two successive transforms; 
Ballard and Brown [2] in 1982, who propose a ( k / r , H )  pa- 
rameterization, with k constant, for the image primitives, which 
permits restriction of parameter space; 

‘L. B. Alberti, “De pictura” (manuscript 1435), printed in Bas1 (Swiss), 

’E. Panovsky. “Die Perspektive als symbolische Form,” Berlin. 1927. 
3 G .  Monge, “GCometrie descriptive.” Leqons donnkes aux Ecoles Normales 

4J. V. Poncelet, “Trak2 des propriCtCs projectives des figures,” Paris, 1822. 
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