IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 2, FEBRUARY 1997 169

Two Novel Multiway Circuit Partitioning
Algorithms Using Relaxed Locking

Ali Dasdan and Cevdet Aykanat

Abstract—All the previous Kernighan-Lin-based (KL-based) Moreover, such algorithms should run in low-order polynomial
circuit partitioning algorithms employ the locking mechanism, time because the problem sizes are usually very large.
which enforces each cell to move exactly once per pass. In this Kernighan and Lin [5] proposed a two-way graph parti-

paper, we propose two novel approaches for multiway circuit
partitioning to overcome this limitation. Our approaches allow tioning algorithm which became the basis for most of the

each cell to move more than once. Our first approach still uses the Subsequent partitioning algorithms, all of which we call the
locking mechanism but in a relaxed way. It introduces the phase Kernighan-Lin-based (KL-based) algorithms. Kernighan and
concept such that each pass can include more than one phase, and jn's algorithm (KL) operates only on balanced partitions

a phase can include at most one move of_ each cell. Our secondIG] and performs a number of passes over the cells of the
approach does not use the locking mechanism at all. It introduces

the mobility concept such that each cell can move as freely as CircUit where each pass comprises a repeated operation of
allowed by its mobility. Each approach leads to KL-based generic pairwise cell swapping for all pairs of cells. Schweikert and
algorithms whose parameters can be set to obtain algorithms Kernighan [1] adopted KL to hypergraph partitioning. Fiduccia
W'th_d'ﬁe"f?“t pﬁrforma}nccle ChfﬂaCter(']lS“CS-l Wedginerated thrge and Mattheyses [7] obtained a faster implementation (FM) of
versions of each generic algorithm and evaluated them on a subset -

of common benchmark circuits in comparison with Sanchis’ KL with the help Qf a new data Structure, called the bucket
algorithm (FMS) and the simulated annealing algorithm (SA). data structure. ThIS_ data strgcture paSICgIIy con'Fams bucket
Experimental results show that our algorithms are efficient, they arrays and bucket lists and is explained in Section IlI-C in
outperform FMS significantly, and they perform comparably to detail. FM can operate on unbalanced partitions and employs
oA Ouralgorine perorm elaiel beter s he 1unber o a single cell move instead of a Swap of a callpair at each
decreases. This paper also provides guidelines for good parameterSte_p Ina Pass- Krlshnamurthy [8] addec_l to FM "_i look-ahead
settings for the generic algorithms. ability, which helps to break ties better in selecting a cell to

. . , . move. Sanchis [9] generalized Krishnamurthy’s algorithm to a
Index Terms— Iterative improvement, Kernighan—Lin- (P19 y 9

based algorithms, move-based partitioning, multiway circuit multiway circuit part.itionin_g- algorithm. There are many other
partitioning, relaxed locking, very large scale integration (VLSI). approaches to circuit partitioning; the reader is referred to the
excellent survey in [10]. The simulated annealing algorithm

(SA) [6], [11] is one of the most successful ones. In this paper,
we will focus on Sanchis’ algorithm (FMS) and SA.

IRCUIT partitioning deals with the task of dividing (par- A KL-based algorithm iterates a number of passes over the

titioning) a given circuit into two or more parts such thatells of the circuit until a locally minimum partition is found.
the total weight of the signal nets interconnecting these partsHach cell is moved exactignceper pass to avoid thrashing or
minimized while maintaining a given balance criterion amonigfinite loops [7], [8], and docking mechanisnis devised to
the part sizes. Since circuits can be appropriately represengediorce this restriction. That is, a cell is locked as soon as it
by hypergraphs [1], we modeled circuits with hypergraptis moved in a pass, and it remains locked until the end of the
and will use circuit and hypergraph terms interchangeablyass. As also independently observed in [#8],claim that this
Hypergraph partitioning has many important applications iacking mechanism is too restrictive and that it actually results
very large scale integration VLSI layout [2]. The hypergrapih poor solution quality To remedy this problem, we propose
partitioning problem is an NP-hard minimization problem [3kwo approaches. Each approach essentially allows each cell
[4], and hence, we should resort to heuristic algorithms te be moved more than once but limits the total number of
obtain a good solution or hopefully a near-optimal solutiorell moves per pass. This limit can be more than the total

number of cells in the circuit. Our first approach still uses

Manuscript received January 4, 1995; revised November 26, 1996. Thise Iocking mechanism but in a different way and establishes
paper recommended by Associate Editor, G. Zimmermann. This work w; . « . e
supported in part by the Commission of the European Communities, Direfﬁe basis of the proposed mUIt'Way partitioning by locked

torate General for Industry under Contract ITDC 204-82166 and The Scientiidoves” algorithm (PLM). Our second approach does not use
and Technical Research Council of Turkey under Grant EEEAG-160. the Iocking mechanism at all. It introduces a new property

A. Dasdan was with the Department of Computer Engineering and Ip- .. g
formation Science, Bilkent University, Ankara, Turkey. He is now with th or cell moves and bases the decision of a cell move on this

Department of Computer Science, University of lllinois, Urbana-Champaigproperty. This approach establishes the basis of the proposed

I. INTRODUCTION

IL 61801 USA. o “multiway partitioning by free moves” algorithm (PFM).
C. Aykanat is with the Department of Computer Engineering and Informa- We did experiments on benchmark circuits for the proposed
tion Science, Bilkent University, Ankara, Turkey. : _p > : prop
Publisher Item Identifier S 0278-0070(97)02683-3. algorithms in comparison with FMS and SA. We compared

0278-0070/97$10.001 1997 IEEE

170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 2, FEBRUARY 1997

the algorithms in terms of performance and running time. By<r; <1. We usedr; = 0.1 in our implementation as in
the performance of an algorithm, we mean the quality of treémilar works.
solution that the algorithm delivers. In terms of performance, All KL-based algorithms select a cell to move based on its
experimental results show that the proposed algorithms ooteve gains. Thgain G;(s, t) of the move ofy; from F; to P,
perform FMS significantly and perform nearly as well as SAs equal to the difference between the sum of the weights of the
although SA yields the best performance. In terms of runnimgets that,; removes from the cutset and the sum of the weights
time, experimental results show that the running times of tloé the nets that; adds to the cutset of the partition. Based on
proposed algorithms are far smaller than that of SA but largénis definition, we readily see that the gaingfis equal to the
than that of FMS. The proposed algorithms seem to perforlecrease or negative increase in the cutsize that would result
well for both multiway partitioning and partitioning of sparsdrom moving ;. The maximum move gaid,,,. is equal to
circuits. the product of the maximum cell degree and the maximum net
The rest of the paper is organized as follows. Section weight. All the gains fall in the intervl—Gax, Gimax)-
gives the basic definitions related to multiway hypergraph par-
titioning and introduces the notations. The proposed algorithms i
are presented in Section Ill. This section also discusses the)
data structure and the complexity analysis. The experimental-€t &V denote the total number of moves in a pass. In our
framework giving the details of the experiments on benchmafiPProaches, each cell mov&§r times on the average, which
circuits, and the experimental results for performance afg" be more than one wheki >n. At each step in a pass,
running times are presented in Section IV. This section also fadirect multiway partitioningalgorithm considers all possible
cludes some experiments on the parameters of our algorithfi9Ves of a cell from its source part &y of the other parts

Section V contains our conclusions and directions for futuff® target parts) in the partition and chooses the best of them,
work. i.e., the one with the maximum gain. In this respect, FMS and

the proposed algorithms are all direct multiway partitioning

algorithms. Fork way partitioning, there aré& — 1 possible

move directions or target parts for a single cell. We now give
We model a circuit by a hypergrapH = (V, E') where the specifics of the proposed approaches.

V = {v|1 < i < n}is the set of cells and = {¢;|1 < j <

m} is the set of nets. Each net is a subseVoEach cellhas a p_ Multiway Partitioning by Locked Moves (PLM)

weightw;(w; > 0), and each net has a weight(c; > 0). The

degreed; of v; is the number of nets connected«g and the

degree|e;|(|e;| = 2) of ¢; is the number of cells connected

to ¢;. The total numbep of pins denotes theizeof H where

p = X2, d;. Theaverage cell (net) degreP,,(D.) is defined

asD, = p/n (D. = p/m). The densityD for n > 2 is

. PROPOSEDALGORITHMS

Il. DEFINITIONS AND NOTATIONS

The generic PLM algorithm is given in Fig. 1. In this
algorithm, each pass contains a humbeipbéses and each
phase contains a sequence of tentative movesiLgt denote
the number of phases in a pass a¥ig the number of moves
in each phase so th&f = N,,/NV;,. In essence, PLM moves
a number of cells in a phase, locks each cell as it moves,

defined as . and unlocks all the cells moved in that phase before starting
Z|e,»|(|e,»| —1) another phase. Each phase tries to find a better location for
i the cells, and the final location for a cell is determined only
D= Jn(n——l) (1) after all the phases, i.e., at the end of each pass. Unlocking a
cell at the end of each phase except the last one is to give the
which is similar to the definition in [13]. cell one more chance of moving in the rest of the pass. The
A partitionII of H is ak way partitionif IT = (P,---, P,), parameters of PLM aré&/,,; and Vy,. Since we have: cells,

eachpart P, is a nonempty subset df, parts are pairwise Ny, < n, but N can be larger than. The values that we used
disjoint, and the union of: parts is equal toV. A k& way for these parameters are given in Section IV-A.
partition is also called anultiway partitionif k>2 and a Note that step 14 in Fig. 1 finds the best partition en-
bipartition if £k = 2. countered during a pass, and steps 15-17 move the cells to
A net with at least one pin in a part is said¢onnectthat their final locations in that partition. The maximum prefix
part. A net that connects more than one part is said touje sum in step 14 of a pass is the difference between the cost
otherwiseuncut The costy(II) of II, the cutsize is equal to of the partition at the start of this pass and the cost of the
the sum of the weights of all cut nets. As in [9], each agt best partition reached. The moves in the maximum prefix
contributes an amount of; to the cutsize. Theutsetof a subsequence constitute the sequence of the moves that lead
partition is the set of all cut nets. to the best partition in this pass. The steps of PLM are almost
The multiway circuit partitioning probleninvolves ak way the same as those of FMS, and PLM actually subsumes FMS
partitioning of H such that the cutsize is minimized and théor N, = 1 and N, = n. Running FMS with N;, moves
partitioning is balanced. A partitioH is balancedif each part per pass amounts to running PLM wibhly onephase, and so
satisfies thévalance criterionL(F;) < w(F;) < U(F;) where FMS with N;, moves per pass is not equivalent to PLM. The
L(P) = [(w(V)/E)(1 —m)| andU(F) = [(w(V)/k)(1 + dynamic locking algorithm (DLA) algorithm [12] looks similar
71)]. Here,w(P;) is the total weight of the cells i, w(V') is to PLM, but DLA is not equivalent to PLM in following major
the total weight of all the cells, and is a parameter satisfying respects: DLA is for bipartitioning, but PLM is for multiway

DASDAN AND AYKANAT: MULTIWAY CIRCUIT PARTITIONING ALGORITHMS 171

Algorithm: Multiway Partitioning by Locked Moves. for f values,T" is computed to be
Input: A k-way partition of H = (V| E) with |V| = n, 1 1 1—e¢
and its cutsize. T = <Gmax> In < c) ~ 4-6/Gmax 3)

Output: A locally minimum k-way partition of H. . .
using (2), wheree >0 is a very small constant. We used

1 Initialize bucket list pointers e = 0.01 in our implementation. The mobility of a cell can be
2 repeat /* for each pass */ considered to be the probability that the cell can be selected
for a move. So, the larger the mobility, the larger the chance

3 for each of Ny, phases d . :
oF each of Now phases o of being selected for a move. As can be seen from (2), this

4 Compute gains of cells, and unlock them probability increases as the gain gets larger but decreases as
5 Insert cells into bucket lists using their move gains the move count gets larger. That is, the cell is penalized by
6 repeat the number of moves it makes. The parameiedetermines
. Select 4 1) with the extent of this penalization. We found that= 1/2 is a
elect a move (and so, a cell) wi good choice.
the max. move gain To utilize the bucket data structure, we have to devise a
Delete the cell from bucket lists and lock it way of indexing the bucket arrays of this data structure using
. the mobility values. For this, we scale the mobility values
] Tentatively make the move .
, to a range larger than (0, 1) and convert them to an integer.
10 Update gains of all affected cells Thus, we map a cell with mobility/;(s,#) to a bucket list
11 until N;, times or no move is possible indexed byF; (3, t) = |_sz (3, t)J where S denotes thescale
12 if N;, < n then /* if some buckets are non-empty */ factor. Henceforth, by the mobility ofs;, we mean itsF
13 Free bucket List nodes value. The floorlng_ inF introduces a sllght randomlzatlon_
) ' to the move selection process by mapping some cells with
14 Find the max. prefix sum Gy, and determine the max. different # values into the same bucket list. The amount of
prefix subsequence L of the tentative moves this randomization is controlled by the scale factor in that a
15 if Gy > 0 then /* if there is a decrease */ small scale factor intrngpes more randomness. As can readily
i be seen from the definition of, F' value for a cell can be
16 Make permanent the moves in L
computed in constant time, given the gain and the move count
17 Decrease the cutsize by G, of the cell. Since each cell hag£ 1) possible move gains,
18 until Gz < 0 /* until no more improvement */ each of which is for a target part, each cell also has ()

mobility values.

PFM doesN moves per pass and does not lock any cell.
The same cell can be selected as many times as it has the
partitioning. DLA uses a different unlocking strategy in thatnaximum mobility value among all the cells. The steps of this
it only unlocks some neighbors of the cell moved, but PLMIgorithm are similar to those of PLM with the main difference
unlocks all the cells moved in a phase. Finally, DLA imposéseing that the cells are evaluated on the basis of the mobility
an upper bound on the maximum number of moves per celhlues rather than their gains. The parameters of PFM are the
but PLM imposes an upper bound on the average numberméve count,a, ¢, N, and S. In our implementation, we used
moves per cell. the move county, ande as given in this section. The values
that we used forV and S are given in Section IV-A.

Fig. 1. The generic direct multiway partitioning by PLM.

B. Multiway Partitioning by Free Moves (PFM)

The generic PFM algorithm is given in Fig. 2. This algoC. Data Structure and Initial Partitioning
rithm does not use the locking mechanism at all. Instead, thegjnce our algorithms are similar to FMS, we adapted the
decision as to which cell to move is based on a new propegycket data structure, which was proposed in [9] for a direct

of the cells. This new property is called tieobility. Each myitiway partitioning. We will explain this data structure for
cell has a mobility value for each of its gains. These valugg=\ and give the changes for PLM later. This data structure

determine the move capability of a cell. ~ contains onébucket arrayof size S for each move direction.
The mobility f;(s,t) of the move ofv; from P, to I} s The bucket arrays are indexed by mobility values. Each move
defined as is stored in the arrays at an index corresponding to its mobility
Fi(s,1) = (1 +n& exp(=Gi(s, £)/T) ") value. Since several moves can have the same mobility, each

array cell is actually a linked list, called lbucket list For
wheren,;, T, and« are parameters as defined below. Tineve constant time insertion and deletion of moves, the bucket lists
countn; of »; counts the moves that makes. When the cells are doubly-linked lists. There aré ¢ 1) move directions for
are inserted into the bucket lists for the first time, it is setach cell andk parts in the partition, so there are a total
to one. It is then set to zero and incremented by one witf k(k — 1) bucket arrays. The index of the array cell that
each move. The parametéris used to expand the range pf contains a nonempty bucket list with the largest mobility value,
values into (0, 1). For a predefined interyall —e¢] atn; =1 called the top bucket list, is stored in a special variable to

172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 2, FEBRUARY 1997

Algorithm: Multiway Partitioning by Free Moves. in [9] for the first level gains. For each cell, the initial gain
computation procedure computes a move gain for each part
by using the definition of the move gain. Its running time is
O(pk). The gain update procedure is similar to the one given in
Output: A locally minimum k-way partition of 4. [9]. It may end up checking and updating the gains of each cell
on the nets that are connected to the cell moved. If locking is
used, the total number of updates can be bounded from above

Input: A k-way partition of H = (V] E) with |V| = n,

and its cutsize.

1 Initialize bucket list pointers

2 repeat /* for each pass */ as shown in [9], and the running time becon®@&kG.,.x)
3 Compute gains of cells, and set move counts to 0 for a whole pass OI’O(kamaX)/TL = O(kaaXD'U) per
4 Insert cells into bucket lists using their mobility values move. If lOCkmg IS not use_d as in PFM, we cannot bound
the number of times a particular cell moves, and so we have
5 repeat to give a trivial upper bound such that the running time
6 Select a move (and so, a cell) with becomeSO(kSD'U,nlaxDe,lnax) per move, WhereD,U7maLX is
the max. mobility the maximum cell degree anf). ., iS the maximum net

degree. FMS, PLM, and PFM use almost the same gain update

7 Tentatively make th Vi . . .
Y ¢ move procedure, the difference being that the gain update procedures
-8 Increment the move count of the cell for FMS and PLM do not consider locked moves.
9 Update gains and mobility values of all affected cells Given the running times above, we can derive the total

running time of the algorithms as follows. The time complexity
of FMS is O(pk(k 4+ Guax)) per pass as given in [9].
Since each pass of PLM compris@g,,; phases, and each

10 until N times or no move is possible

11 Find the max. prefix sum Gp, and determine the max.

prefix subsequence L of the tentative moves phase has a running time éf(pk(/f + Gmax))7 PLM runs in
12 if G > 0 then /* if there is a decrease */ O(Nouipk(k + Guax)) time per pass. For PFM, we cannot
13 Make permanent the moves in L get a simple running time expression due to the difficulty
» Decrease the cutsize by Gy in constr:_;unmg the total number_ of moves fpr a each cell.
The dominant steps for PFM’s time complexity are steps 1,
15 Free all bucket list nodes 6, and 9. These steps are also dominant for PLM but the time
16 until Gy, < 0 /* until no more improvement */ complexity of each of these steps is subsumed in the overall

running time. Since there afdk— 1) bucket arrays each with
size S, the time to initialize all list pointers (step 1) takes
O(k%S) time, and the time to select a cell to move (step 6)
ensure constant time access to the best moves in each bugéﬂ@sO(k2) time. There areN moves per pass, and step 9
array. An insertion into a bucket list is done at the head Q‘ikesO(kSD'U,maxDe,maX) time, so the loop of step 5 takes
the list, guaranteeing)(1) time for the operation. To find & O(N (k24 kS Dy maxDe max) time. Hence, the overall running
move with the maximum mobility, we search a@llk — 1) time of PEM is O(pk + k25 + N(k2 4 kDy maxDe maxS))

top bucket lists and select the first such move encounter@& pass. The total number of passes that each of these
during the process. If there is more than one move with thggorithms does is not known in advance but usually less than
same maximum mobility, we select the one at the head of thesmall constant, and so these per-pass running times also
list, obtainingO(1) time for the removal. If the top bucket listcorrespond to the total running times. The time complexity
becomes empty after the removal, we have to sggeffsl) time of each algorithm can be reduced by using a binary heap to

to update the index of the top bucket list [9]. This scheme peed up the move selection step, e.g., that of FMS reduces
actually called last-in, first-out (LIFO) in [14]. FMS and PLMtq O(pk(lgk + Gimax)) per pass [9].

use the same data structure in the same way except that we
should replaceS with 2G .5 + 1 and mobility with gain in
the foregoing discussion. E. Search Space and Algorithm Behavior

Like FMS, our algorithms need an initidl way partition tpjs section comments on the size of each algorithm’s
as input. We generate an initidlway partition byrandomly qoac0h space and gives plots of how they behave during
assigning each cell to one of the parts with the minimum sizg. itioning. By the search space of an algorithm, we mean the
This algorithm is actually an approximation algorithm [15]. gey of solutions (partitions) that the algorithm examines during
partitioning. The sizes of the search spaces of our algorithms
are larger compared to that of FMS, and this is used to give an

Since our algorithms are also KL-based, we need oiguition for their better performance and larger running times.
procedure to compute the gains initially and another to updateEvery partitioning algorithm developed after FM has used
them after a move in such a way that the running time of otlie move-neighborhood structuréA partitioning algorithm
partitioning algorithms become linear in the size of the circuitvith a move-neighborhood structure proceeds from one parti-
Our procedures are given in [16] due to lack of space. Théign to another by means of a single cell move. Our algorithms
can be considered as a straightforward generalization of thesewell as FMS use the move-neighborhood structure. Let
in [4] for multiway partitioning or a simplification of those A’[A] denote the number of solutions explored per pass by a

Fig. 2. The generic direct multiway partitioning by PFM.

D. Time Complexity Analysis

DASDAN AND AYKANAT: MULTIWAY CIRCUIT PARTITIONING ALGORITHMS 173

Evolution of Cutsize for PLM Evolution of Cutsize for PFM

T T T
'

140 T T

current —
final ----

120 -

Cutsize

3
T

T T
1 1
1 1
1 1
1 1
1 '
' '
1 1
1 1
1 1
1 1
1 1
1 1
1)
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
(1
1 1
1 |

T
(
1
1
+
1
'
'
t
|
'
'
'
)
'
b
!
'
'
'
|
i
'
i
| 1 1
i

1 40 L 1 1 i 1 i L
0 990 1980 2970 3960 4950 5040 0 990 1980 2970 3960 4950 5940 6930 7920

Cell Moves Cell Moves

(@ (b)
Fig. 3. Evolution of cutsize with cell moves for (a) PLM and (b) PFM on s838 with 495 cells.

KL-based algorithmA. Then, the total number of partitionsa phase. In fact, Fig. 3(a) shows the typical behavior of a
explored by A is equal to the product of the number ofKL-based algorithm with locking, e.g., FMS has the same

passes thatd makes andV[A]. The number of passes isbehavior. Thus, PLM2 and FMS do not benefit from most of

usually less than ten but varies with each choice of both thiee moves in a pass, indicating that locking does not prevent
algorithm and the problem. A move-neighborhood structutbrashing. As seen in Fig. 3(b), PFM2, on the other hand,
for & way partitioning of ann-cell circuit contains at most utilize most of them. PFM2 smoothes out the spikes, yielding

n(k — 1) partitions at each step in a pass, as each otlls a more steady convergence.

can move to any of thék — 1) target parts. Note that, for

an algorithmA using the locking mechanism, only unlocked

cells should be considered when computikgA]. Then, we |y ExpeRIMENTAL FRAMEWORK, RESULTS, AND DISCUSSION

can obtain the following boundsV[FMS] <(k — 1)n(n +

1)/2, N[PLM] < N(k=1)(2n—Niu+1)/2, andN[PFM] < This section presents the details of the experimental frame-
Nn(}f —1). If all the moves in a pass’ are possible, thesiork and gives the experimental results. We evaluated three
inequalitieé become equalities ' versions of both PLM and PFM in comparison with FMS and

Intuitively, we expect that the larger the number of partitions”* ON @ subset of benchmark circuits.
explored by an algorithm, the better the quality of the solution
delivered by that algorithm as well as the larger the running Experimental Framework

time of that algor_lthnj.. Our'experlmental observations prowde By setting the parameters of the generic PLM and PFM
support for this intuitive view, yet they also show that th|sI ith diff | dth : ¢
intuitive fact is not the only factor affecting the performancea gorithms to ditferent values, we generated three versions o

each of these algorithms. Henceforth, these versions of PLM

Also note that almost all of the partitions explored by FMS P&lhd PEM will be referred to as PLMand PFM, respectively,

pass are different. However, some of the partitions explor?-zOr i = 1,2,3. The values of the parameters and the names
)) N

by PLM and PFM per pass may be the same since they a”%\fvthese versions are presented in the following table, where

multiple moves for a cell. Although in general, PFM beats, . . .2
PLM and PLM in turn beats FMS in terms of the total numbeir{I - S/(2Gma"+1) s the ratio of the bucket size in an PEM
rg';orlthm to that of FMS.

} . . a
of solutions explored, we have some exceptions as given |

Section IV-B1. Versions of PLM and PFM
As for how the proposed algorithms behave, Fig. 3(a) and— Nowt: | Nin | Name | N R Name
(b) illustrate the evolution of the cutsize with the cell moves , 22L :?; Etm; :k g Em;
in PLM2 a.nd PFM2, respe.ctiv'ely,'fo.r four-way _part_itioning k2 512 77:/2 PLM3 k2 128 PEM3
of s838 with 495 cells. This circuit is a small circuit from
the Partitioning93 test suite. PLM2 and PFM2 are two Let N[A] denote the number of cell moves in a pass of

versions of PLM and PFM, respectively, and are presentedanKL-based algorithmA. Then, for this setting, we have
Section IV-A. Each interval between two successive verticAI[FMS] = N[PLM1] = N[PFM1], N[PLM2] = N[PFM2],
lines corresponds to a pass. The “current” cutsize curve is fand N[PLM3] = N[PFM3|. We say that a PFi#algorithm
tentative moves during a pass, and the “final” cutsize curvederresponddo a PLM; algorithm or vice versa it = j, e.g.,

for the permanent moves. These two curves usually coinciBEM2 and PLM2 correspond to each other. Note tNats

in the plots. The initial cutsize for both algorithms is 374chosen to be a function of and & rather than a constant, as
and the final cutsizes for PLM2 and PFM2 are 77 and 5the size of each algorithm’s search space is proportional to
respectively. In Fig. 3(a), each spike roughly corresponds tltese problem parameters.

174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 2, FEBRUARY 1997

TABLE |
PROPERTIES OFBENCHMARK CIRCUITS (n = NUMBER OF CELLS, m = NuUMBER OF NETS, p = NUMBER OF PINS, D, = AVERAGE CELL
DEGREE D. = AVERAGE NET DEGREE Dy, max = MAXIMUM CELL DEGREE D, max = MAXxiMuM NET DEGREE AND D = DENSITY)

Full Name | Short Name | n I m I P I D, D, Dy, mar I De mas [D

struct struct 1888 1888 5375 2.85 | 2.85 4 16 | 0.004490
primary2 prim2 3014 3029 | 11219 | 3.72 | 3.70 9 37 | 0.008204
c7552 c7652 2247 2140 6171 2.75 | 2.88 5 137 | 0.008876
c2670 c2870 924 880 2375 | 2.67 | 2.76 5 30 | 0.011444
industry2 ind2 12142 | 12949 | 47193 | 3.89 | 3.64 12 584 | 0.011770
primaryl primi 833 902 2908 | 3.49 | 3.22 9 18 | 0.018056
industryl ind1l 2271 2186 7731 3.40 | 3.54 9 318 | 0.038276
biomed bio 6417 5711 20912 | 3.26 | 3.66 6 860 | 0.062038
test06 test08 1752 1841 6638 | 3.79 | 4.05 6 388 | 0.079830

All the algorithms were coded in C. Our implementation o6f its system and user times and includes all the times from
Sanchis’ algorithm, i.e., FMS, is better than Sanchis’ origin#ihat of reading the input circuit up to that of outputting a final
implementation because FMS uses the LIFO tie-breakihmgcally minimum partition. The parameter settings discussed
scheme, but the original implementation uses the random tie-this section will be referred to abe default settings
breaking scheme, which is consistently outperformed by LIFO We implemented SA according to the cooling schedule in
as advocated in [14]. A comparison of the performance of FM8]. This cooling schedule was proposed for bipartitioning and
with that of Sanchis’ (even with level 4) as given in [14] oralso used in a work [17] similar to ours. We also incorporated
some circuits such agriml andprim2 also confirms this the guidelines supplied in [6], [11], and [19]. We made the
fact. following three changes in the cooling schedule in [6] to adapt

All of the experiments were done on a Sun SPARC 1ibto multiway partitioning. The starting temperature was set to
under SunOS operating system. We used nine benchmtgR as in [11] where the acceptance rate was larger than 90%,
circuits as our test instances from theyoutSynth92 whereas Johnsost al. [6] suggested a starting temperature
andPartitioning93 test suites iMCM/SIGDA Design where the acceptance rate was 40% for a speedup. This change
Automation Benchmarks . The properties of these circuitsdid not affect the performance but increased the running time
are summarized in Table I. The circuits in all the tables i bit. The termination condition was met when either the
Section IV are ordered in ascending density. We deleted certagfeptance rate was less than 2% as in [6] or the same cutsize
nonessential features of these circuits as in [1] and [7]. All tH#as encountered/2 times. This change did not degrade
nets with only one cell were removed, and each net containitg Performance. We used it merely to eliminate unnecessary
a cell more than once was enforced to contain that cell orfjoves before the convergence. The final change was in the
once. In order to give to the reader a better interpretation fm of the cost function. Johnscet al. [6] used a penalty
the experimental results, we set each cell and net weightftiction approach so that their scheme allowed infeasible par-
one. However, it should be noted that our formulation as wéifions to be accepted. In order to ensure that each algorithm we

as our implementation allow nonuniformly weighted cells angPmpared selects a move in the same way, we did not use the
nets without any change. penalty function approach in our implementation of SA. This

In our experiments, we used a slightly modified version &hange may degrade the performance slightly if the balance
PFM in order to improve performance by eliminating someriterion is tight, but it seems to reduce the running time.
zero-gain moves. The new version did not select a cell in two
successive moves. We used a table lookup technique to spBedResults with Default Settings and Discussion
up the calculation of the exponential function values in (2) as Table Il presents the average and minimum cutsizes found
in [6]. by each algorithm. Table Il presents the average running

We set the numbek of parts to 2, 4, 6, and 8 as in similartime of each algorithm. The bottom of Table Il also includes
works. Following [17] and [18], we ran FMS 500 times, eacthe average percent improvements of the algorithms with
of our algorithms 30 times, and SA ten times on each tegfspect to FMS where the averages were taken over all the
instance starting from different initial partitions. The runningircuits. We gave these percentages only to give a quick
time of SA on the largest circuihd2 for k = 2 was so large perspective to the reader. In all the tables, the bold values
that we could not obtain any performance data for SA on this a row correspond to the best values for that row. Recall
circuit. To allow a fair comparison between the algorithmshat the best cutsize is the smallest cutsize, and the best
we used the same initial partition generation algorithm amdnning time is also the smallest running time. In general,
the same balance criterion for all the algorithms. Moreovahe performance of each algorithm differs when= 2 and
the level parameter of FMS was set to one as the leveb 2. We examine these two cases separately.
parameter concept is applicable to our algorithms, but we did1l) Results—Performance at Bipartitioning:rom Table I,
not incorporate it. The running time of an algorithm is the sumve observe the following for the solution quality at biparti-

DASDAN AND AYKANAT: MULTIWAY CIRCUIT PARTITIONING ALGORITHMS

175

AVERAGE (MINIMuM) CUTSIZES FORBENCHMARK C?;A(\:E:_TE IéOLD VALUES ARE THE BEST VALUES IN EACH Row
PROBLEM AVERAGE (MINIMUM) CUTSIZES
Name l h FMS ” PLM1 PLM2 [PLM3 JJ PFM1] PFM2 PEM3 SA
2 56.8 (40) 62.3 (43) 54.5 (43) 54.7 (47) 99.9 (58) 60.3 (33) 59.2 (33) 67.2 (386)
4 300.4 (202) 259.3 (206) 230.2 (175) 211.4 (173) 166.6 (136) 126.3 (83) 111.2 (78) 130.0 (121)
struct | 6 408.4 (302) 321.3 (268) 289.5 (231) 267.1 (220) 260.1 (213) 214.0 (159) 183.3 (132) 160.8 (145)
L] 496.8 (408) 432.2 (391) 394.0 (310) 371.6 (280) 369.5 (317) 303.7 (235) 285.1 (257) 180.0 (183)
2 278.2 (154) 367.7 (238) ©812.5 (190) 268.9 (205) 284.3 (218) 259.0 (215) 239.7 (1832) 3326.0 (182)
4 828.7 (731) 771.8 (713) 718.2 (635) 671.6 (6032) 657.1 (527) 454.1 (409) 416.4 (351) 424.2 (388)
prim2 | 6 268.5 (883) 873.2 (831) 833.8 (785) 822.8 (765) aae.gv(774) 592.6 (519) 537.4 (479) 508.0 (487)
8 1043.2 (991) 982.6 (9386) 941.0 (8a3) 901.5 (868) 942.3 (815) 666.5 (598) 626.5 (576) 565.8 (535)
2 48.6 (31) 61.4 (38) 56.4 (37) 532.8 (32) 107.6 (59) 90.8 (58) 76.9 (37) 83.6 (76)
4 388.2 (295) 340.8 (298) 350.5 (287) 330.4 (2586) 303.7 (343) 184.8 (157) 163.7 (130) 171.4 (159)
c7552 [498.2 (445) 435.9 (400) 399.6 (359) 372.8 (315) 420.7 (369) 262.6 (211) 218.1 (164) 219.2 (208)
s 550.7 (501) 517.1 (455) 484.0 (442) 444.0 (409) 478.4 (403) 308.1 (263) 257.8 (300) 359.4 (243)
2 5932.5 (243) 900.2 (667) 756.8 (541) 661.8 (314) 879.8 (690) 768.2 (577) 699.4 (566) N.A.
4 2541.4 (2097) 2339.2 (1996) | 2159.0 (1984) | 2045.2 (1720) 2119.4 (1849) 1258.2 (941) 1020.0 (803) N.A.
ind2 [} 2902.1 (3741) 2535.2 (2373) | 2307.2 {2150) | 2249.0 (1985) 2664.9 (2427) | 1565.5 (1362) | 1314.8 (1041) N.A.
[3093.7 (2929) 2809.8 (2544) | 2635.2 (3393) | 2333.4 (2081) 2816.0 (2607) | 1766.4 (1575) | 1506.0 (1238) N.A.
2 76.4 (48) 83.6 (61) 74.3 (51) 85.9 (49) 84.7 (65) 72.4 (51) 72.8 (4T) 73.8 (67)
4 205.8 (160) 181.5 (159) 161.0 (138) 144.6 (137) 152.6 (1285) 123.6 (111) 111.8 (87) 113.6 (109)
priml] 244.7 (3201) 217.4 (181) 192.7 (170) 173.6 (151) 199.6 (172) 145.4 (123) 130.8 (114) 131.0 (126)
[274.0 (224) 253.7 (322) 218.3 (182) 191.5 (181) 227.8 (198) 169.0 (137) 148.7 (128) 144.2 (131) '
2 57.9 (30) 61.5 (30) 62.5 (37) 53.8 (25) 93.9 (30) 82.9 (37) 77.6 (39) 71.2 (48)
4 438.2 (341) 374.1 (269) 320.0 (235) 295.7 (198) 339.9 (212) 190.7 (118) 148.2 (83) 184.8 (153)
ind1 6 530.6 (438) 475.0 (414) 445.2 (391) 413.0 (348) 461.4 (378) 305.3 (235) 266.4 (200) 263.4 (219)
[579.6 (522) 550.6 (506) 521.6 (489) 474.3 (424) 529.5 (455) 381.4 (284) 339.0 (249) 203.2 (278)
2 127.4 (83) 205.1 (171) 185.3 (126) 180.1 (168) 324.2 (277) 223.9 (185) 190.4 (148) 283.2 (272)
4 729.1 (561) 689.0 (628) 641.4 (577) 570.8 (505) 630.9 (569) 361.6 (322) 296.3 (273) 404.0 (397)
bio 6 905.1 (779) 738.8 (663) 672.7 (622) 656.3 (613) 786.9 (678) 529.9 (499) 497.1 (461) 485.8 (476)
[987.6 (887) 855.2 (748) 798.2 (718) 745.7 (666) 839.8 (727) 631.6 (594) 600.8 (569) 564.8 (517)
2 89.5 (83) 85.6 (73) 84.1 (70) 80.8 (85) 140.2 (91) 93.3 (73) 91.8 (74) 81.8 (75)
289.7 (187) 273.0 (237) 262.5 (219) 248.6 (217) 264.6 (190) 153.8 (104) 137.8 (107) 151.2 (137)
test08 | 6 356.5 (297) 328.4 (289) 303.6 (265) 286.0 (248) 321.4 (264) 204.5 (158) 175.1 (144) 173.0 (153)
[394.0 (344) 374.4 (345) 349.6 (319) 319.0 (275) 361.2 (299) 233.1 (183) 203.2 (1587) 191.8 (170)
Avr % Improvement in Avr (Min) Cutsizes uwrt FMS
2 0.0 (0.0) -23.9 (-64.8) -12.1 (-43.0) -3.0 (-32.9) -66.5 (-102.2) -29.2 (-89.8) -18.5 (-50.0) -12.7 (-74.5)
4 0.0 { 0.0) 9.8 (-1.8) 18.5 (7.4) 22.6 (15.0) 21.8 (18.3) 50.0 (48.5) 56.8 (55.2) 50.8 (39.5)
[0.0 (0.0) 13.0 (9.4) 20.1 (16.6) 24.5 (22.8) 16.0 (15.4) 43.4 (44.9) 50.4 (52.8) 51.4 (46.9)
[} 0.0 (0.0) 8.1 (6.4) 14.8 (14.5) 21.8 (22.9) 13.3 (15.8) 39.4 (42.5) 45.0 (47.8) 49.8 (47.2)

tioning. For the average performance, PLM3 and FMS delivexamine more partitions, and so they must perform better than
the best results, but PLM3 beats FMS on five of the eightMS. The following reasons seem to account for this result.
circuits. For the minimum performance, FMS outperforms affirst, FMS executed the largest number of passes, making
the others except that fatruct , the most sparse circuit, the size of its search space comparable to that of PLM1
PFM2 and PFM3 produce the smallest cutsize. Generally, bathd PFM1. Second, FMS is the most “unstable” algorithm
the average and minimum performance of PL&d PFM for bipartitioning in the sense that the disparity between the
gets better asincreases, i.e., as the number of moves per passximum and the minimum cutsizes it found was the largest.
increases. Moreover, the PliMlgorithms perform better than The instability of FMS makes its average performance worse
the corresponding PFMalgorithms. SA performs nearly asbut helps it beat all the others for minimum performance.
well as PFM3. PLM3 achieves the best average performang@éijrd, the total number of local minima at bipartitioning is
14% on priml , and PFM3 achieves the best minimummot so large, and so a more greedy strategy like the locking
performance, 18% ostruct , both relative to FMS. mechanism of FMS pays off. Fourth, the disparity in gain
The relatively poor performance of most of our algorithmsgalues for bipartitioning is small, making the number of zero-
for bipartitioning seems a bit surprising as we expect that thggins larger and so making the move selection process difficult

176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 2, FEBRUARY 1997

ExecuTioN TIME AVERAGES FOR BENCHMARK CII;[;:AU?TLSI.E BlgLD VALUES ARE THE BEST VALUES IN EACH Row
PROBLEM EXECUTION TIME AVERAGES (in seconds)
Name | k || FMs | PLM1 | PLM2 | PLM3 | PFM1 | PFM2 | PFM3 | sA
2 2.0 1.8 2.8 4.5 2.0 3.2 9.1 1656.3
4 3.8 5.4 17.1 61.0 6.6 13.4 87.5 4156.1
struct 6 4.9 8.2 35.0 172.4 11.2 31.9 220.9 697.9
8 6.9 9.4 58.2 409.3 13.6 53.7 383.2 950.3
2 5.6 4.1 7.4 14.3 4.3 6.5 221 914.0
4 7.3 8.9 42.5 168.7 11.6 37.0 172.5 3565.8
prim2 8 0.4 17.2 76.3 337.9 15.8 79.6 453.6 | 18406.7
8 13.2 21.4 127.4 860.4 20.7 123.1 743.9 | 37304.2
2 2.9 2.7 4.1 6.9 2.3 3.3 8.8 565.0
4 5.0 8.1 22.4 84.9 6.2 17.6 82.0 3742.7
c75652 8 8.8 14.1 53.5 250.4 9.7 43.7 258.1 10692.5
8 9.76 18.1 84.4 646.6 14.5 79.7 494.3 | 17971.8
2 55.2 18.3 29.2 52.7 38.5 52.8 144.2 | >46800
4 64.8 51.8 180.3 702.4 84.4 242.3 | 1063.7 N.A.
ind2 6 96.7 92.1 381.8 | 1860.5 111.3 541.4 | 3111.0 N.A.
8 132.4 110.4 637.4 | 4855.2 189.6 | 1007.4 | 7305.0 N.A.
2 1.0 1.0 1.4 2.8 0.8 1.0 3.4 205.1
4 1.3 2.2 6.8 22.1 2.1 4.6 25.0 1235.5
primi 6 2.1 3.6 14.1 70.1 3.4 10.6 84.7 2788.4
8 2.8 5.1 22.4 180.9 4.4 20.6 151.0 2747.8
2 3.8 3.4 4.6 7.9 2.6 4.1 11.0 526.5
4 4.8 8.7 31.7 106.0 6.9 22.3 121.8 4932.2
ind1 4] 8.5 13.2 51.7 269.2 9.7 48.6 287.1 | 11504.7
8 8.6 15.3 77.0 604.1 11.2 65.8 479.6 | 19825.6
2 19.6 7.2 10.8 17.8 14.0 15.9 56.6 336.7
4 24.9 21.7 5b6.1 192.2 28.3 59.5 299.2 837.8
bio 8 29.5 36.2 117.4 538.7 40.6 108.6 582.6 1262.8
8 40.8 50.2 205.4 | 1416.8 58.9 157.9 948.3 1825.0
2 2.1 2.1 3.6 6.4 1.8 2.7 7.5 145.2
4 3.3 4.4 14.5 59.8 3.7 10.7 63.9 3237.8
test06 8 4.2 6.5 30.2 156.7 5.6 25.3 167.4 8134.7
8 5.4 8.3 50.6 375.4 7.1 44.1 390.1 13701.6

especially for the PFiMalgorithms. We did an experiment toalso helps a lot. The mobility concepts pays off because PFM2
penalize zero-gain moves more by settiago one in (2). We outperforms all the PLMalgorithms. Relative to FMS, PFM3
observed an overall performance improvement. yields the best average and minimum performance, 66% and
2) Results—Performance at Multiway Partitioninffrom 73% both onindl , respectively. Note that the bottom of
Table II, we observe the following for the solution qualityTable Il gives overall relative performance figures in terms
at multiway partitioning. For the average performance, S&f percentages.
delivers the best results, and PFM3 comes second. For thés the search space is larger and more difficult to explore
minimum performance, PFM3 delivers the best performanc, multiway partitioning, better search strategies are needed
and SA comes second. Like the case at bipartitioning, bdir a thorough exploration. The superiority of our algorithms
the average and minimum performance of PL&hd PFM with respect to FMS reveals their effectiveness and supports
generally gets better as increases. Unlike the case at bi-our original claim. Note that the relative performance of our
partitioning, the PFNl algorithms perform better than thealgorithms gets better as we move up in the tables. Since the
corresponding PLMalgorithms. That even PFM2 beats PLMZircuits are ordered in ascending density in the tables, this
despiteN[PLM3] > N[PFM2] indicates thafV is not the only observation shows that our algorithms perform relatively better
factor that improves the performance. The mobility conceps the circuit gets more sparse. There are some anomalies

DASDAN AND AYKANAT: MULTIWAY CIRCUIT PARTITIONING ALGORITHMS 177

TABLE IV
CuTsize AVERAGES BY PFM3 FOR DIFFERENT VALUES OF THE SCALE FACTOR S. (Gmax =
MAxiMuM MoVE GAIN PossiBLE) BoLD VALUES ARE THE BEST VALUES IN EACH Row

PROBLEM R=5/(2Gmae + 1)

Neme | k] o5 | 1+ | 2 | 4 | 8 | 16 | 32 | 64 | 126
2| 2074] s00| 764 718 554 | 622 | 590 | 510 | 420
4 | 3288 | 137.8 | 121.6 | 116.2 | 107.6 | 116.4 | 123.4 | 121.0 | 114.8

struct | 6 || 438.8 | 246.4 | 236.4 | 224.0 | 215.8 | 210.8 | 215.8 | 219.6 | 208.4
8 || 485.6 | 317.0 | 296.4 | 289.6 | 276.6 | 275.8 | 264.2 | 264.0 | 275.6
2| 558 | 442 | 434 | 424 | 420 456 | 38.0 | 404 | 408
4| 854 | 816| 748 | 738 | 736 | 72.2| 734 | 70.0 | 704

c2670 | 6 || 109.0 | 97.2 | 888 | 886 | 81.8 | 812 | 786 | 78.0 | 786
8 || 1210 | 1036 | 992 | 922 | 920 | 888 | 86.4 | 89.6| 84.8

TABLE V
Curtsize AVERAGES BY PLM FOR DIFFERENT VALUES OF Nj, AND N. (N = ToTtAL NUMBER OF MOVES PERPASS, Ni, = NUMBER OF PHASES
PER PAss, n = NUMBER OF CELLS, AND k& = NUMBER OF PARTS.) BoLD VALUES ARE THE BEST VALUES IN EACH Row

PROBLEM N=n N = nk N = nk?
N; N; N;

Name | k || n/a [2n/a [3n/a [an/a | n/a [2n/a [3n/a | an/a [nja | 2n/a | 3n/4 | 4n/a
2| 744 | 750 e44| 520 61.4] 532 | 608 | 506 | 51.6| 49.0 | 506 | 506
4 || 2700 | 261.4 | 197.2 | 296.6 | 256.6 | 232.8 | 169.6 | 179.4 | 255.0 | 208.2 | 150.0 | 197.4

struct | 6 || 380.8 | 343.2 | 332.6 | 421.2 | 372.2 | 305.4 | 322.0 | 334.8 | 370.4 | 204.6 | 3142 | 307.2
8 || 455.0 | 403.2 | 393.2 | 487.2 | 460.0 | 393.4 | 394.8 | 405.0 | 456.6 | 356.0 | 390.8 | 405.8
2| 500 | 658 | 56.8 | 464 | 548 | 55.8 | 47.4 | 45.0 | 55.0 | 516 | 504 | 45.0
4| 1238 | 123.4 | 101.0 | 134.2 | 119.0 | 1180 | 96.4 | 93.4 | 1166 | 1090 | 952 | 96.8

c2670 | 6 || 162.2 | 142.0 | 135.2 | 165.0 | 148.0 | 124.8 | 123.2 | 112.2 | 148.2 | 118.2 | 117.0 | 113.2
8

177.2 | 174.8 | 164.2 | 186.2 | 176.4 | 141.6 | 147.4 146.2 | 174.2 | 122.2 129.0 | 131.0

though, e.g., the performance pnim2 andtest06 . The where A is any of the PFM or PLM: algorithms. This
variation of the circuits not only in density but in both structurenequality shows that the running times of our algorithms in
and size seems to account for these anomalies. Through practice are basically directly proportional to the number of
experiments on randomly generated circuits that varied ordgll moves and so they are as efficient as FMS.

in density, we have observed that most of these anomalies

disappeared. Our algorithms’ superior performance for spaseExperiments on Algorithm Parameters and Discussion

circuits is very promi;;ing as real applications are usually Table IV presents the effects of the scale factor on the
sparse. Also, as the circuit gets denser, even the performaB Bormance of PEM3. The results for PEM1 and PEM2 are
of a simple greedy algorithm becomes comparable to thatsq .

KL [20], and so sparse circuits help us assess the performa llar. Table V presents th? effects of and Ni“ on the
fan a{I orithm better B%?formance of the PLM_aIgorlthms. The v_alues in the tables
0 9 - L are the average of the five best cutsizes in 30 runs. We chose
3) Results—Running Tlmesgs for the running tlmgs from two circuits, struct and c2670, with different densities.
Table Ill, we can say that in general, the algorithms c

be ordered according to their running times regardlessqgfte that the column fofV' = n and Ny, = 4n/4 in Table V

the number of parts a¥[FMS] < T[PFM1] < T[PLM1]< rresponds to FMS.

We observe that a$ increases, the performance of the
TIPEM2] < T[PLM2] < T[PFM3] < T[PLM3] < T[SA], PFM: algorithms generally gets better, the reason being that a

whereTTA] represents. the .total running time of the aIgorithr(}ery small S introduces too much randomness in the move
A. Note that the running time of SA is far larger than thos election process and renders the selection of best moves

of t_he others, an<_j FMS t_a_kes _the sm_allest running time. ffficult. Through other experiments, we have also observed
derived the following empirical inequality for the (total or per-

25S) running time of our alaorithms with respect to that t?atavery larges does not help as it prevents the randomness
EMS) unning t ur-aigort Wi P %Itogether and prevents the occasional selection of uphill

moves. We suggest thd® = 1, i.e., S = 2Gnax + 1, is @
safe choice but one should use a lafgewvhen the search
714 2N[A] (4) space is difficult to explore as is the case when the circuit is
TFMS] n sparsek is large orGuax is small.

178

For the PLM algorithms, we note the following. For [g]
multiway partitioning, the PLNI algorithms outperform FMS
no matter whatN and Ny, are; however, the results get [9]
better asN increases. For bipartitioning, a larg€ favors
a small N, and a smallN favors a largeN,,, e.g., when
N = nor N = nk, Ny, = n gives the best results and[i1)
when N nk? Ny, = 2n/4 gives the best results. In
our experiments mentioned in the previous section, we USﬁg]
Ny, = 2n/4 as a compromise.

13

V. CONCLUSIONS AND FUTURE WORK 13

In this paper, we propose two novel approaches for myiy
tiway circuit partitioning to overcome the limitations of the

traditional locking mechanism, which has been used by I5]

the previous KL-based algorithms. Each approach allows more

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 2, FEBRUARY 1997

B. Krishnamurthy, “An improved min-cut algorithm for partitioning
VLSI networks,” IEEE Trans. Comput.vol. 33, no. 5, pp. 438-446,
May 1984.

L. A. Sanchis, “Multiple-way network partitioning,/EEE Trans. Com-
put, vol. 38, no. 1, pp. 62-81, Jan. 1989.

] C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning:

A survey,” Integr. VLSI J, vol. 19, pp. 1-80, Dec. 1995.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by
simulated annealing,Science vol. 220, no. 4598, pp. 671-680, May
1983.

A. G. Hoffmann, “The dynamic locking heuristic—a new graph parti-
tioning algorithm,” inProc. IEEE Int. Symp. Circuits Systeni®994, pp.
173-176.

C. Park and Y. Park, “An efficient algorithm for VLSI network partition-
ing problem using a cost function with balancing factdEEE Trans.
Computer-Aided Desigrvol. 12, no. 11, pp. 1686-1694, Nov. 1993.

L. W. Hagen, D. J.-H. Huang, and A. B. Kahng, “On implementation
choices for iterative improvement partitioning algorithms,” Rmoc.
European Design Automation Confpip. 144-149, 1995.

R. L. Graham, “Bounds for certain multiprocessing anomali&gll
Syst. Tech. Jvol. 45, pp. 1563-1581, 1966.

moves per pass for each cell. Each approach leads to a genific A. Dasdan and C. Aykanat, “Two novel multiway circuit partitioning al-

algorithm whose parameters can be set in different ways such
that better performance is usually obtained by spending mate|

time in exploring the search space. We generated three VerSifl%f
0

of each generic algorithm and evaluated them on a subse
commonly used benchmark circuits in comparison with FMS
and SA. The experimental results show that our algorithms o
perform FMS significantly especially on multiway partitionin
as well as partitioning of sparse circuits. The performance of
our algorithms is comparable to that of SA, but the runnirr:]go]
time of SA is far larger than those of ours. We also did some
experiments on the parameters of the generic algorithms and
provided some guidelines for good parameter settings.
approaches can easily be incorporated into existing KL-based
algorithms such as those in [9], [13], [17], and [21].

We believe that our approaches are mature and effective

fé]

enough to use, but there are some areas for further research

such as better mobility functions (largeror larger increments |
in move count to decrease unnecessary cell moves), desig
adaptive schemes to reduce the number of moves per pass
of phase concept in the PEMIgorithms, incorporation of our
approaches with existing approaches, and finally applicati
of our algorithms in other areas like VLSI placement.

REFERENCES

[1] D. G. Schweikert and B. W. Kernighan, “A proper model for the
partitioning of electrical circuits,” inProc. 9th ACM/IEEE Design
Automation Conf.1972, pp. 57-62.

[2] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of
standard-cell VLSI circuits,1IEEE Trans. Computer-Aided Desigvol.

4, no. 1, pp. 92-98, Jan. 1985.

[3] M. R. Garey and D. S. Johnsogomputers and Intractability New
York: Freeman, 1979.

[4] T. Lengauer,Combinatorial Algorithms for Integrated Circuit Layout
Chichester, U.K.: Wiley, 1990.

[5] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for

partitioning graphs,”Bell Syst. Tech. Jvol. 49, no. 2, pp. 291-307,

Feb. 1970.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevol

“Optimization by simulated annealing: An experimental evaluation; Pa

1, graph partitioning,’'Oper. Res.vol. 37, no. 6, pp. 865—-892, Nov. 1989.

(6]

S 24

software codesign of embedded systems.

gorithms,” [WWW], Tech. Rep. BU-CEIS-9609, Bilkent Univ., Ankara,
Turkey, May 1996, Available http://www.cs.bilkent.edu.tr/

H. Shin and C. Kim, “A simple yet effective technique for partitioning,”
IEEE Trans. VLSI Systvol. 1, no. 3, pp. 380-386, Sept. 1993.

C.-W. Yeh, C.-K. Cheng, and T.-T. Y. Lin, “Optimization by iterative
improvement: An experimental evaluation on two-way partitioning,”
IEEE Trans. Computer-Aided Desigwol. 14, no. 2, pp. 145-153, Feb.
1995.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,
“Optimization by simulated annealing: An experimental evaluation; Part
I, graph coloring and number partitioning®per. Res.vol. 39, no. 3,

pp. 378-406, May 1991.

T. N. Bui, S. Chaudhuri, F. T. Leighton, and M. Sipser, “Graph bisection
algorithms with good average case behavi&@dmbinatorica vol. 7,

no. 2, pp. 171-191, 1987.

] Y.-C. Wei and C.-K. Cheng, “Ratio cut partitioning for hierarchical

designs,” IEEE Trans. Computer-Aided Desigwol. 10, no. 7, pp.
911-921, July 1991.

= Ali Dasdan received the B.S. degree in computer
; engineering from Bogazici University, Istanbul,
Turkey, in 1991 and the M.S. degree in computer
engineering and information science from Bilkent
University, Ankara, Turkey, in 1993. He is currently
working toward the Ph.D. degree in computer
science at the University of lllinois, Urbana-
Champaign. He is being supported by a fellowship
3 | from The Scientific and Technical Research Council
/ \ of Turkey.

= His current research interests include hardware-

Cevdet Aykanat received the B.S. and M.S. de-
grees from the Middle East Technical University,
Ankara, Turkey, in 1977 and 1980, respectively,
and the Ph.D. degree from Ohio State University,
Columbus, in 1988, all in electrical engineering. He
was a Fulbright scholar during his Ph.D. studies.
He worked at the Intel Supercomputer Systems
Division, Beaverton, OR, as a Research Associate.
Since October 1988 he has been with the Depart-
ment of Computer Engineering and Information
Science, Bilkent University, Ankara, Turkey, where

[7] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic forhe is currently an Associate Professor. His research interests include parallel
improving network partitions,” inProc. 19th ACM/IEEE Design Au- computer architectures, parallel algorithms, applied parallel computing, and
tomation Conf. 1982, pp. 175-181. graph/hypergraph partitioning.

