1376

Error-Tolerant Retrieval of Trees

Kemal Oflazer

Abstract —We present an efficient algorithm for retrieving from a
database of trees, all trees that differ from a given query tree by a
small number additional or missing leaves, or leaf label changes. It has
natural language processing applications in searching for matches in
example-based translation systems, and retrieval from lexical
databases containing entries of complex feature structures. For large
randomly generated synthetic tree databases (some having tens of
thousands of trees), and on databases constructed from Wall Street
Journal treebank, it can retrieve for trees with a small error, in a matter
of tenths of a second to about a second.

Index Terms —Example-based machine translation, approximate tree
comparison, retrieval from lexical databases, tree databases.

0

1 INTRODUCTION

RECENT approaches in machine translation known as example-based
machine translation rely on searching a database of previous trans-
lations of sentences or fragments of sentences, and composing a
translation from translations of any matching examples [4], [6]. The
example database may consist of paired text fragments, or trees [6].
Most often, exact matches for new sentences or fragments will not be
in the database, and one has to consider examples that are “similar”
to the sentence or fragment in question. This involves associatively
searching the database for trees that are “close” to the query tree.
The paper first presents an approximate tree retrieval problem in an
abstract setting and presents an algorithm for it. The algorithm relies
on linearizing the trees and then compressing them into a trie struc-
ture. The problem then reduces to sequence correction problem akin
to the string correction problem. The trie is used with an error-
tolerant finite state recognition algorithm [5] to find trees that are
“close” to a query tree in terms of additional or missing leaves or leaf
label changes.

2 APPROXIMATE TREE RETRIEVAL

In this paper, we address the computational problem of retrieving
from a database, trees that are “close” to a given query tree where
closeness is based on how similar to each other, the sets of the
individual leaves of the trees are. The trees that we consider have
labeled terminal and nonterminal nodes. We consider two trees
“close” if we can

1) add/delete a small number of leaves to/from one of the trees
(and where necessary, insert or delete internal nodes), and/or

2) change the label of a small number of leaves in one of the
trees to get the second tree.

Thus, we do not allow for any relabeling of any internal node,
but an internal node may be inserted if the insertion of leaf
requires it, deleted if the leaf that is being removed is its last
leaf descendant. A pair of such “close” trees in the context of
representing the constituent structure of natural language sen-
tences, is depicted in Fig. 1.

» The author is with the Department of Computer Engineering and Informa-
tion Science, Bilkent University, Bilkent, Ankara, Turkey.
E-mail: ko@cs.hilkent.edu.tr.

Manuscript received 10 Oct. 1996; revised 6 Oct. 1997. Recommended for accep-
tance by T. Ishida.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 105851.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 12, DECEMBER 1997

2.1 Linearization of Trees

Before proceeding any further we would like to define the con-
cepts that we will be using in the following sections: We identify

each leaf node in a tree with an ordered vertex list (vy, vy, Vy, -+, Vg)
where each v; is the label of a vertex from the root v, to the leaf v,
at depth d, and for 0 <i < d, v; is the parent of v;,;. A tree with n
leaves is represented by a vertex list sequence VLS = V;, V,, ---, V,
where each V; = Vé, vi, Vi, Vé, Véj corresponds to a vertex

list for a leaf at level d;. This sequence is constructed by taking the
left-to-right order of the leaves.'

For instance, the first tree in Fig. 1 would be represented by the
vertex list sequence:
((S,NP,Det,a), (S,NP,NP,Adj,black),
(S,NP,NP,N,cat),
(s,vp,V,chased), (S,VP,NP,Det,the),
(s,vp,NP,NP,Ad]j,little), (S,VP,NP,NP,N, mouse))

2.2 Distance Between Two Trees

We define the distance between two trees according to the struc-
tural differences or differences in leaf labels. We consider an extra or a
missing leaf as a structural difference. If, however, both trees have
leaves whose vertex lists match in all but the last (leaf vertex) label,
we consider this as a difference in leaf labels. For instance, in Fig. 2,
there is an extra leaf in tree (b) in comparison with the tree in (a),
while tree (c) has a leaf label difference. We associate the following
costs associated with these differences:

¢ |If both trees have a leaf whose vertex list matches in all
but the last (leaf vertex) label, we assign a label difference
error of C.

e If a certain leaf is missing in one of the trees but exists in
the other one, then we assign a cost S for this structural
difference.

The intuition is that two trees which have exactly the same struc-
ture except for a leaf label difference are more “close” than two
trees which differ by an additional leaf (and any additional inter-
nal nodes that come with the leaf). Thus C should be chosen to be
less than S.

2.3 Converting a Set of Trees Into a Trie

A tree database D consists of a set of trees Ty, T,, ---, T, each T; be-
ing represented by a vertex list sequence for a tree. We convert this
set (of VLSs) into a trie data structure. This trie will compress any
possible redundancies in the prefixes of the vertex list sequences to
achieve a certain compaction which helps during searching.2 For
instance, the three trees in Fig. 2 can be represented as a trie as
shown in Fig. 3. The edge labels along the path to a leaf when con-
catenated in order gives the vertex list sequence for a tree, e.g.,
((a,b,a,x), (a,b,c), (a,b,k), (a,e)) representsthe
tree (a) in Fig. 2.

2.4 Error-Tolerant Matching in the Trie

Our goal is not the retrieval of trees that match a query tree exactly
but rather the retrieval of trees that match approximately (with the

1. In the case where hierarchical relationships among the nodes are
to be represented and left-to-right order of the leaves is immaterial
(such as in lexical databases), then the vertex lists can be ordered using
a lexicographic ordering, i.e., V, is lexicographically less than V,,,, based
on the total ordering of the vertex labels.

2. Note that it is possible to obtain more space reduction by sharing
prefixes of vertex label sequences by introducing intermediate nodes to
the trie (e.g., in Fig. 3, the prefix (a, b) at the second level can poten-
tially be shared, but these do not improve the execution time.

i+

0162-8828/97/$10.00 © 1997 IEEE

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

S

T

NP VP

/\ /\
Det NP A% NP
/\

P |
N chased et NP
|

[

Adj
\

black cat the Adj

|
little

Fig. 1. Trees that are “close” to each other.

differences between the trees described earlier.) Given a vertex list
sequence for a query tree, exact match over the trie can be per-
formed using the standard techniques by following the edge la-
beled with next vertex list until a leaf in the trie is reached, and the
query vertex label sequence is exhausted. For approximate tree
retrieval, we use the error-tolerant finite-state recognition algo-
rithm [5]. An adaptation of this algorithm to this problem will be
briefly summarized here.

a a a
P /’\ P
b e b d o b e
a ¢ k a f k
a ¢ k
| | |
X N X
(a) (b) (©)

Fig. 2. Structural and leaf label differences between trees.

LetZ =2, 7,, ..., Z, denote a generic vertex list sequence of p
vertex lists. Z[j] denotes the initial subsequence of Z up to and
including the jth vertex list. We will use X (of length m) to denote
the query vertex list sequence, and Y (of length j) to denote the
sequence that is a (possibly partial) candidate vertex list sequence
(from the database of trees). Given two vertex list sequences X and
Y, the distance, dist(X[m], Y[n]), computed according to the recur-
rence below, gives the minimum cost of leaf insertions, deletions
or leaf label changes necessary to change one tree to the other.?

dist(X[i], Y[j]) = dist(X[i — 11,Y[i - 1])
(if Xj =Yji.e, last vertex lists are same)
= min(dist(X[i - 1],Y[j - 1]) + C,
dist(X[i — 11,Y[i]) + S,
dist(X[i], Y[i - 1]) + S)
(if X; and Y; differ only at the leaf label)
= min(dist(X[i — 11, Y[i]),
dist(X[i], Y[j - 1])) + S

(Otherwise)

Boundary Conditions

3. Note that a given cost may be realized by different combinations
of these differences.

\ RN

VOL. 19, NO. 12, DECEMBER 1997 1377

S
NP VP
Vv NP

/\
Det NP
| | |
A N ate /\
| Det NP
et | RN
the Adj N
\ |
brown mouse

mouse

dist(X[0], Y[i) =j- S

dist(X[i], Y[0O]) =i-S

For the kinds of applications we have in mind, inserting a leaf
to a tree may involve insertion of other internal nodes that are
demanded, for instance, from the linguistic representation em-
ployed. Similarly deletion of a leaf may involve deletion of inter-
nal nodes. Thus whenever we mention insertion or deletion of a
leaf, we are implicitly assuming that other internal nodes may be
involved as necessary. For instance, in Fig. 4 the additional leaves
in the second tree involve the addition of internal nodes.

For a tree database D and a distance threshold t > 0, we con-
sider a query tree represented by a vertex list sequence X[m] (not
in the database) to match the database with an error of t, if the
set {Y[n] | Y[n] € D and dist(X[m], Y[n]) <t} is not empty.

(a,b,a,x)

(a,b k)

(ae)

Tree ¢

Tree b

Fig. 3. Trie representation of the three trees in Fig. 2.

1378

S
NP VP
/\ |
Det N A%
| | |
The movie finished

Fig. 4. Leaf insertions involving the insertions of internal nodes.

2.5 An Algorithm for Approximate Tree Retrieval

Standard searching with a trie corresponds to traversing a path
starting from the start node (of the trie), to one of the leaf nodes
(of the trie), so that the concatenation of the labels on the arcs
along this path matches the input vertex list sequence. For error-
tolerant searching, one needs to find all paths from the start
node to one of the final nodes, so that when the labels (vertex
lists) on the trie edges along a path are concatenated, the result-
ing vertex list sequence is within a given distance threshold t, of
the query vertex list sequence.

This search has to be fast if approximate retrieval is to be of
any practical use. This means that paths in the trie that can lead
to no solutions have to be pruned early so that the search can be
limited to a very small percentage of the search space. We need
to make sure that any candidate vertex list sequence that is gen-
erated during the search does not deviate from certain initial
subsequences of the query sequence by more than the allowed
threshold. To detect such cases, we use the notion of a cutoff dis-
tance. The cutoff distance measures the minimum distance be-
tween an initial subsequence of the query sequence, and the
(possibly partial) candidate sequence. Let Y be a candidate se-
quence whose length is j, and let X be the query sequence of
length m. Let I =max (1, j-L t/S J)and u = min (m, j +[t/S 1)
where S is the cost of an insertion or deletion. The cutoff dis-
tance cutdist(X[m], Y[j]) is defined as

cutdist(X[m], Y[j]) = Ir£1|<n dist(XLil, Y[i]).

Note that except at the boundaries, the initial subsequences of the
query sequence X considered are of length j — t/S to length j +
[t/S 1. Any initial subsequence of X shorter than | needs more
than | t/S] leaf insertions, and any initial substring of X longer
than u requires more than [t/S 1 leaf deletions, to at least equal Y
in length, violating the error threshold constraint.

Given a query vertex list sequence X, a partial candidate se-
quence Y is generated by successively concatenating labels along
the arcs as transitions are made, starting with the start node.
Whenever we extend Y going down the trie, we check if the cutoff
distance of X and the partial Y is within the bound specified by the
threshold t. If the cutoff distance goes beyond the threshold, the
last edge is backed off (recursively if necessary) to the source node
(in parallel with the shortening of Y) and some other edge is tried.
If, during the construction of Y, a terminal node (which may or
may not be a leaf of the trie) is reached without violating the cutoff
distance constraint, and dist(X[m], Y[j]) < t at that point, then the
vertex list sequence Y (of length j) corresponds to a tree in the da-
tabase that matches the input query sequence approximately.4

4. Note that we have to do this check, since we may come to other
irrelevant terminal nodes during the search.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 12, DECEMBER 1997

S
/\
NP VP
PN /\
N % NP
| | N
man

finished Det N
|

the job

Denoting the nodes of the trie by subscripted gs (qq being the
initial node (e.g., top node in Fig. 3)) and the labels of the edges
by V, and denoting by &g;, V) the node in the trie that one can
reach from node g; with edge label V (denoting a vertex list), we
present, in Fig. 5, the algorithm for generating all Ys that match
the query tree with an error threshold t by a depth-first probing
of the trie. The crucial point in this algorithm is that the cutoff
distance computation can be performed very efficiently by
maintaining an m by j matrix H (j varying suitably as Y changes),
with element H(i, j) = dist(X[i], Y[jI) [1]. We can note that the
computation of any element H(i, j) recursively depends on only
H(@i -1, j - 1), H(, j — 1), H(i — 1, j) from the earlier definition of
the distance. During the depth first search of the trie, entries in
column j of the matrix H have to be (re)computed, only when the
candidate sequence Y is of length j. During backtracking, the en-
tries for the last column are discarded, but entries in prior col-
umns are still valid. Thus, all entries required by H(i, j), except
H(i — 1, j), are already available in column j — 1. The computation
of cutdist(X[m], Y[j]) involves a loop in which the minimum is
computed. This loop (indexing over increasing j) computes H(i — 1, j)
before it is needed for the computation of H(i, j).

Let us assume that the tree database consists of K trees each
with about L leaves, compressed into a trie so that the trie has K
leaves, and the root and internal trie nodes have a branching factor
of /K successors each. Let us further assume that we search for a
tree already in the database, but with a threshold t which allows
for [t/S T insertions or deletions. In the worst case we will go
down L + 1 nodes of the trie (the edges between those nodes corre-
sponding to the vertex lists for the query tree). In all but the last of

S
these nodes, we will visit at most (k/?)rt/ 1 additional nodes for

/*push empty candidate, and start
node to start search */
push((e, do))
while stack not empty
begin
pop((Y’,q,) /* pop partial sequence Y’
and the node */
for allg,andV such that J(q, V) =0,
begin /* extend the candidate sequence */
Y =concat(Y’, V)
/*jis the current length of Y */
/* check if Y has deviated too much,
if not push */
if cutdist(X[m],Y[j]) <t then push((Y, q,))
/* also see if we are at a final state */
if dist(X[m],Y[j]) £t and
pis a terminal node then output Y
end
end

Fig. 5. Algorithm for error-tolerant recognition of vertex list sequences.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 12, DECEMBER 1997

searching the neighborhood of a node, and spend O(L:log L) time
at each such visited node for the cutoff distance computation, the
log L factor coming from the length of a vertex list sequence. Thus

the total time for the search will be O(L’- log L - (W)WS]). As ex-
pected this is exponential in the threshold t, as one has to consider
all possibilities delineated by the threshold, but since the branch-
ing factor is usually small, the impact of this factor is not substan-
tial. The time for preprocessing the tree database into into a trie is
almost linear in the size of the database.

3 EXPERIMENTAL RESULTS

We have experimented with three synthetically generated data-
base of trees with the properties given in Table 1, and a database
of syntactic trees constructed from Wall Street Journal Treebank,
available from Linguistic Data Consortium CD. In the table for
the synthetic data, the third column (label ALP) gives the aver-
age ratio of the vertices at each level which are randomly selected
as leaf vertices in a tree. The fourth column gives the maximum
number of children that a nonleaf node may have. The last column
gives the maximum depth of the trees in that database.

TABLE 1
PROPERTIES OF THE SYNTHETIC DATABASES OF TREES
Number ALP Max Max
Database of Children Depth
Trees
1 1,000 1/3 8 5
2 10,000 1/2 16 5
3 50,000 1/2 8 4

From these synthetic databases, we randomly extracted 100
trees and then perturbed them with random leaf deletions, inser-
tions and label changes so that they were of some distance from a
tree in the original tree. We used thresholds t = 2 and t = 4, allow-
ing an error of C = 1 for each leaf label change and an error of S = 2
for each insertion or deletion. We then ran our algorithm on these
data sets and obtained performance information. All runs were
performed on a Sun UltraSparc 140 with 128M real memory. The
results are presented in Table 2.

TABLE 2
PERFORMANCE RESULTS FOR THE APPROXIMATE
TREE MATCHING ALGORITHM

Avg. Avg. Avg.

Data- Thres- Leaves/ Search Trees
base hold Query Time Found/
Tree (Msec) Query

1 2 12.00 29 1.96

4 12.42 39 16.65

2 2 24.65 473 3.32

4 25.62 624 31.59

3 2 13.41 1145 14.21

4 13.21 1810 67.43

For a second set of experiments we constructed a database of
trees from the Wall Street Journal Treebank available on the Lin-
guistic Data Consortium Penn Treebank CD. The trees in this da-
tabase are however not in a format directly usable by the algo-
rithm above. Particularly, various noun phrases and verb phrases
are represented linearly without encoding any lower level struc-
tural relationships. For instance, there are quite a number of noun
phrases like (NP the auto maker) represented in a flat man-
ner. We converted the trees in the treebank so that such cases were
also made hierarchical. Furthermore, for a given sentence tree in
the treebank, that tree, and all of its subtrees (with the exception of
leaves, and subtrees which contain a leaf and a root node denoting
the category of the leaf lexical item) have also been entered as

1379

separate trees, each rooted by a node covering a phrase or a sen-
tential form. This is likely to be useful in an example-based ma-
chine translation application, where, if the match for a whole sen-
tence tree fails, one may check for matching subtrees to cover the
given tree in a maximal way.

The resulting treebank database consisted of a total of 18,104
trees with an average of 14.9 nodes per tree, and average of 8.6 leaf
nodes and an average depth of 4.25. We generated a query data-
base of 100 trees which were selected from the original treebank,
and perturbed so that they either had some leaf or structural dif-
ferences. We limited the number of structural differences to a
maximum of two leaf additions or deletions.

The results indicate that when the database was searched with
threshold t = 1, which allowed for single leaf label difference, the
average search time was 463 milliseconds. For threshold limits of t = 2
and t = 4, which allowed insertion or deletion of leaves or a com-
bination of leaf label differences with insertions and deletions, the
average search times were 642 and 1,054 milliseconds, respectively.

Another set of experiments were conducted to gauge the im-
pact of the use of cutoff edit distance in controlling the search. The
search code was modified so that the search was done without the
cutoff edit distance controlling the search extent, for the three
query sets described above. The resulting average search times for
the same set of query trees were 2,415 milliseconds for t = 1; 2,090
milliseconds for t = 2; and 2,156 milliseconds for t = 4. It should be
noted that the set of query trees used for these was the same used
above, hence, the time results are slightly different from each other
as the threshold in this case has no impact on search control except
for final evaluation of any solution found.

In order to identify the time difference between exact and ap-
proximate searching, 100 trees randomly selected from the data-
base were used as query trees with thresholds of t = 0 for exact
match and for t = 1, 2, and 4. This can give us an impression of the
overhead of searching the database for approximate matches. The
average time for exact search (which is equivalent to standard trie
searching) was 140 milliseconds. The average search times for t =
1, 2, and 4 were 348, 580, and 1,074 milliseconds. So, the overhead
of approximate searching is quite tolerable, but for large t (> 4),
one is likely to search most of the database.

It can be seen that the approximate search algorithm is quite
fast for the set of tree databases that we have experimented with,
in that they can be used in applications without the approximate
search component being the computational bottleneck.

From a qualitative respect the database was queried with a num-
ber trees to see what kinds of trees would be retrieved. We limited our
queries to trees that we knew has close neighbors in the treebank,
since the treebank was not meant to be used for an EBMT applica-
tion per se. In response to our query tree (already in the database)

(VP (Vv file) (NP (DET the) (N reports)))
with t =1, the system produced, as expected, (with errors in ()’s),

(VP (Vv file) (NP (DET the) (N reports))) (0)
(VP (V file) (NP (DET their) (N reports))) (1)

The query
(VP (Vv file)
with t = 4 produced
(VP (V represent)

(NP (N transactions)))

(NP (ADJ actual)

(N transactions))) (3)
(NP (DET the) (N reports))) (3)
(VP (V file) (NP (DET their) (N reports))) (3)
(VP (Vv file) (NP (N reports))) (1)

(VP (V completed) (NP (DET a) (N transac-
tion))) (4)

(VP (V completed)
mony))) (4)

(VP (V file)

(NP (DET his) (N testi-

1380

while the query
(VP (V execute)
produced, with t =3

(VP (V represent) (NP (ADJ actual) (N
transactions))) (3)

(NP (N transactions)))

4 RELATED WORK

There have been a number of prior studies that are relevant to the
problem considered in this paper. Selkow [7] describes an algo-
rithm that computes the minimum distance between two trees in
terms of insertions and deletions at the leaves and label change at
the root node. Tai [8] presents a very general model of edit opera-
tions on trees involving arbitrary node label changes, node dele-
tions and insertions. These algorithms have however not been
presented in a tree database retrieval context. Wu and Manber [11]
describe agrep, an algorithm for fast approximate sequence
searching, It relies on a very efficient pattern matching scheme
whose steps can be implemented with arithmetic and logical op-
erations but is very suitable when the pattern is very small and the
sequence to be searched is very large. Myers and Miller [3] pres-
ents an O(NM) algorithm for approximate matching to regular
expressions with arbitrary costs, with M being the length of the
sequence and N being the size of the regular expression. It again is
suited for applications where the pattern or the regular expression
is small and the sequence is large. Neither of the above treat the
sequence or the pattern as representing a database, and do not
exploit any structure in either.

The problem presented in this paper is in many respects similar
to the problems presented in Wang et al. [10], Utsuro et al. [9], and
Maruyama and Watanabe [2]. Wang et al. [10] describe tree data-
base system for approximate tree matching, called the Approxi-
mate Tree-by-Example which is designed to support construction
and querying of database of trees. They provide a special query
language to describe constraints on the set of trees requested. Al-
though this system allows for a more general set of differences
between two trees, the examples they suggest for syntactic tree
matching can trivially be handled by our approach, without the
overhead of the more general cases. They have provided no per-
formance evaluation of their system.

Utsuro et al. [9] describe an approach to retrieving matching
surface case structures (represented as feature-value structures)
from a database of such structures. The similarity of case frames
are judged on two grounds: the syntactic features of the two
structures (case markers in this case) should match maximally, and
the semantic similarity of the lexical items filling the case roles, as
defined by a suitable semantic ontology or thesaurus, should be
close. They present a favorable performance evaluation of their
system, but the number of examples used is very small. Our ap-
proach can also be used in this context. Since feature structures can
be represented as trees with leaves corresponding to morpho-
syntactic features, the structural similarity can be trivially dealt
with. The semantic similarity can be handled by casting it as a leaf
label difference, but instead of considering leaf label differences
strictly, one can consider the semantic distance obtained from the
thesaurus.

Maruyama and Watanabe [2] describe a system which tries to
cover a linguistic structure represented as a tree, by finding
matching covers (of various subtrees) from a database of example
trees, and selecting a set of matching subtrees with the lowest cost
of covering. The cover algorithm is based on the dynamic pro-
gramming paradigm. They have applied their system to a depend-
ency structure representation of Japanese sentences.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 19, NO. 12, DECEMBER 1997

5 CONCLUSIONS

This paper has presented an approach to retrieving from a data-
base, trees that match a given query tree approximately. The pro-
posed approach can be used as tree searching engine in example-
based machine translation applications, or retrieval from lexical
database represented as feature-value structures. The algorithm
efficiently searches in a database of trees, all trees that are “close”
to a given query tree. It has been implemented on Sun worksta-
tions, and experiments on rather large synthetic tree databases and
actual syntactic tree database from the Penn Treebank, indicate
that it can perform approximate matches within tenths of a second
to about a second depending on the size of the database and the
error that the search is allowed to consider.

ACKNOWLEDGMENTS

Comments by three anonymous reviewers helped tremendously in
improving the content and presentation of this paper. This re-
search was in part funded by a NATO Science for Stability Phase
111 Project Grant—TU-LANGUAGE.

REFERENCES

[1] M.W. Du and S.C. Chang, “A Model and a Fast Algorithm for
Multiple Errors Spelling Correction,” Acta Informatica, vol. 29, pp.
281-302, 1992.

[2] H. Maruyama and H. Watanabe, “Tree Cover Search Algorithm
for Example-Based Translation,” Proc. Fourth Int’l Conf. Theoretical
and Methodologies Issues in Machine Translation, pp. 173-184, 1992.

[3] E.W. Myers and W. Miller, “Approximate Matching of Regular
Expressions,” Bulletin of Mathematical Biology, vol. 51, no. 1, pp. 5-
37,1989.

[4] S. Nirenburg, S. Beale, and C. Domashnev, “A Full-Text Experi-
ment in Example-Based Translation,” Proc. Int’l Conf. New Methods
in Language Processing, Manchester, UK, pp. 78-87, 1994.

[5] K. Oflazer, “Error-Tolerant Finite-State Recognition With Appli-
cations to Morphological Analysis and Spelling Correction,”
Computational Linguistics, vol. 22, no. 1, pp. 73-89, 1996.

[6] S. Sato and M. Nagao, “Towards Memory-Based Translation,”
Proc. 13th Int’l Conf. Computational Linguistics, vol. 3, pp. 247-252,
1990.

[7]1 S.M. Selkow, “The Tree-to-Tree Editing Problem,” Information
Processing Letters, vol. 6, no. 6, pp. 184-186, 1977.

[8] K.C. Tai, “The Tree-to-Tree Correction Problem,” J. ACM, vol. 26,
no. 3, pp. 422-433, 1979.

[91 T. Utsuro, K. Uchimoto, M. Matsumoto, and M. Nagao,
“Thesaurus-Based Efficient Example Retrieval by Generating Re-
trieval Queries From Similarities,” Proc. 15th Int’'l Conf. Computa-
tional Linguistics, vol. 2, pp. 1,044-1,048, 1994.

[10] J.T.-L. Wang, K. Zhang, K. Jeong, and D. Shasha, “A System for
Approximate Tree Matching,” IEEE Trans. Knowledge and Data
Eng., vol. 6, no. 4, pp. 559-570, 1994.

[11] S. Wu and U. Manber, “Fast Text Searching With Errors,” Techni-
cal Report TR91-11, Dept. of Computer Science, Univ. of Arizona,
1991.

