
In fields such as software engineering,
telecommunications, and financial analysis,

researchers and developers have commonly used graphs
to model relational information. For example, many com-

puter-aided software engineering
(CASE) tools use graphs to model the
dependencies between modules in a
large program. (These graphs are
typically drawn as diagrams in which
each node—object—is a small rec-
tangle with a text annotation inside
and each edge—relations or links—
is a line segment between a pair of
nodes. Figure 1 shows an example of
a program’s visualization.) Further
examples of such diagrams are vari-
ous UML diagrams for software mod-
eling, data-flow diagrams, PERT
charts, and Entity-Relationship (E-R)
diagrams in database systems. The

usefulness of the relational model depends on whether
the graph drawing, or layout, effectively conveys the rela-
tional information to the users. A poorly drawn diagram
confuses the application user, but a well laid out diagram
helps the user comprehend the data.

Because user systems have grown larger and become
more complicated, manually laying out graphs has
become not only difficult and tedious but also ineffective
in terms of human and computer resources. This has
motivated a great deal of research in automatic graph
drawing.1 Since graphical user interfaces (GUIs) have
improved and more state-of-the-art software tools have
incorporated visual functions, interactive graph editing
and diagramming facilities have become important
components in visualization systems.

At Tom Sawyer Software (see http://www.
tomsawyer.com), we have created two toolkits that
allow developers to easily integrate graph visualization
capabilities into custom software applications. The
Graph Layout Toolkit (GLT) provides interfaces for

0272-1716/02/$17.00 © 2002 IEEE

Information Visualization

30 January/February 2002

We describe the Graph

Layout Toolkit and Graph

Editor Toolkit, which provide

a framework for graph

visualization useful in a

broad array of application

areas.

Ugur Dogrusoz
Bilkent University

Qingwen Feng and Brendan Madden
Tom Sawyer Software

Michael Doorley
Wilde Technologies

Arne Frick
Accenture

Graph
Visualization
Toolkits

Visualize

Program

main()
{
   readFile();
   …
   reportError();
   …
   writeFile();
   …
}

readFile()
{
   readString();
   …
}

readString()
{
   readChar();
   …
}

reportError()
{
   writeString();
   …
}

writeFile()
{
   writeString();
   …
}

writeString()
{
   writeChar();
   …
}

Main

ReportError WriteFileReadFile

WriteStringReadString

WriteCharReadChar

1 Visualization
of a program’s
call graph.



modeling, drawing, and automatically laying out
graphs. The Graph Editing Toolkit (GET) provides a
customizable display and editing layer, which facilitates
rapidly developing tools that visualize data in the form
of graphs. (See the “Additional Graph Drawing Tools”
sidebar for other approaches.)

In this article, we present an architectural overview
of these tools and discuss the challenges encountered
during implementation and integration of theory and
research results into such tools. In particular, we discuss
automatic graph layout and labeling algorithms and
complexity management techniques. In addition, we
present examples of applications using these tools.

Automatic graph layout
Graph layout comes in different flavors depending on

the application type and the data being visualized. The
graphs include trees (such as directory structures),
directed graphs (such as PERT charts), and general
graphs (such as network maps). Drawing styles include
straight-line and orthogonal drawings (such as data-

base schema). Such differences between the graphs and
drawing styles require highly specialized layout algo-
rithms. For instance, algorithms used to perform a lay-
out of a flowchart differ from those used for a database
schema representation.

GLT provides a graph model and a drawing frame-
work and offers four different layout styles: hierarchi-
cal, orthogonal, symmetric, and circular (see Figure 2,
next page). Each style addresses the needs of various
software applications. We’ve put theoretical results into
practice by first studying and improving them for gen-
erality, efficiency, breadth, and extendibility. For
instance, many popular layout algorithms can only han-
dle a certain type of a graph (for example, simple con-
nected graphs as opposed to disconnected multigraphs)
or have execution times not acceptable for an interac-
tive graph visualization tool. In addition, we equipped
each library with a set of tailoring options that facilitate
customizing the layout algorithm. GLT is independent
of any display or graphics software, thereby providing
users with design flexibility.

IEEE Computer Graphics and Applications 31

Additional Graph Drawing Tools
Much research and development conducted in this area

over the past few decades have resulted in graph drawing
tools and libraries in universities and the industry.

AGD is a library of algorithms for graph drawing (see
http://www.mpi.sb.mpg.de/AGD).1 The library offers a broad
range of algorithms for 2D graph drawing, in particular
planar drawing and planarization methods and tools for
implementing new algorithms. AGD is an object-oriented,
modular, and extendible library implemented in C++ and
based on LEDA (see http://www.algorithmic-solutions.com)
and Abacus.2

GDToolkit is a graph drawing toolkit designed to
efficiently manipulate several graph types and to
automatically draw them according to many different
aesthetic criteria and constraints (see http://www.
dia.uniroma3.it/~gdt). GDToolkit is composed of

� the Graph Application Programming Interface (GAPI), an
object-oriented C++ library providing the advanced devel-
oper with a hierarchy of graph classes encapsulating as
methods a wide set of graph algorithms;

� the Batch Layout Generator (BLAG), a batch application
that reads an input file describing the topology of the graph
to be drawn, applies the algorithms and the constraints
specified in a configuration file, and generates an output
file defining a layout of the input graph; and

� some interactive demos providing a graph editor and a set
of advanced algorithms for automatic layout.

Graphviz is an open-source graph drawing system3 that
includes several components (see http://www.research.att.
com/sw/tools/graphviz):

� dot makes hierarchical layouts of directed graphs,
� neato makes spring model layouts of undirected graphs,
� lefty is a two-view graphics editor for technical pictures,
� dotty is a customizable interface written in lefty,

� tcldot is a customizable graphical interface written in TCL
7.6, and

� libgraph is the base library for graph tools.

Graphviz tools are standalone and can also be extended to
create interfaces to external databases and systems. This
usually involves writing dotty or tcldot scripts to customize
the graph editor’s behavior and to program it to
communicate with external files or programs.

Other tools include Graphlet (http://www.infosun.fmi.
uni-passau.de/Graphlet),4 Graph Drawing Server (http://
www.cs.brown.edu/cgc/cgc-brown.html),5 and
GraphPack.6

References
1. C. Gutwenger et al., Graph Drawing Algorithm Engineering with

AGD, tech. report TR-186-1-00-02, Algorithms and Data Struc-
tures Group, Inst. of Computer Graphics and Algorithms, Vienna
Univ. of Technology, 2000.

2. M. Jünger and S. Thienel, Introduction to ABACUS – A Branch-And-
CUt System, tech. report 97.263, Univ. of Köln, Köln, Germany,
1997.

3. E.R. Gransner and S.C. North, “An Open Source Graph Visualiza-
tion System and Its Applications to Software Engineering,” Soft-
ware Practice and Experience, vol. 30, no. 11, 2000, pp. 1203-1233.

4. M. Himsolt, “Graphlet: Design and Implementation of a Graph
Editor,” Software: Practice and Experience, vol. 30, 2000, pp. 1303-
1324.

5. S. Bridgeman, A. Garg, and R. Tamassia. “A Graph Drawing and
Translation Service on the WWW,” Graph Drawing (Proc. GD 96),
S. North, ed., Lecture Notes in Computer Science 1190, Springer-
Verlag, Berlin, 1997, pp. 45-52.

6. M.S. Krishnamoorthy et al., “Graphpack: Design and Features,”
Software Visualization: Series on Software Engineering and Knowledge
Engineering, P. Eades and K. Zhang, eds., vol. 7, 1996, pp. 83-99.



Hierarchical layout
The hierarchical layout library reveals precedence

relations by positioning the nodes in a graph based on
the direction in which edges are oriented (see Figure
2c). Nevertheless, it allows the existence of cycles and
detects a minimal number of edges that are oriented
against the hierarchy’s flow. Cycle detection makes the
hierarchical library suited for reverse engineering and
compiler applications. The layout algorithm that we use
is based on the one described by Sugiyama, Tagawa, and
Toda.2 We can tailor the algorithm by choosing appro-
priate parameters for graph orientation, node justifica-
tion and alignment, and several spacing parameters. Its
attractive features include orthogonal routing and port
specification:

� Orthogonal routing. This feature draws hierarchical
graphs in which edges run horizontally and vertical-
ly along a grid (see Figure 2c). Flowcharts often use
orthogonal routing.

� Port specification. This feature allows for the specifi-
cation of attachment locations on nodes, which is
important in many complex diagramming applica-
tions where a node might contain several fields (see
Figure 3).

The hierarchical library is versatile because many rela-
tionships between objects are based on precedence. It’s
particularly suited for drawing call graphs and for use
in compiler development. Configuration management,

process modeling, and workflow are other areas for
which the style is appropriate.

Orthogonal layout
The orthogonal layout library produces high-clarity

drawings, using only horizontal and vertical line rout-
ing (Figure 2b). It maintains at most one bend per edge,
except in the case of reflexive edges. The library is par-
ticularly useful in applications that require fast layout
and don’t require drawings to show inherent hierarchi-
cal structures. The orthogonal library’s efficient algo-
rithms3 produce drawings with relatively few crossings.
It allows minimal stretching of nodes that have a high
number of incident edges, and there’s no overlap
between nodes or between nodes and nonincident edges.
Users can set tailoring options to preserve the input node
width and height as specified or to preserve the speci-
fied aspect ratio. Tailoring controls also specify the spac-
ing between parallel edges and between nodes.

The orthogonal drawing style is widely used in CASE
tools. Consequently, this style has many applications in
the areas of data and process analysis and design (such as
database design, data warehousing, and business-process
modeling), CAD, and object-oriented analysis and design.

Symmetric layout
The symmetric layout library uses force-directed

heuristics4 to expose the natural symmetry inherent in
many graphs. The algorithm computes near-congruent
drawings of isomorphic graphs, provides a uniform

Information Visualization

32 January/February 2002

3

9

38

8

3 8

3

9

8

3

3

33

3

398 8

9

8

3

9

3

8

9

8

8

8

83

8

8

8

8

88

89

9

9

9

93

9

3

3

9

9

99

98 99

(a) (b)

(c) (d)

2 Examples of
(a) circular, 
(b) orthogonal,
(c) hierarchical,
and (d) sym-
metric layouts.



node distribution, and produces drawings with rela-
tively few edge crossings (Figure 2d).

The algorithm isn’t as efficient as those of the hierar-
chical and orthogonal libraries, but it produces high-
quality drawings when graphs are reasonably sparse and
node sizes don’t vary widely. It has applications in net-
work management, Web visualization, bioinformatics,
and software engineering diagrams based on undirect-
ed graphs, including E-R diagrams.

Circular layout
The circular layout library produces graph layouts

that emphasize group structures. The layout algorithm
partitions the nodes into clusters based on a number of
flexible grouping methods.5 It places each cluster of
nodes on circles according to the logical interconnec-
tion of these clusters (see Figure 2a). The circular library
supports stable clustering techniques while respecting
application-specific groupings. In addition, users can
set minimum and maximum values for the number of
nodes to be grouped in each cluster.

Many changes to the input graph have no effect on the
clusters produced in subsequent layouts, resulting in draw-
ings that remain relatively stable when changes are made.
The circular layout technique mainly targets networking
and systems management but is also useful in other areas
where clustering is applicable and helpful in depiction of
systems, such as in criminology and Web visualization.

Positioning edge labels
Just as diagram formatting is a time-consuming and

monotonous task, so is positioning labels. Thus, GLT
includes algorithms for automatically placing edge
labels6 (see Figure 4, next page). The algorithms strive to
eliminate ambiguity and improve clarity and flexibility.
A label associated with one edge mustn’t overlap any
other edge or any node. Relationships between edges
and labels should be easily identified without cluttering
the drawing. Thus, GLT positions labels close to, but not
overlapping, edges if possible. In addition, it provides
considerable flexibility in meeting user constraints on
the placement of labels with an extensive set of inter-
faces. For example, in some applications, a label must be
associated with the source node or target node of an
edge.

Features of the edge labeling facility include support
for automatic label positioning for all layout styles. GLT
additionally supports an interactive labeling framework
so that if the application lets users move edges, the edge
labels are suitably repositioned. Finally, GLT includes
interfaces to associate several labels with each edge and
position them automatically. This is a recurring require-
ment in diagrams. For example, E-R diagrams fre-
quently need to provide separate edge annotations for
each of the two end points of the edge.

GET architecture
In designing a generic toolset to enable the develop-

ment of diagram-based visualization applications, we
distinguished between standard, customizable, and
application-specific user interface components in the
GET architecture:

� Standard features are uniform across all applications
and include graph display, scrolling and zooming,
graph layout and editing (such as selection; drag;
resize; and cut, copy, and paste), and printing. These
features tend to be time-consuming to implement. In
particular, graph layout is a difficult problem. GET
not only provides layout, but its design ensures that
layout concepts are easily integrated with the other
common user interface features.

� Customizable features result from requirements that
are common across all applications, but they’re sat-
isfied in different ways. We provided a framework
to enable the toolkit to be instantiated with a par-
ticular set of views (for example, when a node has
color, border thickness, and text fields), event (such
as a mouse event) responses, dialog items, and sec-
ondary windows. Implementing these requirements
generally isn’t a difficult task for an experienced
graphics programmer using a framework such as the
Microsoft Foundation Class (MFC) library. Howev-
er, the need for flexibility is important, so we must
take care in the toolkit design to place flexibility over
functionality.

� Application-specific components vary across appli-
cations. Most graph visualization tools are complex,
requiring interaction between a repository and a user
interface. GET allows flexibility in application design.

IEEE Computer Graphics and Applications 33

FinishHandle
call

Dial
number

4444-555-6789

4444-555-1234

Voice

Home

John Smith

Unknown sound

ddd-ddd-dddd

Selection
1  Number detected
2  Voice detected
3  Hung up
4  Unknown response

Action
Phone answered
Application stopped
Unknown response

Play
message

Start 3 An example
of nodes with
ports.



It should slot into, rather than take over, the appli-
cation. Application developers can include the toolk-
it in a document/view architecture. In this case, the
developer has complete control over the document
design and can use the toolkit’s graph window as a
view. The application is then free to deal with issues
such as interacting with the repository, providing
other views (such as text browsers) of the reposito-
ry and user interface (such as menu, cursor, and
palette design).

Figure 5 illustrates the role played by these compo-
nents in a typical graph visualization application. Fig-
ure 6 shows a GET sample application that application
developers tailor to their requirements.

Complexity management
A single graph is often insufficient to represent infor-

mation because of its overwhelming size or limitations
imposed by application semantics.7 We can organize
such information to span several graphs with relation-

Information Visualization

34 January/February 2002

4 Layout with
automatic label
positioning.

Miami
595

1090

$69

$99

Atlanta

$99

$79New York

2451

$129Los Angeles

349

834

760

191

722

$59

606

$89

$69
Denver

957

908

1855

Chicago
$79 722

$39

Boston

$89

$39

$99

$99

2100

San Francisco

Standard Customized features

Graph editor toolkit

User interface

Graph visualization application

Scrolling
and

zooming

Graph
layout

Graph
editing

Graph
design

Printing

Dialog
items

Event
responses

Secondary
windows

Views

Cursors

Palletes

Status
bar text

Menus

Pop-up
menus

Updates

Updates

Updates

Repository

Other
views5 Role of GET

within a graph
visualization
application.



ships among them. We refer to such relationships as nav-
igation relationships, and they involve three distinct
problems: partitioning, visualizing the navigation struc-
ture, and simplification.

Partitioning
How can we compose such a navigation structure?

There are two extremes. In some cases, the partition-
ing is imposed, for example, by the development
method for leveling data-flow diagrams. In other cases,
we can apply techniques such as graph partitioning
algorithms. Many applications, such as in software
reengineering, can use techniques from both extremes.7

GLT provides minimal support for partitioning.

Visualizing the navigation structure
When visualizing the navigation structure, we can

consider three levels of increasing complexity:

� Navigation through multiple windows. In this case, a
node in a graph navigates to a child graph. The appli-
cation can show the child graph in a different win-
dow. This doesn’t present a layout problem because a
layout is never performed on more than one graph at
a time.

� Navigation through nesting. This model, supported by
both GLT and GET, lets each graph have an independent
coordinate space but lets a child graph be (optionally)
drawn nested within its parent node (see Figure 7).

� Compound graphs. According to this model, an edge
can connect nodes in different graphs. We optional-
ly draw a child graph nested within its parent node.
This requires specialized layout algorithms that pro-
vide techniques for routing the intergraph edges.

Simplification
In some cases, it’s impossible to use navigation, prob-

ably because the semantics of the application don’t allow

it. Simpler techniques such as hiding and folding are
available in GLT and GET. Such techniques let us tem-
porarily remove nodes and edges from the display and

IEEE Computer Graphics and Applications 35

6 Graph Editor Toolkit example application.

Expanded Collapsed

7 Example of nesting capability.

Hidden Unhidden

Folded Unfolded

Folder

(a)

(b)

8 Hiding 
and folding 
examples.



optionally replace them with a new folder node. We can
later reintroduce them (Figure 8).

This simple technique is powerful. For example, it lets
a call-graph user hide a routine that’s called by almost
every other routine or fold together all of the functions
that come from the same library. Both of these tech-
niques let the user and the application developer imple-
ment their concepts of abstraction.8

Applications
We designed GLT and GET to let developers quickly

integrate graph visualization functionality into an
application, enhancing the usability of their tools. Here,
we present several example uses of our toolkits. For
example, the network management software applica-
tion LANsurveyor—a network management software
application from Neon Software for the Macintosh that
maps AppleTalk networks—uses GLT to automatically
display and navigate through the logical relationships
between network objects such as nets, routers, and end

nodes (see Figure 9).
In another application, ESP Work-

station, the GUI for Cybermation’s
ESP Workload Manager product,
uses GET to create a diagrammatic
user interface for visually depicting
large-scale job scheduling (see Fig-
ure 10). Casting the problem as a
graph results in thousands of nodes
that represent tasks, and each task
node can have up to 100 outgoing
edges that represent dependencies
with other tasks. In this application,
hierarchical layout was the appro-
priate choice of style to give users a
clear visual picture of how jobs are
organized and how each job affects
the other. The GET handles func-
tions such as object positioning, line
routing, and user interaction.

Lastly, ERwin is a data modeling
application (from Logic Works) that
uses GLT to support interactive visu-
al database rule design. Our auto-
matic layout algorithms help
eliminate undesirable visual arti-
facts such as table overlap. Auto-
matic layout increases the rate at
which designers can make changes
to the data model, letting them visu-
alize the addition or deletion of
tables as well as any edited relation-
ships between these tables. The GLT-
based interface improves designers’
understanding of the model.

Challenges
Several challenging problems

arise in the development of graph
visualization techniques. We believe
that these problems are important,
and solving them will improve next-

generation graph visualization applications:

� Incremental layout. It’s crucial to preserve a mental
picture of a graph’s drawing over successive layouts.
It can be distracting to make a slight modification,
perform a layout, and have the resulting drawing sig-
nificantly differ from the previous drawing. We’ve
developed incremental layout algorithms for our sym-
metric and hierarchical libraries and are working on
supporting them for other libraries.

� Constraints. Even though most of the information to
be drawn is logical, many applications enforce cer-
tain physical placement requirements on nodes.
These requirements range from fixing one or both of
the location coordinates of some objects to clustering
a specified group of objects. Limited support for con-
straints, such as restricting a node to a specific layer
in a layered hierarchical drawing, is available with
GLT. We’re working on a more generalized constraint
framework for all our libraries.

Information Visualization

36 January/February 2002

9 Screen shot
from LANsur-
veyor. 

10 Screen shot
from ESP
Workstation. 

C
ou

rt
es

y 
of

 N
eo

n 
So

ft
w

ar
e

C
ou

rt
es

y 
of

 C
yb

er
m

at
io

n



� Complexity management. We’ve started investigating
the partitioning and compound graph drawing prob-
lems we referred to earlier. Adding these techniques
to the toolsets will significantly advance the value of
graph visualization.

� Graphical syntax support. We’ll extend GET to let the
application developer specify which types of objects
can have relationships. For example, a requirement
in the design of an application to draw data-flow dia-
grams might be to disallow a data flow between two
data stores. The current model doesn’t have direct
support for this. It requires a richer form of subtyp-
ing than the notion of views GET currently supports.

More functionality addressing these challenging
problems have been integrated into GLT and GET ver-
sion 4.0, and more work is underway. �

Acknowledgment
The National Institute of Standards and Technology

(NIST) Advanced Technology Program grant, number
70NANB5H1162, partially supported this research.

References
1. G. DiBattista et al., Graph Drawing, Algorithms for the Visu-

alization of Graphs, Prentice-Hall, Upper Saddle River, N.J.,
1999.

2. K. Sugiyama, S. Tagawa, and M. Toda, “Methods for Visual
Understanding of Hierarchical Systems,” IEEE Trans. Systems,
Man, and Cybernetics, vol. 21, no. 2, Feb. 1981, pp. 109-125.

3. T.C. Biedl, B.P. Madden, and I.G. Tollis, “The Three-Phase
Method: A Unified Approach to Orthogonal Graph Draw-
ing,” Graph Drawing (Proc. GD 97), G. DiBattista, ed., Lec-
ture Notes in Computer Science 1343, Springer-Verlag,
Berlin, 1998, pp. 391-402.

4. T. Kamada and S. Kawai, “An Algorithm for Drawing Gen-
eral Undirected Graphs,” Information Processing Letters,
vol. 31, no. 1, Apr. 1989, pp. 7-15.

5. U. Dogrusoz, B. Madden, and P. Madden, “Circular Layout
in the Graph Layout Toolkit,” Graph Drawing (Proc. GD
96), S. North, ed., Lecture Notes in Computer Science 1190,
Springer-Verlag, Berlin, 1997, pp. 92-100.

6. U. Dogrusoz et al., “Edge Labeling in the Graph Layout
Toolkit,” Graph Drawing (Proc. GD 98), S.H. Whitesides,
ed., Lecture Notes in Computer Science 1547, Springer-Ver-
lag, Berlin, 1998, pp. 356-363.

7. M. Doorley and A. Cahill, “Experiences in Automatic Lev-
elling of Data Flow Diagrams,” Proc. 4th Workshop Program
Comprehension, IEEE CS Press, Los Alamitos, Calif., 1996,
pp. 218-229.

8. D. Kimelman et al., “Dynamic Graph Abstraction for Effec-
tive Software Visualization,” Australian Computer J., vol.
27, no. 4, Nov. 1995, pp. 129-137.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

Ugur Dogrusoz is an assistant
professor of computer engineering at
Bilkent University, Ankara, Turkey.
He was the Vice President of Engi-
neering as well as a researcher and
developer at Tom Sawyer Software
for three years. His research interests

include graph visualization, combinatorial optimization,
and bioinformatics. He received his PhD from the Com-
puter Science Department of Rensselaer Polytechnic Insti-
tute, Troy, New York.

Qingwen Feng is a product man-
ager at Tom Sawyer Software where
she works on the research and devel-
opment of relational information
visualization technologies. She has a
PhD in computer science from the
University of Newcastle, Australia.

She was the recipient of the 1997 Australian Distinguished
PhD Dissertation in Computer Science Award.

Brendan Madden is the CEO of
Tom Sawyer Software and has spent
15 years developing commercial
quality graph visualization systems.
He previously worked at the IBM TJ
Watson Research Center, where he
was the lead designer and developer

of two of IBM’s graph layout systems. He has a BS in engi-
neering physics from Cornell University.

Michael Doorley is a software
engineer at Wilde Technologies in
Dublin, Ireland, where his interests
include modeling and visualization
of component-based systems. He
previously worked in graph layout
and editing at Tom Sawyer Soft-

ware and had done research in the software reengineer-
ing field. He has a PhD in computer science from the
University of Limerick.

Arne Frick is a manager with
Accenture. At the time of this
research, he was a research staff
member at Tom Sawyer Software,
where he applied his research in
Symmetric graph layout techniques
in the context of a commercial prod-

uct. He has a PhD in informatics from the University of
Karlsruhe, Germany.

Readers may contact Ugur Dogrusoz at Bilkent Univ.,
Computer Eng. Dept., Office EA-528, Ankara 06533,
Turkey, email ugur@cs.bilkent.edu.tr.

IEEE Computer Graphics and Applications 37


